
SPECIAL SECTION ON CYBER-PHYSICAL SYSTEMS

Received December 31, 2018, accepted February 7, 2019, date of publication February 25, 2019, date of current version March 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901509

On Enabling Technologies for the
Internet of Important Things
MARTEN LOHSTROH 1, (Member, IEEE), HOKEUN KIM 1,
JOHN C. EIDSON1, (Life Fellow, IEEE), CHADLIA JERAD2,
BETH OSYK3, AND EDWARD A. LEE 1, (Fellow, IEEE)
1Department of Computer Sciences and Electrical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
2National School of Computer Sciences, University of Manouba, Manouba 2010, Tunisia
3Edge Case Research, Pittsburgh, PA 15201, USA

Corresponding author: Marten Lohstroh (marten@eecs.berkeley.edu)

This work was supported in part by the National Science Foundation (NSF), under Award CNS-1836601 (Reconciling Safety with the
Internet), in part by the iCyPhy Research Center (Industrial Cyber-Physical Systems, supported by Avast, Camozzi Industries, Denso, Ford,
Siemens, and Toyota), and in part by the Fulbright Scholar Program, a program of the United States Department of State Bureau of
Educational and Cultural Affairs.

ABSTRACT The Internet of Things leverages Internet technology in cyber-physical systems (CPSs), but the
protocols and principles of the Internet were designed for interacting with information systems, not cyber-
physical systems. For one, timeliness is not a factor in any widespread Internet technology, with quality-
of-service features having been routinely omitted for decades. In addition, for things, safety, freedom from
physical harm, is even more important than information security, the focus on the Internet. Nevertheless,
properties of the Internet are valuable in CPSs, including a global namespace, reliable (eventual) delivery
of messages, end-to-end security through asymmetric encryption, certificate-based authentication, and the
ability to aggregate data from a multiplicity of sources in the cloud. This paper discusses and surveys
architectural approaches, communication protocols, and programming models that promise to bridge the
gap, enabling the use of the Internet technologies even in safety-critical, cyber-physical applications such as
factory automation and transportation. Specifically, we argue that smart gateways hosted on edge computers
complement cloud-based services; they can provide tighter control over timing and security that is robust
against network outages, play an active role in managing interactions between things, and isolate safety-
critical services from best-effort services. We explain how time sensitive network technology can be
leveraged to reliably orchestrate a multiplicity of things, and how augmenting our programming models
with a well-defined notion of time can make systems more deterministic and more testable.

INDEX TERMS Cyber-physical systems, edge computing, fault tolerance, Internet of Things, real-time
systems, software safety, security, time dissemination.

I. INTRODUCTION
The Internet of Things (IoT) is the class of cyber-physical
systems (CPSs) that leverage internet technology for coordi-
nation and for the exchange of information about the physical
world in real time. The vision embodied by IoT appeals
to the imagination of many—our environment and virtually
anything in it will turn ‘‘smart’’ by having otherwise ordinary
things be furnished with sensors, actuators, and networking
capability, so that we can patch these things together and have
them be orchestrated by sophisticated feedback and control

The associate editor coordinating the review of this manuscript and
approving it for publication was Remigiusz Wisniewski.

mechanisms. As Wegner argued in [1], interaction opens up
limitless possibilities for Things to harness their environment
and compensate for a lack of self-sufficient cleverness. Sen-
sors aside, a connection to the Internet alone allows a Thing
to tap into an exceedingly rich environment, unleashing a real
potential for making things smarter.

However, today’s IoT solutions are often plagued by prob-
lems. Some prove considerably more awkward and ineffi-
cient to use compared to the conventional technology that
they replace. Setup can be complex and firmware patches
sometimes fail. The company providing the cloud side of
the service may go out of business or abandon the prod-
uct, rendering it useless. IoT devices sometimes intend to

27244
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0003-1450-5248
https://orcid.org/0000-0002-5663-0584


M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

replace things that are designed to last decades, but the
prospect of these devices working reliably for decades is often
remote.

Another problem is that IoT devices often lack adequate
security. Particularly manufacturers of seemingly innocuous
gadgets tend to prioritize time-to-market and their products’
ease of use over steadfast security. Arguably, security may
not be a big concern for IoT devices that perform non-
critical tasks, but their vulnerabilities can be leveraged to
attack higher-value targets or paralyze important network
infrastructure. In 2016, for instance, the Mirai botnet, which
consisted of compromised IoT devices that allowed access
on the basis of default passwords, carried out a distributed
denial-of-service (DDoS) attack on Dyn, a major provider
of the Internet’s domain-name service (DNS). This led to
internet connection problems to major websites including
Twitter, Netflix, Spotify, and the Financial Times [2].

In this paper, we focus on Things where dependability
and safety are extremely important, such as factory robots,
trains, and cars. Traditional methods used in engineering to
achieve high reliability (e.g., via testing or formal verifica-
tion) rely on isolation to avoid interference and make the
analysis of sought-after safety properties tractable. Hence,
the idea of integrating internet technology in such systems is
quite a departure from that tradition and poses a formidable
challenge. In this paper, we call such safety-critical cyber-
physical systems the Internet of Important Things, IoIT. The
community also refers to the Industrial Internet, Industry 4.0,
and Digitalization, each of which we view as a special case
of IoIT.

Despite the challenges to safety, networking offers con-
siderable advantages. The proper functioning of a safety-
critical CPS relies on the accuracy and dependability of the
information it is able to source from its environment. With an
increasing degree of autonomy, this reliance becomes more
crucial; without a human in the loop, it becomes difficult
to avert disaster in the face of errors. Networking can help
compensate for a local deficiency of accurate information.
For instance, a car equipped with radar or LIDAR cannot
identify obstacles past the car in front of it, but it could
potentially ask the view-blocking vehicle to report what is in
its view.

Ensuring adequate safety, reliability, privacy, and security
for the IoIT operating on open networks is extremely difficult.
There is precedent, however, for high-confidence systems
that use open networks. Today, the world’s financial system
operates almost entirely electronically and with heavy use of
the open internet. No engineered system is perfect, but the
benefits appear to outweigh the risks, and losses due to tech-
nical failures and malicious actors are simply factored into
the cost of operation. Can cyber-physical systems achieve the
same balance, where the benefits of open networks outweigh
the costs? In the remainder of this paper we discuss and
survey several technological innovations that we believe will
be instrumental in the development of a safe, secure, and
reliable IoIT.

II. EDGE COMPUTING
Building IoT systems using cloud computing has been widely
adopted [3], [4]. Services such as Amazon’s AWS IoT [5]
are primarily cloud services, in this case using Amazon Web
Services (AWS). An alternative that we view more promising
is to mix cloud services, edge computing, and Things, rather
than just cloud services and Things. Edge computing, on the
other hand, is an emerging computing paradigm that puts ser-
vices on devices that are physicallymuch closer to the Things,
residing in smart gateways or in networking equipment [6].
Cisco Systems coined the term ‘‘fog computing’’ [7] for such
architectures to suggest that it is kind of like the Cloud, but
closer to the ground. We will refer to this architecture more
generically as ‘‘edge computing.’’

An edge computer is a computing device that can act as an
internet gateway or a router, such as Intel’s IoT gateway or the
SwarmBox developed in the TerraSwarm project.1 But rather
than being just a provider of networking, edge computers also
provide services, including, for example, monitoring sensors
for anomalies, brokering authentication and authorization [8],
filtering data feeds to ensure privacy, and preprocessing data
feeds to forward to the Cloud only what the Cloud needs.

Any device with computing and networking capability can
function as an edge computer, so it is the role of the device
that we focus on. For instance, a smart phone is a Thingwhen
used for its sensors or actuators. At the same time, it is an
edge computer when it acts as an internet gateway for other
Things such as wearable devices. A device can perform both
roles simultaneously.

Varghese et al. [9] classify edge computers as either an
‘‘edge node,’’ edge computers running on traditional internet
routers, and an ‘‘edge device’’ for edge computers based
on user mobile devices including smart phones and laptops.
Since ‘‘node’’ and ‘‘device’’ are almost synonymous, we dis-
tinguish ‘‘immobile’’ edge computers from ‘‘mobile’’ edge
computers. To be an edge computer, it must interact with
Things, and mobility is determined by whether it moves
with respect to the Things it interacts with. For example,
a mobile edge computer can be inside of a car; the car itself
is mobile, but the edge computer is stationary relative to
Things on the car connected to it. Similarly, mobile phones
are typically bound to humans, and they follow their owners
around, remaining stationary from the perspective of their
owner’s wearables. But they are mobile from the perspective
of smart building devices, and thus less effective as an edge
computer for them.

