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ABSTRACT Hand-vein biometrics as a high-security pattern has received more and more attention. One
of the open issues in hand-vein verification is the lack of robustness against image quality degradation,
which may comprise the verification accuracy. To achieve robust verification, vein feature extraction
approaches, especially vein texture segmentation, have been extensively investigated. In recent years, deep
neural networks have achieved promising results in medical image segmentation and have been brought
into vein verification, but current solutions suffer from two challenges for vein segmentation: 1) lacking
the labeling data, which is expensive to obtain and 2) the incorrect label data obtained by manual labeling
scheme or automatic labeling scheme may strongly influence parameters when the network is trained, which
may degrade the verification performance. This paper proposes an iterative deep belief network (DBN)
to extract vein features based on the initial label data, which are automatically generated using a very
limited a priori knowledge and iteratively corrected by our DBN. First, a known handcrafted vein image
segmentation technique is employed to automatically label vein pixel and background pixel. A training
dataset is constructed based on the patches centered on the labeled pixels. Second, a DBN is trained on the
resulting database to predict the probability of each pixel to belong to be a vein pixel given a patch centered
on it. The vein patterns are segmented using a probability threshold of 0.5. The resulting vein features are
employed to reconstruct the training dataset, based on which the network is retrained. During the iterative
procedure, the incorrect labels of training data are statistically corrected, which enables DBN to effectively
learn what a finger-vein pattern is by learning the difference between vein patterns and background ones.
The experimental results on two public hand-vein databases show a significant improvement in terms of
hand-vein verification accuracy.

INDEX TERMS Hand biometrics, palm-vein verification, deep learning, iterative deep neural network,
representation learning.

I. INTRODUCTION
With the tremendous ubiquity of Internet and increasing
security awareness, traditional authentication, such as pass-
words, personal identification numbers, smart cards, is hard
to meet the requirements of convenience, reliability, and
security in practical applications. For example, passwords are
easy to forgot, and smart cards are easily lost, copied and
forged. Under such circumstances, automatic personal veri-
fication using physiological and/or behavioral characteristics
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of humans, has received increasing attention. Currently,
various biometrics characteristics have been investigated
and applied in practical life. Broadly, they can be cate-
gorized in two categories: (1) extrinsic biometric features,
i.e. face [1], fingerprint [2], iris [3], palmprint [4], hand
shape [5], and handwriting [6], and (2) intrinsic biometric
features, i.e. finger-vein [7], hand-vein [8] and palm-vein [9].
The extrinsic biometrics characteristics such as face, finger-
print and iris have been successfully employed by biomet-
ric verification systems for immigration clearance, financial
payments, access control systems, and consumer electronics,
but they are also prone to spoof attack, which degrades the
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security level of the verification system. For example, the face
biometric trait is easy to be captured and the fake pho-
tographs, recorded videos, and three-dimensional artificial
face models can be employed to attack the facial recognition
systems [10]. Similarly, iris recognition systems and finger-
print recognition systems are also vulnerable to be fooled by
their fake version [11], [12]. Therefore, the usage of these
extrinsic biometric traits results in the problems of privacy
and security.

Compared to extrinsic biometric features, using the
vein pattern for verification has the following advan-
tages [13], [14]. (1) liveness verification. The vein pattern
is only collected from a lively body and further achieves
effective verification. (2) high security and high privacy. The
vein patterns are concealed in our body; they are much harder
to forge and also difficult to acquire without the consent of
an individual. Therefore, vein verification provides higher
security and privacy for the user.

A. MOTIVATION AND RELATED WORK
Vein patterns are the network structure of blood vessels
and are concealed beneath the human skin. Some medical
researchworks [14]–[16] have shown that the texture of blood
vessels has high uniqueness for each individual [14], even
for identical twins [14], [15]. Therefore, the automatic per-
sonal identification/verification using vein biometrics have
been widely investigated in the past years [17]–[35]. Gener-
ally, vein patterns are difficult to observe in visible lighting.
As different skin layers e.g. outermost epidermis, dermis,
and subcutaneous layers have different absorption rates of
infrared light, the vein patterns can be acquired by infrared
illumination, which effectively avoids possible external dam-
age, spoof attacks, and impersonation. To acquire vein images
with high contrast, the infrared light with above 850 nmwave-
length is usually employed in current works [7]–[9], [18].
Normally, blood vessels extend in our body, showing a clear
network and good connectivity. However, during the vein
capturing procedure, various factors such as environmental
illumination [20]–[22], ambient temperature [7], [22], [23],
light scattering in imaging finger tissues [24], [25] affect
the imaging quality of vein patterns. Therefore, the acquired
vein images include not only vein patterns but also noise
and irregular shadowing, so it is very difficult to completely
segment the vein features. Usually, some vein patterns are
missed and false vein patterns are generated in some regions
from the vein image, which degrades the distinctiveness,
resulting in low verification accuracy. Currently, a number
of methods have been proposed to segment the vein network
from vein image for verification. For example, various hand-
crafted descriptors are designed based on the prior knowl-
edge to extract the vein geometry structure. In these works,
some researchers observe that the cross-profile of finger-vein
patterns show a valley shape and propose to detect the val-
ley for finger-vein pattern segmentation. The representative
approaches include the line tracking methods [26]–[29], [36]