A defining feature of an edge computer is its physical prox-
imity to the devices it serves, making it much easier to ensure
stable network connections that allow for reliable low-latency
communications. In addition, edge computers can leverage
their locality to keep data local (for privacy and security); to
offload computation from battery-powered devices; to pro-
vide temporary storage for memory-constrained devices; to
firewall a local network; and to authorize or discover devices

1https://www.terraswarm.org/

VOLUME 7, 2019 27245



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

based on physical proximity. The Cloud, on the other hand,
is a better choice for services that require aggregating data
from multiple sources or that exceed the compute and/or
memory capabilities of edge computers.

We believe that many IoIT applications can benefit from
both edge and cloud capabilities, and that services should be
carefully partitioned between the Edge and the Cloud based
on their requirements. In the IoIT, some services are critical to
safety and cannot be beholden to remote services with highly
variable latencies and potential network and service outages.
Imagine a scenario where a power plant operator is locked out
of the local network because a remote authentication service
goes offline. A recent example showing that this can happen
is the Google OnHub incident [10]. On February 23, 2017,
many of Google’s smart gateway (router) devices called
OnHubwere unable to authenticate its users for about 45min-
utes due to a failure in its remote authentication servers, deny-
ing access to any OnHub devices. Users could not even access
local resources like printers on their LAN. Edge computers
with adequate local authentication and authorization services
can avoid this scenario, as shown in [8].

III. SECURITY
Edge computing offers opportunities for enhancing security.
An edge computer can mediate access to physical resources
such as sensors and actuators, it can isolate a local network
from the Internet, and it can authenticate Things. But how?
How can it be sure that the data it sees comes from the sensor
it expects, for example? And how can it authorize access to
resources such as a safety-critical actuator? The IoT has a
much wider attack surface compared to traditional computer
systems, making it easier to subvert. For example, disruptions
of timing that fall far short of denial-of-service attacks can
have disastrous consequences. IoT systems may also be vul-
nerable to energy attacks (draining the battery of a critical
device) and physical attacks (tampering with hardware or fab-
ricating sensor input). And wireless communication, which
IoT devices often rely upon, is inherently more susceptible to
tampering than wired communications.

In the Internet today, authentication infrastructure has
become good enough that we conduct our banking online.
A public key infrastructure (PKI) specifies policies and pro-
cedures of issuing and managing (digital) certificates for
authentication of network entities including web servers.
For example, given a domain name of a bank (e.g.,
bankofamerica.com) and a certificate provided by a
web server of the bank, the browser in our laptop com-
puter can verify that the private key that matches a public
key included in that certificate is owned by the same entity
that owns the domain name. The browser verifies this by
checking a cryptographically signed string of bytes in the
certificate with a public key provided by an independent
trusted third party, a certificate authority (e.g., VeriSign).
However, can this PKI be compromised? Of course, it can;
someone could steal the private key from the bank and spoof
a domain-name server to provide an alternative IP address

for the domain name. A certificate authority could also
make mistakes, as shown in the WoSign incident that
occurred in 2015 [11], where the Chinese certificate authority
WoSign mistakenly issued certificates to incorrect subjects;
for instance, if you controlled foo.github.com, WoSign
would issue a certificate for *.github.com. This incident
showed that security can collapse when a root of trust, a cer-
tificate authority in this example, is broken. Nevertheless,
the PKI works well enough that you trust the system with
your money.

The Internet and cellular telephony provide reasonably
reliable addressing. Specifically, when you launch a packet
into the network with a destination address (or phone num-
ber), you have some assurance that it will be delivered to the
device or person legitimately associated with that address.
Again, this is not perfect, to compromise the infrastructure,
a hacker would have to break into routers owned by large cor-
porations (internet service providers and cellular telephone
providers) whom we trust to take measures to protect their
equipment [12]. Many two-factor authentication mechanisms
today rely on this reliable addressing, to reset passwords by
email delivery, for example.

Many web applications, including online banking, rely
on sandboxed execution of proxy code. Specifically, when
you direct your browser to your bank’s website, the website
typically provides your browser with a script, typically writ-
ten in JavaScript, that executes within the browser under an
interpreter that restricts what the script can do. Specifically,
the script can access other web pages, but only those from the
same source, specified by a URL and port number (‘‘same-
origin’’ policy), and the script can neither access files on
the local disk nor data in local memory belonging to other
web pages or programs. These restrictions are enforced by
the browser, which you must trust. The ‘‘accessor’’ design
pattern we discuss in [13] provides similar sandboxing for
IoIT applications.

A. AUTHENTICATION AND AUTHORIZATION
The IoT can certainly leverage web techniques for authenti-
cation, but while they are sufficient to enable online bank-
ing, they are not sufficient for most IoIT applications. One
issue is scalability. IoT devices provide services acces-
sible from the network, but they will rarely be associ-
ated with a fixed domain name or IP address (although
as IPv6 gets more pervasive, they may start to be asso-
ciated with fixed IP addresses). This creates several prob-
lems. One is discovery, because you cannot simply go to
myassemblyrobot.com to establish a connection with
your factory’s assembly robot. Second is authentication,
because it is difficult to verify that the IP address you connect
to indeed points to your robot, as opposed to a device used
to stage a man-in-middle attack, for instance. Certificate
authorities, as they are operated today, do not scale to the IoT,
because the issuance of certificates requires human assess-
ment and approval for each request. While this process may
be tenable for the authentication of organizations, there are

27246 VOLUME 7, 2019



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

many orders of magnitude fewer of those than the number of
IoT devices we expect to come online.

Innovative projects like Let’s Encrypt2 provide amajor step
forward, because the authentication and certificate issuance
are free and automated. So, without human intervention,
it can scale to many more entities than traditional certificate
authorities could possibly serve. However, it is still globally
centralized, meaning that it can be a single point of fail-
ure, as shown in the Heartbleed vulnerability in 2014 [14]
where more than 200,000 certificates from a single certificate
authority, GoDaddy, had to be revoked due to a security
breach in OpenSSL. Let’s Encrypt, however, still requires
fixed and global network addresses for certificate issuance,
making it a poor match for IoT devices that operate on LANs
and/or are assigned a dynamic IP address. Recent work in
our group has shown that the principles of Let’s Encrypt can
be realized in a more robust, scalable way, creating what
we call ‘‘locally centralized, globally distributed authentica-
tion’’ [15]. Exploiting locality can also make such systems
more resilient to distributed denial of service attacks.

A problem related to but distinct from authentication,
is authorization. You would not want anyone on the Inter-
net who discovers your assembly robot to be able to con-
trol it. For human users, passwords are often used for both
authentication and authorization. However, it is neither fea-
sible for a human to memorize passwords for a myriad of
IoT devices nor is it secure to use passwords that could
be guessed or stolen by adversaries. A locally centralized,
globally distributed architecture can provide automated and
easy-to-manage authorization mechanisms based on phys-
ical proximity. In this security model, we assume that a
device that can get physically close to another device can be
granted access to services.Many applications (such as factory
automation) presume constrained physical access (for safety
reasons if no other), so these constraints can be leveraged for
authorization. For applications that have no constrained phys-
ical access, such as roadside infrastructure, other mechanisms
will need to be developed.

B. AVAILABILITY THREATS AND RESILIENCY
Availability threats to the IoIT can lead to devastating con-
sequences. For traditional internet services, the damage of
distributed denial-of-service (DDoS) attacks will be at most
financial loss or privacy breach. However, DDoS attacks on
the IoIT, including safety-critical facilities such as hospitals,
may result in casualties. DDoS attacks on Boston Children’s
Hospital [16] in April 2014 disrupted the IT systems of the
hospital. Had medical devices been connected to the facility’s
network (this practice is already becoming a trend [17]) the
attacks could have caused medical accidents. Another exam-
ple is the DDoS attack on building controllers in Finland [18]
in the winter of 2016, which raised safety concerns due
to a malfunction in buildings’ heating systems. Moreover,
the frequency and volume of DDoS attacks have been rapidly

2https://letsencrypt.org/

increasing due to the scale of the IoT [19]. For the IoIT, it is
crucial that critical security functions such as authentication
and authorization services are resilient to availability threats
including DDoS attacks.

Our recent work [20] provides locally centralized, glob-
ally distributed authentication and authorization services that
are resistant to availability threats and are able to recover
from failures. In our proposed approach, authentication and
authorization are performed by an entity called Auth [21],
which is deployed across edge computers and does not rely
on remote cloud servers and internet connections. In addi-
tion, our approach facilitates recovery in case of availability
attacks or failures through a mechanism called secure migra-
tion. The secure migration technique allows Auths to con-
struct migration policies and back up its Things’ credentials
to other trusted Auths. When some of Auths become unavail-
able, their Things can securely migrate to other available
Auths and continue authentication and authorization services.

We have focused on reasonably well developed and under-
stood security mechanisms, but there are some emerging
technologies that may prove useful for the IoIT. Homomor-
phic encryption, for example, allows certain operations on
encrypted messages without decrypting them. Blockchain
techniques go further than edge computing in decentralizing
critical functions, making them completely distributed. Nei-
ther of these is mature enough for us to see exactly what their
impact might be, but they are clearly worth watching.

IV. COORDINATION AND TIMING
Specific internet technologies of interest for IoT include
networking (e.g. IP, TCP, UDP), the World Wide Web (e.g.
HTTP, HTML5), cloud computing, and programming lan-
guages for client and server-side functionality. But these
technologies were not designed for interaction with Things.
An egregious mismatch concerns timing. Timing of internet
technologies is strictly a ‘‘best effort’’ affair where the goal
is simply to be sufficiently responsive that humans do not
lose patience. But when talking about Things, timing can
matter quite a lot. It matters when a self-driving car applies
the brakes or a robot arm on a factory floor moves.

Some kinds of real-time behavior are not realistically
achievable with today’s internet technology. For example,
it is unlikely that the feedback control laws governing a self-
driving car can be realized in the Cloud using RESTful inter-
faces [22], which rely on HTTP and carry all context state
information in each exchange of information. The latency of
responses from the cloud-based service is likely to be too high
and, more important, too variable.

There aremarket forces that are driving internet technology
towards more controllable latencies. Interactive services such
as distributed gaming and video teleconferencing demand
controllable latencies and are difficult to achieve today with
high quality and reliability. To address this demand, a recent
industry trend is the emergence of Time Sensitive Network-
ing (TSN) technology. The Time-Sensitive Networking task
group of the IEEE 802.1 working group is in the final stages

VOLUME 7, 2019 27247



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

of issuing standards with promising new capabilities that are
compatible with open networks.

Some elements of TSN technologies are already widely
deployed, though not yet widely used. For example, the IEEE
1588 [23] standard for clock synchronization, which first
appeared in 2002 and was substantially revised in 2008,
is supported in essentially all Ethernet PHY chips on the
market today. It has been deployed in quite a lot of networking
gear, but it has not yet risen to the level of a service for
application developers except in niche applications [24]. This
technology is capable of synchronizing clocks on a local-
area network to nanosecond precision, and it is compatible
with legacy Ethernet and TCP/IP equipment. The TSN stan-
dards that are expected this year, particularly updates of the
802.1AS standard, could be the galvanizing force that will
lead to worldwide high-precision clock synchronization. If
we combine this technology with edge computers, which can
function as gateways that ensure controlled timing on local
area networks, then networks with deterministic latencies and
reliable delivery that are compatible with the Internet are
within reach. We assume in this paper that such networks will
become widely deployed.

Even if these market forces are wildly successful, the Inter-
net is unlikely to ever provide the level of determinism needed
for many safety-critical, latency-sensitive services. Its most
important defining features are openness, which inevitably
will increase variability in quality of service, and its geo-
graphical distribution, which inevitably increases latencies.
Nevertheless, some temporal properties are achievable even
with today’s internet technology. Some applications can
immediately benefit from these properties by becoming more
deterministic, more testable, and better able to detect and
adapt to failures or degradations of network services. And
then as the network infrastructure improves, we will become
able to exploit these same temporal properties and more to
deliver innovative services.

IoT applications are distributed and communicate over
networks, and hence we will require some temporal seman-
tics in the network as well. Fortunately, we can draw on
experience and considerable infrastructure developed in con-
junction with telecommunications, military, navigation, and
industrial automation. However, there are three issues that
must be considered and resolved in order to proceed with
confidence:

• How can measurements of physical time be coordinated
to sufficient accuracy across networks?

• Are the coordination mechanisms and protocols suffi-
ciently robust?

• Can timing aspects of delivery of messages over the
Internet be sufficiently improved to enable the IoIT to
meet application demands?

A. CLOCK SYNCHRONIZATION
Clock synchronization mechanisms combine local clocks
with protocols for aligning local clocks over a network.
A local clock is a combination of an oscillator and a counter

to count elapsed oscillator cycles since some agreed upon
epoch. The required stability and accuracy of the local clock
depends on the needs of the applications and the properties
of the network. For example, if frequent corrective alignment
with a remote stable master clock can be assured, then the
local clock can be simple and inexpensive. If on the other
hand accurate timing has to be assured over long periods of
network outages, then a more expensive local clock may be
required.

Fortunately, very stable and accurate clocks have become
available at reasonable cost. The workhorse clock of many
critical industrial applications is the 5071 cesium atomic
clock which has an inherent accuracy of 5 × 10−13 seconds
and a long term stability of 1 × 10−14. These specifications
should cover the vast majority of IoIT applications. Such
a clock could be provided as part of the edge computing
infrastructure, thereby enabling highly accurate timekeeping
of many IoIT devices on a local network even if their own
local clocks are relatively sloppy. If needed, there are clocks
that are at least an order of magnitude better, but they are
costly, heavy, and require mains power. Much less expensive
oscillators based on quartz crystals or MEMS technology are
available with stabilities of 0.5 to a few PPM in a cost and
power range accessible to all but the most power challenged
IoIT devices.

All clocks are sensitive to some degree to environmen-
tal effects, the most important of which is temperature, but
include others such as pressure, gravity, and mechanical
stress. In certain applications, relativistic effects must be
accounted for, e.g. due to elevation and velocity. Neverthe-
less, the availability of suitable clocks is not likely to be
the limiting factor in IoIT applications, particularly because
network clock synchronization offers flexibility to trade off
clock characteristics, synchronization rates, and synchroniza-
tion accuracy.

Most applications only require time to be consistent
among collaborating devices, for example, within a vehicle,
machine, or factory. There are several time transfer protocols
suitable for such cases, especially if all devices communi-
cate on the same LAN. Other applications, particularly those
spanning wide geographic areas, may also require a timescale
consistent with international standards such as UTC or TAI.
Again, there are suitable time transfer protocols.

Another common requirement is a federated model with
consistent and very precise synchronization within localized
collections but with a method of relating local time to inter-
national standards among collections, perhaps with reduced
accuracy and precision. Note that some applications, partic-
ularly in telecommunications, require only a common fre-
quency, i.e. syntonization rather than common time. Depend-
ing on the accuracy required, it may be possible to meet such
a requirement without the use of a time transfer protocol,
instead depending on the inherent frequency accuracy of the
clocks involved.

Following is a synopsis of commonly used time transfer
protocols suitable for use in IoIT applications:

27248 VOLUME 7, 2019



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

• GNSS, e.g. GPS, Glonass: Global Navigation Satel-
lite Systems are world-wide time transfer mechanisms
maintained by political entities, e.g. the US DoD for
GPS, capable of delivering time accuracies of better
than a microsecond with little effort and 50 ns with
considerably more effort. GNSS operates using a system
of satellites each containing an atomic clock and trans-
mitting a frequency signal and coded events to enable
terrestrial receivers to compute their location and time.
Many GNSS receiver components are available with a
range of performance, cost, weight, and power consump-
tion properties.

• Network Time Protocol (NTP): NTP is an internet-wide
protocol capable of accuracies to the few millisecond
level. The timescale is tied to UTC and is based on a
collective agreement among primary NTP servers which
in turn can transfer time to clients using a simpler proto-
col Simple Network Time Protocol (SNTP). SNTP runs
on many laptops, workstations, and servers to enable
the time-stamping services used by file systems and
operating systems.

• IEEE 1588 (also known as the Precision Time Proto-
col or PTP): Although designed as a LAN protocol, it is
widely used in WAN environments by the telecommu-
nications industry. In a LAN environment, PTP enables
sub-microsecond synchronization, and with care, per-
haps 10 ns. Recent improvements incorporating the
White Rabbit technology developed at CERN allow PTP
to provide time transfer accuracy to 100ps with 10ps
jitter over 40 km of optical fiber [25]. The timescale
can either be local or tied to TAI. In the latter case,
PTP distributes information to enable the calculation
of UTC. Nearly all recent Ethernet PHY chips contain
time-stamping hardware to assist PTP or other protocols
in capturing very accurate timestamps of synchroniza-
tion messages. There is considerable hardware (includ-
ing 802 bridges), software, and consulting available to
support PTP.

• IEEE 802.1AS: This is a variant of IEEE 1588 special-
ized for layer 2 LAN environments and for use in the
larger TSN suite of protocols being developed in the
802.1 standards groups. It has the same capabilities as
PTP in a LAN environment.

• Industrial protocols including for example TTE (time-
triggered ethernet) and PROFINET:Most such protocols
originally ran only on proprietary networks but currently
have been modified to run using Ethernet technology,
though not necessarily seamlessly with conventional
802 networks. Accuracies below a microsecond are the
norm.

Although not widely implemented at present, eLoran
or ‘‘Enhanced Loran’’ is potentially a world-wide time trans-
fer mechanism. Currently it is operational only in parts
of the UK but is being considered for wider installation
by several political entities. eLoran operates using a con-
cept similar to GNSS but with ground transmitters with

considerably higher power. The original purpose of Loran
was as a navigation aid in coastal waters.