and curvature-based measures [9], [22], [23], [30], [34],
[37], [38]. Other ones assume that a vein pattern is supposed
to be a line-like texture in a predefined neighborhood region.
Many works based on Gabor filters [7], [24], [31], [33],
matched filters [39], wide line detector [21] and neural net-
works [32] are proposed to extract the line-like texture for
finger-vein verification. Among the approaches described
above, the handcrafted methods depend on the assumption
distributions such as valleys and line segments, so they suffer
from following problems [17]. (1) These assumptions are
not always effective to extract the vein patterns. (2) it is
impossible to describe attributes of all distributions created by
the pixels. (3) It is difficult to develop a mathematical model
to effectively model the distributions such as valleys or line
segments. As an effective solution, the deep learning based
approaches, not requiring any assumption, have been directly
used to learn robust features from raw pixel images and suc-
cessfully applied for various computer vision tasks [40]–[44].
Also, some researchers brought it into medical image seg-
mentation [45]–[49] such as retina image segmentation,
brain segmentation, and neuronal membranes segmentation.
As Deep Neural Networks such as Convolutional Neural
Network (CNN) [45], Deep Belief Network (DBN) [48],
and Auto-Encoder (AE) [49], have the powerful capacity of
feature representation, the promising results are achieved if
the learning objective (ground truth) is provided for them
(DBN is an unsupervised model but it can initialize an MLP
which is supervised). Therefore, they have shown super per-
formance compared to hand-crafted approaches after training
or fin-tuning them using ground truth. Different from the
medical image segmentation tasks, vein feature extraction for
verification faces a challenge that there is no ground-truth
for existing works. To overcome this problem, in work [17],
a scheme is proposed to combine seven vein segmentation
baselines to produce ‘‘ground-truth’’ (vein and background
labels) for finger-vein verification. Combining as many exist-
ing baselines as possible may generate more accurate labels.
However, there still exist many incorrect labels in the ‘‘ground
truth’’ even if all baselines are employed for labeling or the
data is manually labeled, so current performance may be lim-
ited for vein verification. In addition, theremay be not enough
baselines for generation of accurate labels in other application
regions. Therefore, how to learn a good representation of the
vein patterns, from weakly accurate ‘‘ground truth’’ is still
an issue for vein segmentation, which has motivated us to
develop a more robust learning approach for real-world vein
verification.

B. OUR WORK
To overcome this problem, in this paper, a deep learning based
model is trained by unsupervised learning and by reinforce-
ment learning from self-correcting for vein segmentation.
Our approach can predict the probability of a pixel to belong
to a vein pattern using very limited knowledge. The main
paper contributions are summarized as follows: (1) This paper
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proposes a deep learning based approach which is iteratively
trained to extract hand-vein features and achieve promising
performance. First, different from existing approaches based
on manual labeling schemes, we employ an existing hand-
crafted image segmentation technique to extract the vein
network from an image and the resulting binary image is
used to automatically label each pixel. Secondly, a training
set is constructed based on patches centered on labeled pixels
and then input into DBN for training. In the testing phase,
the patch of each pixel is taken as input for DBN to predict
the probability of the pixel to belong to a vein pattern. The
vein pattern is segmented using a probability threshold of 0.5.
Thirdly, each pixel is reassigned a label by the resulting
segmented vein image. Similarly, a new training dataset is
built to re-train the DBN model. Repeatedly, the DBN is
iteratively trained to correct the labels and the resulting label-
ing training data enable it to learn robust features for vein
segmentation. Therefore, the proposed approach can achieve
high accuracy even if there exists few incorrect labels for
the training patches. (2) We carry out rigorous experiments
to investigate the capacity of self-correcting in our work.
In the experiments, we employ several baseline approaches to
generate the initial training patches, which may include few
incorrect labels. Then, the performance of DBN after itera-
tively correcting is reported. The experimental results show
that the proposed approach statistically correct the incorrect
labels and significantly improve hand-vein verification accu-
racy. To the best of our knowledge, there has not been any
work to study self-correcting capacity of DBN. (3) This paper
present a systematic and comparative analysis of the proposed
approach in both contact and contactless hand-vein imaging
environment and evaluate the performance of our method
over several baselines. Experimental results show that the
proposed model is able to extract the vein patterns from raw
images in a robust way and achieve better performance than
existing approaches.