With few exceptions, the power requirements of all of
the above time transfer mechanisms rule out straightforward
application in power challenged devices, e.g. battery operated
sensors that periodically wake up to transmit and receive
a few bytes of information. There is considerable literature
on the design of wireless sensor networks covering suitable
clock technology, energy harvesting schemes, and special-
ized time transfer protocols. One widely used mechanism is
codified in the IEEE802.15.4e standard, which synchronizes
nodes in a wireless network to within tens of microseconds.
This synchronization is used to coordinate wakeup times in an
ad-hoc network and for Time Synchronized Channel Hopping
(TSCH) to provide more robust wireless communications.
A more extreme example of what can be done is the Seiko
‘‘Astron’’ watch. These watches harvest solar energy for
power, periodically synchronize to GPS, and are specified to
maintain±15 seconds of accuracy for a month (about 6 PPM)
without access to GPS and over a temperature range of 5 to
35 degrees Celsius.

Because of the richness of these available options and the
fact that they are being widely deployed, the availability of a
time transfer mechanisms is not likely to be the limiting factor
in providing temporal semantics in IoIT systems. However,
the robustness of suchmechanisms is a serious issue that must
be addressed.

B. ROBUST TIME COORDINATION
Designing a robust time delivery mechanism is not
completely orthogonal to the robust delivery of data and
commands in an IoIT system. However, there are considera-
tions unique to robust time delivery that require modification
of or in some cases new remedies compared to techniques
for ensuring robust computation or data delivery. As usual,
the answer to such problems is application and environment
dependent. For example, the Seiko watch shows that in
a favorable environment, e.g. ones’ wrist and dresser top,
and with modest accuracy requirements (e.g., 15 seconds),
the application of the well-worn technique of ‘‘holdover’’ is
adequate. Holdover relies on the stability of a local oscillator
in the absence of access to the primary time reference,
GPS in the case of the wristwatch.

The initial consideration is the required accuracy and
robustness of the reference time for the system. For systems
of large spatial extent or if time traceable to international
standards is required, a world-wide distribution of time from
a national laboratory is the common system. GNSS is by
far the dominant technology, but it is quite vulnerable to
natural interference, such as solar flares, jamming, and spoof-
ing. Sadly, these later are common occurrences [26]. There
is considerable current activity in developing techniques
to protect GNSS receivers, but particularly with jamming,
the bad guys hold the upper hand. If such interference can be
detected, local clocks can operate in holdover mode or switch
to another source of time. Protection is also enhanced by

VOLUME 7, 2019 27249



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

comparing redundant sources of time. Of course, these tech-
niques add considerable cost and complication and have lim-
ited accuracy. If the world’s political entities can be persuaded
to implement eLoran, this will help immensely because eLo-
ran signals are orders of magnitude greater and of lower fre-
quency than GNSS and therefore more difficult to jam, and in
addition are accessible indoors where GNSS is problematic.

For systems where only local self-consistent time is
required, the other protocols listed earlier are often used.
The time sources at a moment in time are either a single
clock, in the case of protocols like PTP, or an ensemble of
clocks in protocols like NTP. Ensemble protocols typically
exclude the outlier clocks, which reduces the danger from a
failing or severely out of specification clock. Protocols like
PTP select the best clock currently in the system (by some
criteria) and, if this clock degrades, fails, or is disconnected,
will select the next best clock, again providing a measure of
robustness. Both cases are examples of using protocols to pro-
tect against certain clock and network failures. As is the case
of GNSS, it is common to combine redundant time sources
with holdover. For example, the telecommunications industry
invariably designs their primary and secondary references to
have good holdover properties to protect against inevitable
network outages.

Since all time distribution techniques of interest to the
IoIT will involve network communication, data corruption,
denial of service, etc. are of concern. But the cryptographic
techniques used to protect data transfer are not sufficient to
protect time transfer. Such techniques can verify that infor-
mation from a particular clock is actually from that clock
(authentication), that a particular clock is actually authorized
to participate in the protocol (authorization), and to verify that
the timing data has not been modified in transit (integrity).
But in the case of time distribution, the propagation latency
must be known or measured to correctly compute the time.
Intentional or unintentional modification of the latency is
not detectable by the protocols themselves and is a source
of vulnerability. For example, the mistaken measurements
that neutrinos travel faster than light in 2011 by the OPERA
experiment were traced to a faulty connector which changed
the electrical length of a cable carrying synchronization mea-
surements. This type of attack or failure is particularly dif-
ficult to detect or prevent. The best solution to date is the
comparison with redundant time distribution channels using,
for example, triple modular redundancy.

To the extent possible, it is essential that applications them-
selves be designed to be robust in the face of time errors. For
example, the use of a design and execution environment such
as Ptides [27] can potentially enable the prediction of a future
timing failure or detection that a timing failure has occurred,
thus allowing programmers to take remedial measures.

C. TIMELINESS OF MESSAGE DELIVERY
Clock synchronization accuracy depends on the variabil-
ity of the latency of delivery of synchronization mes-
sages. The higher the variability, the coarser the accuracy.

IoIT applications with closed-loop physical control also
depend on the latency of message delivery. Stability of feed-
back control systems is harder to ensure when latency is
higher and when latency is highly variable. There are trends
in the Internet that affect such latency.

The first is the introduction of software defined network-
ing (SDN). SDN separates the data and control planes in a
network to provide greater and quicker capabilities to manage
traffic flow to maximize capacity. To date there is not much
experience on what this will mean for accurate time distri-
bution, but if not done carefully, SDN will surely degrade
accuracy. For interesting discussions of the possible relation-
ship of SDN to network timing, see Stein [28] and Mizrahi
and Moses [29]. SDN will result in much shorter duration of
routing patterns, and this will be enhanced by the ability to
utilize a system-wide timescale to coordinate the exchange
of one routing pattern to another.

A second trend is the ongoing TSN standardization effort
in the IEEE 802.1 standards committees designed to control
latency of message delivery in a LAN environment. As noted,
TSN depends on having a robust notion of LAN-wide time.
The IEEE 802.1AS protocol, a variant of IEEE 1588, serves
this purpose. TSN is in part an adaption of techniques long
used in the industrial automation community. It involves
centralized allocation of bandwidth, and time-slots to priv-
ileged applications, while the remaining bandwidth is used
for general traffic. TSN potentially can provide much better
bounds on latency and more robust time distribution services.
However, applications must be adapted to limit communica-
tion to assigned time-slots. This clearly has limits of scale
and in any case cannot overcome the limits imposed by the
available bandwidth.

V. PROGRAMMING MODELS
A recent trend in cloud computing is to focus on real-time
data analytics. The emerging IoT promises a flood of sensor
data that many organizations already are collecting but not
effectively using. Consulting and market research company
Gartner calls ‘‘dark data’’ the ‘‘information assets that orga-
nizations collect, process and store in the course of their
regular business activity, but generally fail to use for other
purposes.’’ The subtext is that those same businesses are
missing an opportunity. They should be mining the data. The
data has value. The research and consulting firm Forrester
defines ‘‘perishable insights’’ as ‘‘urgent business situations
(risks and opportunities) that firms can only detect and act
on at a moment’s notice.’’ Fraud detection for credit cards is
one example of such perishable insights. This has a real-time
constraint in the sense that once a fraudulent transaction is
allowed, the damage is done. In CPSs, a perishable insight
may be, for example, a determination of whether to apply the
brakes on a car, where a wrong or late decision can be quite
destructive.

Real-time data analytics implies both timing constraints
and streaming data. Computing on streaming data fundamen-
tally means that you don’t have all the data, but you have to

27250 VOLUME 7, 2019



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

deliver results. It differs from standard computation in that the
data sets are unbounded, not just big, and you can’t do random
access on input data, which constrains the types of algorithms
you can use. Major research efforts, such as the industry-
funded RISELab (Real-time Intelligent Secure Explainable
Systems3) launched at Berkeley in 2016, are getting a lot of
attention. Examples of algorithmic innovations for real-time
streaming data include adaptations of machine learning and
optimization algorithms [30], [31] and adaptations of formal
methods [32] to operate on streams.

Real-time data analytics benefits from being hosted in
the Cloud because it benefits from aggregating data from
multiple sources. Machine learning algorithms, for example,
get better given more data. Edge computers can benefit from
a partnership with cloud services if the learning that is done in
the Cloud can be transported to the Edge. A hybrid edge/cloud
architecture can, for example, learn parameters for a model
in the Cloud, and use those parameters to provide quick local
responses at the Edge. In such an approach, even time-critical
services can benefit from big-data machine learning in the
cloud.

But even at the Edge, providing ‘‘quick local responses’’
remains challenging. While edge computers can, in principle,
provide lower and less variable latencies than cloud comput-
ers, software and networking support for controlling timing
remains weak [33]. It is difficult, for example, to ensure tem-
poral isolation between services, where one service cannot
disrupt the timing of another. The most common solution to
this problem, using priorities, is inadequate for IoIT because
of the highly dynamic nature of the applications. Priorities
work best in situations where the task set competing for
resources is well understood a priori. Edge computers, unlike
embedded computers, will not be programmed once and then
deployed to operate for years with a fixed program. Instead,
they will be service providers for Things that come and go.
They will need to perform admission control, rejecting a new
Thing if providing service to it will disrupt the timing of a
preexisting service. But this requires developing quite a bit of
new technology. It does not fit well the classical task models
of real-time computing.

A. ASYNCHRONOUS ATOMIC CALLBACKS
Since an edge computer will be interacting with both Things
and cloud-based services, it will need to use the mechanisms
and APIs that those Things and services define. It is very
common today for both Things and services to provide APIs
(endpoints that respond to HTTP or MQTT commands), and
the prevailing mechanism for interacting with them is via a
concurrency pattern that we call asynchronous atomic call-
backs (AAC). AAC is very different from the most common
task models for real-time computing. In AAC, when a service
request is made, the requester does not block to wait for an
answer but instead provides a callback function to be invoked
asynchronously when the service has been completed. These

3https://rise.cs.berkeley.edu/

callbacks are invoked atomically in that each callback exe-
cutes to completion before any other callback begins exe-
cuting (or at least, it must appear that this is the case).
This atomicity distinguishes the AAC concurrency model
from interrupt-driven I/O, threads, and many asynchronous
remote procedure call mechanisms. The same benefits can,
in principle, be accomplished with threads, but the resulting
programs aremuch less scalable, more difficult to understand,
and vulnerable to the many nefarious bugs that multithreaded
programs inevitably have [34].

The AAC pattern is central to the JavaScript programming
language, used extensively in web programming, both on the
server side (using for example Node.js4) and in browsers.
AAC is also central to Vert.x,5 a Java-based framework.
Vert.x supports islands of atomicity called ‘‘verticles’’ (think
‘‘particles’’) where callbacks are atomic with respect to all
other callbacks in the same verticle, but verticles can execute
in parallel. Vert.x therefore scales to very large numbers of
servers. To provide a sound concurrency model, communica-
tion between verticles is restricted to only occur via a publish-
and-subscribe data bus or using immutable data structures.
AAC has also been used in much older frameworks such as
Active Messages [35] and in embedded systems, particularly
in TinyOS [36].

The AAC pattern is almost universally used when making
a request for data from a URL on the Internet. By providing a
callback function instead of blocking to wait for a response,
an application avoids becoming unresponsive during the long
and highly variable latencies of an HTTP request on the
Internet.

AAC comeswith costs, however. First, it becomes essential
to write code carefully to consist only of quick, small function
invocations. A long-running function will block other call-
back functions, reducing the responsiveness of applications.
Second, AAC accentuates the chaos of asynchrony, where
achieving coordinated action can become challenging. For
example, if you make multiple requests in sequence to a
service, each time passing a callback function, there is no
assurance that the callbacks will be invoked in the same order
as the requests. Both problems are important for IoIT, where
heavy computation may be required to analyze sensor data,
and coordinated physical actions may be dependent on the
order in which things occur.

Because of these limitations, several alternatives mix AAC
with other concurrency models. Many JavaScript implemen-
tations realize a thread-like mechanism called a WebWorker,
which runs tasks in the background concurrently with the
main AAC function invocations. Unlike threads, these Web
Workers cannot share data with the main application. Instead,
they send messages to the main application, which, if it
is listening, will invoke a callback to handle the message.
ECMAScript 6, a recent version of JavaScript, enriches
AAC with a cooperative multitasking model, which allows a

4http://nodejs.org/
5http://vertx.io/

VOLUME 7, 2019 27251



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

function to suspend execution at well-defined points, allow-
ing other functions to be invoked while it waits for some
event. The Vert.x framework enriches AAC with concurrent
verticles that interact with one another through a publish-
and-subscribe bus. Calvin [37], Node-RED,6 and NoFlo7

use a dataflow concurrency model for interactions between
services that are using AAC.

Our own IoT composition platform, CapeCode [13], uses
the discrete events simulation engine from Ptolemy II [38] to
coordinate the interaction between components that are writ-
ten in JavaScript. The discrete events semanticsmakes system
behaviors repeatable and testable, and consequently makes
the interactions between cyber services and Things more
reliable than is possible with JavaScript’s non-deterministic
concurrency model, which uses an event loop to schedule
the execution of AACs [39]. A formal description of this
particular embedding of AACs in a discrete event system is
given in [40].

But even using pure JavaScript it is possible to miti-
gate the non-determinism of the event loop by enforcing
a temporal semantics; in [41], implementations (and exten-
sions) of standard JavaScript functions setTimeout and
setInterval are given, customized so that they schedule
periodic events according to a discrete events semantics, but
without the help of an external coordinator such as CapeCode.
This temporal semantics includes a notion of simultaneity,
enforcement of causal data dependencies, and logical time-
lines that can be bound to real time (approximately) to achieve
real-time behaviors with much better determinism than typ-
ical best-effort methods. But before we explain this, it is
helpful to understand what we mean by ‘‘real time.’’

B. WHAT IS REAL TIME?
In practice, when engineers talk about ‘‘real time,’’ they may
mean8

1. fast computation,
2. prioritized scheduling,
3. computation on streaming data,
4. bounded execution time,
5. temporal semantics in programs, or
6. temporal semantics in networks.

These are very different views, and which view dominates
has a strong effect on the choice of technical approaches to
the problem.

The first, fast computation, is useful in all computation, and
does not deserve our attention here. Nothing about fast com-
putation distinguishes real-time problems from non-real-time
problems. In fact, many real-time systems execute on decid-
edly slow computers, such as microcontrollers, and timing
precision, predictability, and repeatability is more important
than speed.

6https://nodered.org/
7https://noflojs.org/
8In 1988, Stankovic cataloged quite a few more possible

(mis)interpretations of the term ‘‘real time’’ and laid out a research
agenda that is dishearteningly valid today [42].

The second, prioritized scheduling, is the centerpiece of
much work in the real-time systems community [43]. In this
approach, the requirements of the physical world are reduced
to deadlines and periods for periodic tasks, and the temporal
properties of software are reduced to execution times for
tasks. Prioritized scheduling is often paired with a predefined
global periodic task schedule to remove the possibility of
starvation for low-priority periodic tasks. Priorities, however,
do not work as well when the tasks to be executed are not
known about ahead of time. A priority is a global property in
that it has meaning only relative to all other priorities in the
system. In an edge computer, tasks will depend on Things,
mobiles, and internet requests that come and go.

The third meaning, computation on streaming data,
demands different software architectures, using for example
actors as components rather than objects, threads, or tasks.
Many subtle timing questions arise. For example, in the
absence of time stamps, when streams converge, what is
the meaning of the interleaving of their elements? Are their
elements simply nondeterministically interleaved, or is there
more meaning to the relationship between an element of
one stream and that of another? Is there any notion of time
associated with the elements of the stream, and what is the
semantics of that notion of time?

The fourth meaning, bounded execution time, assumes
that some deadline exists for a software execution, and that
ensuring that the execution never oversteps that deadline is
sufficient. The typical purpose is to meet control system
stability requirements, where the generated control signal is
only useful for some duration of physical time. This meaning
is central to the sense-process-actuate programming models
and is usually a basic assumption of the second meaning,
prioritized scheduling. But bounding the execution time of
software is particularly problematic, particularly on an edge
computer that is providing a multiplicity of services. A bound
can only be determined for a particular implementation of the
computer, where every detail of not only the software, but
also the hardware on which it runs and the execution context
are known. Edge computers are likely to be high diverse, and
services will need to be designed to run on many of them.

The fifth meaning, temporal semantics in programs, has a
long history with little practical impact. This history includes
programming languages with timing constructs such as Mod-
ula [44], [45], PEARL [46], Ada [47], Occam [48], Real-
Time Euclid [49], and Erlang [50]. These improve things by
including in the language some of the mechanisms of a real-
time operating system (RTOS), which means that a model
(a program) is more self-contained. One does not need to
combine the semantics of the language with the semantics
of a separate and distinct RTOS to interpret the model. Few
of these languages survive, however, and all fall short of
yielding a deterministic modeling paradigm. This is, in part,
for very practical reasons. The underlying computers do not
provide in their instruction-set architectures mechanisms for
controlling timing, except weak and disruptive ones like timer
interrupts. In fact, the trend has been relentlessly towards

27252 VOLUME 7, 2019



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

less predictable and controllable timing. Either the timing
specified by programs in such languages will be coarsely
approximated by the physical implementation, or the physical
implementation will have to be over-provisioned so that the
variability it exhibits in timing is sufficiently small.