II. PALM-VEIN ROI EXTRACTION
Contactless hand-vein identification has numerous advan-
tages, such as more hygienic, non-contact acquisition, and
enhanced palm layout freedom, so it is easy to be accepted
and used by users. However, the acquired hand-vein images
in contactless imaging not only present scale, translational
and rotational variations, but also contain a large background
without discriminative patterns. Generally, matching these
images with such variations and background contributes a
lot of errors and increases time cost. To achieve accurate
hand-vein verification, it is necessary to extract the region of
interest (ROI) and aliment it with respect to scale, translation
and rotation. Fig.1, Fig.2 and Fig.3 show the preprocessing
procedure.

A. HAND REGION SEGMENTATION
As shown in Fig.1(a), the acquired finger-vein image contains
not only the hand but also large background. For most hand
images, as there exists large contrast between the hand region

FIGURE 1. Segmenting results for hand region. (a) Original hand image;
(b) The edge image extracted from (a). (c) Binary image segmented
from (a). (d) Edge image subtracted from (c). (e) Binary image obtained
from (d) by filtering isolated blobs and filling hole. (f) Hand region
obtained from (e) by median filtering.

and the background region, a global threshold for each image
is computed by OTSU [50] to extract the hand region. How-
ever, in some regions of few acquired hand images, the back-
ground and foreground (hand) have similar contrast and it is
difficult to separate the hand from the background. Therefore,
an edge operator i.e. Sobel edge detector [51] is employed
to separate palm and background. First, we extract the edges
from the acquired image (Fig.1(b)). Second, the acquired
image is subject to binarization using a threshold obtained
from OTSU method (shown in Fig.1(b)), and the edge map
is subtracted from the binarized image (Fig.1(c)). Third,
the binary mask image (Fig.1(e)) only including hand region
is obtained by filling holes and filtering the isolated blobs
(if any) in the resulting images. Finally, we process the binary
mask image (Fig.1(e)) by amedian filter to obtain the smooth-
ness boundary (Fig.1(f)) for segmentation of ROI.

B. KEY POINT EXTRACTION
To extract the palm ROI, existing approaches [9], [34]
proposed to detect the key points in the hand image.
In these works, the pixels connecting two adjacent finger
regions are defined as key points for ROI extraction (show
in Fig.2(f)). In other words, the key-points are the tan-
gent points of the boundary of two adjacent finger regions.
So, five fingers result in four key points. To detect them,
the approaches [9], [34] transform the hand contour into
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FIGURE 2. Key point detection results. (a) Original hand image (The
corruption will start from first non-zeros pixel). (b) The image corrupted
by Lk−2. (c) The image corrupted by Lk−1. (d) The image corrupted by Lk .
(e) Spatial relations of Lk−2, Lk−1 and Lk . (f) Detected four key points in
hand image. Note that (d) denotes current corrupted image, and
(b) and (c) are its last two corruption images. In (b) and (c), there are five
connected regions (R1, R2, R3, R4 and R5) while there are four connected
regions (R1, R2, R3 and R4) in (d). In (e), the rectangle region in upper
right corner is the enlargement of blue dashed box.

FIGURE 3. Normalized results. (a) Computing orientation based on two
key points. (b) Orientation normalization of binary hand image. (c) ROI
extraction. (d) Scale normalization of ROI.

a curve in a X-Y axis plane by computing the distances
between all points on the hand contour and a predefined pixel.
There, we proposed to directly detect the four key points

in the two-dimensional hand image. First, a vertical line is
employed to corrupt the mask image. To reduce detection
time, the corruption operator starts from first non-zeros pixels
on the left (Fig.2(a)) and ends after detecting all key points
i.e. 4 points. For each step, the mask image is corrupted into
several regions (R1, R2, R3, R4 and R5 in Fig.2(b)-Fig.2(c)).
To facilitate description, the current corrupted image is
denoted as fk (Fig.2(d)) and its last two corrupted images
are presented as fk−2 (Fig.2(b)) and fk−1 (Fig.2(c)). Similarly,
the corrupted lines in fk , fk−1 and fk−2 are denoted as Lk , Lk−1
and Lk−2 (the red lines in Fig.2(b)-Fig.2(d)), which result in
a number of isolated regions (e.g. five regions in Fig.2(b)
and Fig.2(c), and four regions in Fig.2(d)). Comparing fk
with fk−1, if some regions in fk−1 are merged together in fk ,
there exist one or more key points in Lk−1; Otherwise, con-
tinue to corrupt remaining region. For example, the R4 and R5
in Fig.2(c) are merged into one region R4 in Fig.2(d), so there
is a key point in corrupted line Lk−1. To extract it, the cor-
rupted positions Lk , Lk−1 and Lk−2 are shown in same image
to facilitate comparison (as shown in Fig.2(e)). FromFig.2(e),
we observe that the key point in Lk−1 (tangent points) and its
left adjacent point in Lk−2 have different pixel values (the
values are 1 for key point and 0 for its left adjacent point,
respectively). So it is detected by computing difference of
pixel values in Lk−1 and Lk−2. Repeate the same operator
until extracting all key points. The approach is detailed in
algorithm 1. Fig.2(f) shows the detected key points (tangent
points).