The final meaning, temporal semantics in networks,
is present today only in specialized networks, such as those in
safety-critical systems like factory automation, avionics, and
automotive. Aswe explain below in section IV, however, tem-
poral semantics is not entirely incompatible with commodity
networks [27].

Providing control over timing in edge computers,
we believe, can only be achieved under the last two interpre-
tations, temporal semantics in programs and networks. But
what do we mean by ‘‘temporal semantics’’? Fundamentally,
what we mean is that certain temporal properties should
be elevated from quality metrics to correctness criteria.
In programs, we are accustomed to being able to assume
that every execution of a program will (with very high
probability) perform exactly the logical functions specified
by the program. These logical functions are correctness
criteria in that failing to perform them correctly is treated
as a fault condition. We believe that certain timing prop-
erties should similarly be correctness criteria. What timing
properties?

Consider a program that wishes to take two distinct orches-
trated actions A and B at 100ms intervals. We can argue that
it is physically impossible for these actions to be simulta-
neous, but that would be missing the point. It may be very
useful to have these actions be logically simultaneous. What
does this mean? It could mean that any observer of these
actions will at all times have counted the same number of
actions A and B that have occurred. That is, if the observer
has seen n A actions, then it has also seen n B actions. Note
that this requirement is independent of timing precision and
is most certainly physically realizable (with certain assump-
tions about what an ‘‘observer’’ is). It gives a clean semantic
notion to simultaneity. This is an example of a temporal
property that can be a correctness criterion.

A useful semantic notion of time has to provide a clear
ordering of events. Specifically, each component in a system
must be able to distinguish past, present, and future. The state
of a component at a ‘‘present’’ is a summary of the past,
and it contains everything the component needs to react to
further stimulus in the future. A component changes state
as time advances, and every observer of this component
should see state changes in the same order. We also require
a semantic notion of time to respect an intuitive notion of
causality. If one eventA causes anotherB, then every observer
should see A ordered before B. We also require a semantic
notion of simultaneity. Under such a notion, two events are
simultaneous if all observers see them occurring at the same
time. We may also want to avoid models where one observer
deems two events to be simultaneous and another does not.
These requirements are much easier to meet with an abstract
semantic notion of time than one that is more closely tied

to physics. But we are interested in cyber-physical systems,
so we cannot ignore physics.

On the physical side of a CPS, it is natural to be tempted
to adopt a notion of time directly from physics. However, this
puts us squarely in a minefield, since time is a poorly under-
stood physical phenomenon [51], and models of time differ
significantly between Newtonian, quantum, and relativistic
physics. However, our goal is not to understand the physics
of time, and the usefulness of our models is not determined
by how well they match physics. Instead, the usefulness
of our models depends on whether we can build physical
systems that match the behavior of our models with high
confidence [52]. This leads to significantly different choices
for modeling time [53].

The most common choice for modeling physical time is
Newtonian time. But ironically, Newtonian time proves not
so practical for cyber-physical systems. The most obvious
reason is that digital computers do not work with real num-
bers. Computer programs typically approximate real numbers
using floating-point numbers, which can create problems. For
example, real numbers can be compared for equality (e.g.
to define ‘‘simultaneity’’), but it rarely makes sense to do
so for floating point numbers. In fact, some software bug
finders, such as Coverity, report equality tests of floating
point numbers as bugs. Moreover, addition of floating point
numbers is not associative. This precludes any clean notion of
simultaneity. Fortunately, these problems have been solved,
and we can simply adopt the quantized superdense model
of time that has been shown effective for both cyber and
physical models [54].

C. LOGICAL CLOCKS AND REAL TIME
A semantic notion of simultaneity and control over order-
ing of events are useful but not sufficient for many
IoIT applications.More explicit quantitative control over tim-
ing may be required, for example, to specify periodic actions
with specified temporal periods or to control latency in a
feedback control system. To get approximate timed behavior
in an internet setting, most AAC frameworks support delayed
callbacks. For example, JavaScript environments typically
provide a setInterval(F,T ) function, where function F
is to be invoked after T milliseconds and then again period-
ically with intervals of T milliseconds. Of course, the actual
time of the function invocations cannot be exactly every
T milliseconds, since that would require a perfect timekeeper,
which does not exist, and it would require that the JavaScript
engine be idle at every multiple of T milliseconds, since the
AAC model requires that the function invocation be atomic.
We expect (and get) some jitter in the actual timing of the
function invocations. Such jitter is unavoidable in any soft-
ware platform.

But the situation is worse because the time T actually has
very little meaning at all. It is at best a suggestive guideline
to invoke the function at some time near the multiples of
T milliseconds. When there are multiple delayed callbacks,
there are no guarantees on the order of invocation of the

VOLUME 7, 2019 27253



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

callbacks even if the time intervals are identical or related by
integer multiples. In the IoT, it is common to build programs
that interact periodically with actuators. Since actuators affect
the physical world and can do damage, we believe that we
need stronger temporal semantics.

Indeed, Jerad and Lee [41] achieve a stronger tempo-
ral semantics by defining labeled logical clock domains
(LLCDs) within which such time values have specific mean-
ings with respect to one another. For example, two periodic
function invocations with the same label and period that
are started within the same atomic function invocation will
be perceived as simultaneous by all observers. Moreover,
the order in which logically simultaneous callback functions
are invoked is well defined and deterministic. In addition,
periodic actions can join or leave LLCDs dynamically, at the
request of some asynchronous callback.With some care, such
asynchronously introduced actions can align synchronously
with previously specified actions in the same clock domain,
thereby supporting a high level of adaptability in a controlled
way.

The clocks in each LLCD are logical clocks, which means
they track logical time, not wall-clock time. Logical time
advances in a computational world, in discrete jumps. Phys-
ical time, according to Newton’s model, advances smoothly
and uniformly. An execution platform will make every effort
to make logical time track physical time, but perfect tracking
is not possible (nor even definable). The stronger semantics
of LLCDs, nevertheless, offers a more deterministic concur-
rency model, and hence IoIT designs will be easier to test
and their behaviors will be more predictable. The correctness
criteria enforced by LLCDs concern atomicity and ordering,
not precise timing. For soft real-time applications, the latter
can be treated as a matter of performance, not correctness.
Of course, for hard real-time applications, such as the

control systems in an autonomous vehicle, timely execution
is a correctness criterion; applying the brakes after a collision
has zero utility. This idea is formalized by Time/Utility Func-
tions, originally proposed by Jensen et al. [55] and expanded
upon by Wu et al. [56]. TUFs express constraints on the con-
currence between logical and physical time. To achieve pre-
cise timing predictibility for time-critical functions, hardware
support is required. No other state (e.g., caches) or activity
(e.g., other threads, interrupts) must be able to interfere with
the execution of a time-critical task, or else its timing could
be affected. Full temporal isolation can be achieved with the
hard-real-time threads of PRET [57]. Predictable memory
access time can be guaranteed through a DRAM controller
with hardware-supported command-level prioritization [58].

VI. CONCLUSION
The Internet is highly asynchronous whereas physical Things
can be highly timing dependent. If the IoT is to be applied to
important and safety-critical applications, this contradiction
needs to be reconciled. We have argued that fully embracing
edge computing may enable the Internet of Important Things,
and we have highlighted some of the problems that need

to be solved and some promising partial solutions. (1) We
have shown that our work on hosting critical security infras-
tructure, such as authentication and authorization services,
on edge computers can enhance reliability and resilience as
well as improve scalability. (2) We have highlighted clock
synchronization and time-aware communication protocols as
a key enabler for the realization of the Internet of Important
Things. (3) We have discussed the importance of having a
well-defined temporal semantics embedded in the program-
ming languages we use to define system behavior. Ultimately,
we envision edge computers to serve as integration platforms
that can orchestrate secure communications between Things
under a discrete events semantics, allow reliable low-latency
connections, and achieve real-time responsiveness when inte-
grated with our hardware-supported approaches.

REFERENCES
[1] P. Wegner, ‘‘Why interaction is more powerful than algorithms,’’Commun.

ACM, vol. 40, no. 5, pp. 80–91, May 1997.
[2] S. Hilton. (Oct. 2016). Dyn Analysis Summary of Friday October

21 Attack|Dyn Blog. Accessed: Jul. 26, 2018. [Online]. Available:
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

[3] A. Botta, W. de Donato, V. Persico, and A. Pescapé, ‘‘On the integration of
cloud computing and Internet of things,’’ in Proc. Int. Conf. Future Internet
Things Cloud, Aug. 2014, pp. 23–30.

[4] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of
Things (IoT): A vision, architectural elements, and future directions,’’
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[5] Amazon Web Services. How the AWS IoT Platform Works—Amazon
Web Services. Accessed: Mar. 21, 2017. [Online]. Available:
http://aws.amazon.com/iot-platform/how-it-works/

[6] P. G. Lopez et al., ‘‘Edge-centric computing: Vision and challenges,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015.

[7] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A
platform for Internet of things and analytics,’’ in Big Data and Internet
of Things: A Roadmap for Smart Environments (Studies in Computational
Intelligence), N. Bessis and C. Dobre, Eds. Cham, Switzerland: Springer,
2014, no. 546, pp. 169–186.

[8] H. Kim, E. Kang, E. A. Lee, and D. Broman, ‘‘A toolkit for construction
of authorization service infrastructure for the Internet of things,’’ in Proc.
IEEE/ACM 2nd Int. Conf. Internet-of-Things Design Implement. (IoTDI),
Apr. 2017, pp. 147–158.

[9] B. Varghese, N.Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,
‘‘Challenges and opportunities in edge computing,’’ in Proc. IEEE Int.
Conf. Smart Cloud (SmartCloud), Nov. 2016, pp. 20–26.

[10] I. Morris. (Feb. 2017). Google’s Latest Failure Shows How Immature
its Hardware IS. [Online]. Available: http://www.forbes.com/
sites/ianmorris/2017/02/24/googles-latest-failure-shows-how-immature-
its-hardware-is/

[11] L. Tung. (Sep. 2016). Mozilla to China’s WoSign: We’ll Kill Firefox Trust
in You After Mis-Issued GitHub Certs. Accessed: Jul. 26, 2018. [Online].
Available: http://www.zdnet.com/article/mozilla-to-chinas-wosign-well-
kill-firefox-trust-in-you-after-mis-issued-github-certs/

[12] L. Seltzer. (2013). BGP Spoofing—Why Nothing on the Internet
is Actually Secure. Accessed: Feb. 6, 2017. [Online]. Available:
http://www.zdnet.com/article/bgp-spoofing-why-nothing-on-the-internet-
is-actually-secure/

[13] C. Brooks et al., ‘‘A component architecture for the Internet of things,’’
Proc. IEEE, vol. 106, no. 9, pp. 1527–1542, Sep. 2018.

[14] Z. Durumeric et al., ‘‘The matter of heartbleed,’’ in Proc. Conf. Internet
Meas. Conf., New York, NY, USA, Nov. 2014, pp. 475–488.

[15] H. Kim and E. A. Lee, ‘‘Authentication and authorization for the Internet
of things,’’ IT Prof., vol. 19, no. 5, pp. 27–33, Oct. 2017.

[16] Cyber Security Intelligence. (Aug. 2016). Easy: Hackers Take
Down a Hospital. Accessed: Jul. 26, 2018. [Online]. Available:
https://www.cybersecurityintelligence.com/blog/easy-hackers-take-
down-a-hospital-1566.html

27254 VOLUME 7, 2019



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

[17] B. Marr. (Jan. 2018). Why the Internet of Medical Things (IoMT) Will
Start to Transform Healthcare in 2018. Accessed: Jul. 26, 2018. [Online].
Available: https://www.forbes.com/sites/bernardmarr/2018/01/25/why-
the-internet-of-medical-things-iomt-will-start-to-transform-healthcare-in-
2018/

[18] L. Mathews. (Nov. 2016). Hackers use DDoS Attack to Cut Heat to Apart-
ments. Accessed: Jul. 26, 2018. [Online]. Available: https://www.forbes.
com/sites/leemathews/2016/11/07/ddos-attack-leaves-finnish-apartments-
without-heat/

[19] ‘‘Corero DDoS trends report|Q2–Q3 2017,’’ Corero Netw. Secur.,
Marlborough, MA, USA, Tech. Rep., 2017. [Online]. Available:
http://info.corero.com/rs/258-JCF-941/images/2017-q2q3-ddos-trends-
report.pdf

[20] H. Kim, E. Kang, D. Broman, and E. A. Lee, ‘‘An architectural mechanism
for resilient IoT services,’’ in Proc. 1st ACM Workshop Internet Safe
Things, Delft, The Netherlands, Nov. 2017, pp. 8–13.

[21] H. Kim, A. Wasicek, B. Mehne, and E. A. Lee, ‘‘A secure network archi-
tecture for the Internet of things based on local authorization entities,’’ in
Proc. IEEE 4th Int. Conf. Future Internet Things Cloud (FiCloud), Vienna,
Austria, Aug. 2016, pp. 114–122.

[22] R. T. Fielding and R. N. Taylor, ‘‘Principled design of the modern Web
architecture,’’ ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115–150,
May 2002.

[23] J. C. Eidson, Measurement, Control, and Communication Using IEEE
1588. London, U.K.: Springer-Verlag, 2006.

[24] J. C. Eidson and K. B. Stanton, ‘‘Timing in cyber-physical systems: The
last inch problem,’’ in Proc. IEEE Int. Symp. Precis. Clock Synchronization
Meas., Control, Commun. (ISPCS), Oct. 2015, pp. 19–24.

[25] J. Serrano et al., ‘‘The white rabbit project,’’ in Proc. 12th Int. Conf. Accel.
Large Exp. Phys. Control Syst., Oct. 2009, pp. 936–942.

[26] C. Curry, ‘‘Sentinel project—Report on GNSS vulnerabilitiies,’’ Chronos
Technol., London, U.K., Tech. Rep. 001, Apr. 2014.

[27] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, ‘‘Distributed
real-time software for cyber–physical systems,’’ Proc. IEEE, vol. 100,
no. 1, pp. 45–59, Jan. 2012.

[28] Y. Stein, ‘‘New opportunities for timing with SDN and NFV,’’ in Proc.
ITSF, 2015.

[29] T. Mizrahi and Y. Moses, ‘‘Time4: Time for SDN,’’ IEEE Trans. Netw.
Service Manage., vol. 13, no. 3, pp. 433–446, Sep. 2016.

[30] I. Akkaya, ‘‘Data-driven cyber-physical systems via real-time stream ana-
lytics and machine learning,’’ EECS Dept., Univ. California, Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-159, 2016

[31] I. Akkaya, S. Emoto, and E. A. Lee, ‘‘PILOT: An actor-oriented learning
and optimization toolkit,’’ in Proc. Int. Workshop Robotic Sensor Netw.,
Apr. 2015.

[32] R. Alur, D. Fisman, and M. Raghothaman, ‘‘Regular programming for
quantitative properties of data streams,’’ in Proc. Eur. Symp. Program.
(ESOP) (Lecture Notes in Computer Science), vol. 9632. Berlin, Germany:
Springer-Verlag, 2016, pp. 15–40.

[33] E. A. Lee, ‘‘Computing needs time,’’ Commun. ACM, vol. 52, no. 5,
pp. 70–79, May 2009.

[34] E. A. Lee, ‘‘The problem with threads,’’ Computer, vol. 39, no. 5,
pp. 33–42, May 2006.

[35] T. V. Eicken, D. E. Culler, S. Goldstein, and K. E. Schauser, ‘‘Active
messages: A mechanism for integrated communication and computation,’’
in Proc. 19th Annu. Int. Symp. Comput. Archit., May 1992, pp. 256–266.

[36] P. Levis et al., ‘‘The emergence of networking abstractions and techniques
in TinyOS,’’ in Proc. 1st USENIX/ACM Symp. Netw. Syst. Design Imple-
ment. (NSDI), Mar. 2004, p. 1.

[37] P. Persson andO.Angelsmark, ‘‘Calvin—Merging cloud and IoT,’’ inProc.
6th Int. Conf. Ambient Syst. Netw. (ANT), Jun. 2015, pp. 210–217.

[38] E. A. Lee, J. Liu, L. Muliadi, and H. Zheng, ‘‘Discrete-event models,’’ in
SystemDesign,Modeling, and Simulation using Ptolemy II. C. Ptolemaeus,
Ed. Ptolemy.org, 2014.

[39] K. Gallaba, A.Mesbah, and I. Beschastnikh, ‘‘Don’t call us,We’ll call you:
Characterizing callbacks in javascript,’’ in Proc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Oct. 2015, pp. 1–10.

[40] M. Lohstroh and E. A. Lee, ‘‘An interface theory for the Internet of things,’’
in Proc. Int. Conf. Softw. Eng. Formal Methods (SEFM) (Lecture Notes
in Computer Science), vol. 9276. Cham, Switzerland: Springer, 2015,
pp. 20–34.

[41] C. Jerad and E. A. Lee, ‘‘A javascript extension providing deter-
ministic temporal semantics for the Internet of things,’’ EECS Dept.,
Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2017-136, 2017.

[42] J. A. Stankovic, ‘‘Misconceptions about real-time computing: A seri-
ous problem for next-generation systems,’’ Computer, vol. 21, no. 10,
pp. 10–19, Oct. 1988.

[43] G. C. Buttazzo,Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications, 2nd ed. New York, NY, USA: Springer,
2005.

[44] N. Wirth, ‘‘Toward a discipline of real-time programming,’’ Commun.
ACM, vol. 20, no. 8, pp. 577–583, Aug. 1977.

[45] N. Wirth, Programming in Modula-2. Berlin, Germany: Springer-Verlag,
1983.

[46] T. Mirtin, ‘‘Realtime programming language PEARL—Concept and char-
acteristics,’’ in Proc. IEEE Comput. Soc. 2nd Int. Comput. Softw. Appl.
Conf., (COMPSAC), Nov. 1978, pp. 301–306.

[47] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages: Ada, Real-Time Java and C/Real-Time POSIX, 3rd ed. Boston,
MA, USA: Addison-Wesley, 2001.

[48] J. Galletly, Occam-2, 2nd ed. London, U.K.: UCL Press, 1996.
[49] E. Kligerman and A. D. Stoyenko, ‘‘Real-time Euclid: A language for

reliable real-time systems,’’ IEEE Trans. Softw. Eng., vol. SE-12, no. 9,
pp. 941–949, Sep. 1986.

[50] R. Virding, C. Wikström, M. Williams, and J. Armstrong, Concurrent Pro-
gramming in Erlang, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall,
1996.

[51] R. A. Müller, Now: The Physics of Time. New York, NY, USA:
W. W. Norton and Company, 2016.

[52] E. A. Lee, Plato and the Nerd: The Creative Partnership of Humans and
Technology. Cambridge, MA, USA: MIT Press, 2017.

[53] E. A. Lee, ‘‘The past, present and future of cyber-physical systems: A focus
on models,’’ Sensors, vol. 15, no. 3, pp. 4837–4869, Feb. 2015.

[54] D. Broman, L. Greenberg, E. A. Lee, M.Masin, S. Tripakis, andM.Wetter,
‘‘Requirements for hybrid cosimulation standards,’’ inProc. 18th Int. Conf.
Hybrid Syst., Comput. Control (HSCC), Apr. 2015, pp. 179–188.

[55] E. D. Jensen, C. D. Locke, and H. Tokuda, ‘‘A time-driven scheduling
model for real-time systems,’’ inProc. IEEEReal-Time Syst. Symp. (RTSS),
Dec. 1985, pp. 112–122.

[56] H. Wu, B. Ravindran, E. D. Jensen, and P. Li, ‘‘Time/utility function
decomposition techniques for utility accrual scheduling algorithms in
real-time distributed systems,’’ IEEE Trans. Comput., vol. 54, no. 9,
pp. 1138–1153, Sep. 2005.

[57] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, ‘‘FlexPRET: A proces-
sor platform for mixed-criticality systems,’’ in Proc. IEEE 19th Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2014, pp. 101–110.

[58] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
‘‘A predictable and command-level priority-based DRAM controller for
mixed-criticality systems,’’ in Proc. 21st IEEE Real-Time Embedded Tech-
nol. Appl. Symp. (RTAS), Apr. 2015,pp. 317–326.

MARTEN LOHSTROH received his B.S. degree
in computer science and M.S. degree in grid
computing from the University of Amster-
dam. He is currently pursuing a Ph.D. degree
in computer science with the University of
California, Berkeley, under the supervision of
Prof. E. A. Lee. He studies models of computa-
tion, programming languages, and systems design.
From 2012 to 2014, he was an Associate Spe-
cialist with UC Berkeley, mostly dedicated to

the development of Ptolemy II, an open-source software framework that
supports experimentation with actor-oriented design. He was a recipient of
the Systems and Software Modeling Best Paper Award, in 2018.

VOLUME 7, 2019 27255



M. Lohstroh et al.: On Enabling Technologies for the Internet of Important Things

HOKEUN KIM received his Ph.D. degree in elec-
trical engineering and computer sciences from
the University of California, Berkeley, in 2017.
He was a Researcher with UC Berkeley, where
he was involved in the Ptolemy Project. He was
a Research Associate with HP Labs. He is cur-
rently with Google, where he focuses on the
Internet security research for phishing detection
and prevention with the Safe Browsing Team.
His research interests include computer security,

the Internet of Things, and cyber-physical systems. He was a recipient of the
ACM/IEEE Best Paper Award and the IEEE Honorable Mention, in 2017.

JOHN C. EIDSON (LF’06) received a B.S. and
M.S. degree fromMichigan State University and a
Ph.D. degree in electrical engineering from Stan-
ford University. He was with the Central Research
Laboratories, Varian Associates; Hewlett-Packard
Company; and Agilent Technologies. He is cur-
rently a Visiting Scholar with the University of
California at Berkeley. He was involved in a vari-
ety of projects including analytic instrumentation,
electron beam lithography, and instrumentation

system architectures and infrastructure. He received the 2007 Technical
Award from the IEEE I&M Society. He was a co-recipient of the 2007 Agi-
lent Laboratories Barney Oliver Award for Innovation. He was heavily
involved in the IEEE 1451.2 and IEEE 1451.1 standards and was an Active
Participant in the standards work of the LXI Consortium. He is the Chairper-
son of the IEEE 1588 Standards Committee.

CHADLIA JERAD was born in Tunis, Tunisia,
in 1979. She received her Dipl.Ing and Ph.D.
degree in electrical engineering from ENIT, Uni-
versity of Tunis El Manar, in 2002 and 2008,
respectively. She was a Coordinator of the embed-
ded systems and software specialization for four
academic years. She was the Tunisian Part-
ner of several DAAD funded projects. From
2016 to 2017, she visited the Research Group of
Prof. E. A. Lee with the University of California

at Berkeley as a Fulbright Visiting Scholar, where she contributed to the
Accessors project and to CapeCode: a Ptolemy II-based design tool for
the Internet of Things. Since 2009, she has been an Associate Professor
with ENSI, University of Manouba, Tunisia. Her research interests include
embedded systems, the Internet of Things, and rewriting logic. She was
selected as the Portrait of the Month, in 2017, by DAAD Office, Tunis.

BETH OSYK Osyk received a B.S. degree in com-
puter engineering fromCaseWestern ReserveUni-
versity and a M.S. and Ph.D. (with a focus on a
methodology for assessing the reliability of safety-
critical in-vehicle networks) degrees in electrical
and computer engineering from Carnegie Mellon
University. She was a Senior Engineer with Robert
Bosch LLC, focused mainly on analysis of auto-
motive engine controllers. She was a Research
Staff Member with UC Berkeley, helping to build

and test a disciplined, multihost Internet of Things development and exe-
cution environment as part of the TerraSwarm Center. She is currently an
Engineer with Edge Case Research, LLC, specializing in safety assessment
for embedded systems.

EDWARD A. LEE (F’94) received a B.S. degree
from Yale University, an S.M. from MIT, and a
Ph.D degree from UC Berkeley. From 1979 to
1982, he was a Technical Staff Member with
Bell Labs, Holmdel, NJ, USA. From 2005 to
2008, he was the Chair of the EE Division at UC
Berkeley. Then, he was the Chair of the EECS
Department at UC Berkeley. He is currently a
Professor of the Graduate School in EECS at
UC Berkeley. He is the Director of iCyPhy, the

Berkeley Industrial Cyber-Physical Systems Research Center. He is a Co-
Founder of BDTI, Inc. He has consulted for a number of other companies. He
has authored several books and more than 300 papers and has delivered more
than 180 keynote and other invited talks at venues worldwide. His research
focuses on cyber-physical systems, which integrate physical dynamics with
software and networks. His focus is on the use of deterministic models
as a central part of the engineering toolkit for such systems. He led the
development of several influential open-source software packages, notably
Ptolemy and its spinoffs. He was a recipient of the 1997 Frederick Emmons
TermanAward for Engineering Education and the Berkeley Citation, in 2018.
He received the 2016 Outstanding Technical Achievement and Leadership
Award from the IEEE Technical Committee on Real-Time Systems. He was
an NSF Presidential Young Investigator.

27256 VOLUME 7, 2019


	INTRODUCTION
	EDGE COMPUTING
	SECURITY
	AUTHENTICATION AND AUTHORIZATION
	AVAILABILITY THREATS AND RESILIENCY

	COORDINATION AND TIMING
	CLOCK SYNCHRONIZATION
	ROBUST TIME COORDINATION
	TIMELINESS OF MESSAGE DELIVERY

	PROGRAMMING MODELS
	ASYNCHRONOUS ATOMIC CALLBACKS
	WHAT IS REAL TIME?
	LOGICAL CLOCKS AND REAL TIME

	CONCLUSION
	REFERENCES
	Biographies
	MARTEN LOHSTROH
	HOKEUN KIM
	JOHN C. EIDSON
	CHADLIA JERAD
	BETH OSYK
	EDWARD A. LEE