C. ORIENTATION NORMALIZATION AND ROI EXTRACTION
After obtaining the key points p1, p2, p3, and p4 (Fig.2(f)),
similar to approaches [9], [34], we employ two points
p1 and p3 for orientation normalization. As shown in Fig.3(a),
a line is determined based on two key points and the angle θ
between it and the vertical line is computed by

θ = arg tan(xp1 − xp3)/(yp1 − yp3) (1)

where (xp1, yp1) and (xp3, yp3) are the coordinates of points
p1 and p3. The orientation variation is normalized by rotating
the hand image in an angle θ , as shown in Fig.3(b).

Generally, the scale variations in the contactless image
may be quite large. To normalize all images into same scale,
it is better to adaptively select the location and size of the
ROI according to reference points in the palm instead of
employing any empirical parameters. To include rich discrim-
inative information, we compute the minimal width of the
palm regions. First, a straight line Lp′1p′3 is determined based
on p′1 and p′3 (as shown in Fig.3(b)). In addition, a vertical
straight line Lp′4 is determined by point p′4. Then, we compute
the shortest distance dmin between upper boundary and lower
boundary of palm region from Lp′1p′3 to Lp′4 and obtain two
points pstart and pend , as shown in Fig.3(b). Let (xp′1 , yp′1 )
and (xp′3 , yp′3 ) be the coordinates of points p′1 and p′3, and
(xpstart , ypstart ) and (xpend , ypend ) be the coordinates of points
pstart and pend . The coordinate of point p′m1 is computed by
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Algorithm 1 Key point detection for palm image
Input: The preprocessing palm-vein image f (x, y) (Fig.1(f));

The number of key point K .
Output: Palm-vein key points matrix M (x, y);

Step 1: Corrupting input palm-vein image f (x, y) using
a vertical line from current pixel. The current pixel is
initialed by first non-zeros pixel on the left (as shown
Fig.2(a)).
Step 2: Labeling each connected region in the resulting
corrupting image (Figs.2(b)-(d)) by morphological pro-
cessing, and comparing current corrupted image (Fig.2(d))
with last corrupting image (Fig.2(c)). If some regions
in Fig.2(c)) are merged in current corrupted image
(Fig.2(d))), go to step 3. Otherwise, go to step 1.
Step 3: Detecting the key points.

Step 3.1: Recording the corrupted image and pixel
values in corruption lines. To facilitate description,
we denote the current corruption line as Lk (Fig.2(d)) and
its last two corruption lines as Lk−1 and Lk−2 (as shown
in Fig.2(b) and Fig.2(c)). Similarly, the current corrupted
image and its last two corrupted image are presented by fk ,
fk−1 and fk−2 (Fig.2(b), Fig.2(c) and Fig.2(d)). The pixel
values in Lk , Lk−1 and Lk−2 are stored in vectors Vk , Vk−1
and Vk−2.

Step 3.2: Computing the difference between vectors
Vk−1 and Vk−2 to detect key point. The vector Vk−2 is
subtracted from vectors Vk−1 and the resulting vector Vd
is subject to binarization to obtain a binary vector Vb.
The no-zeros pixel points in Vb is labeled as connected
components by morphological processing.

Step 3.3: Assume there are N connected components
V n
b (n−1, 2 . . .N ) in Vb. We select all pixel values in con-

nected componentV n
b and add them into the corresponding

corruption position in fk−1 (red line Lk−1 in Fig.2(c)).
Step 3.4: We compare the amount of connected

components in fk−1 before and after adding connected
components V n

b . If the amount of connected components
decreases, there exists key point in V n

b , and go to step 3.5;
Otherwise, go to step 3.3.

Step 3.5: Selecting a point from V n
b as key point.

The pixel points in V n
b are sorted in ascending order along

their Y-axis (vertical direction) to obtain vector V ′b
n. Then

the middle point in V ′b
n is selected as key point and

its corresponding coordinate in two dimensional image is
recorded in a matrix M (x, y).

Step 3.6: Repeated step 3.3 to step 3.5 until the key
points in N connected components are stored in matrix
M (x, y), and then we go to step 4.
Step 4: Computing the number of key points in matrix
M (x, y). If the number of key point is equal to K , stop iter-
ation and output matrix M (x, y); Otherwise, go to Step 5.
Step 5: The corruption line continues to move from the
current position (Fig.2(d)) to remaining region and
then go to step 2.
Return M (x, y);

(xp′1 , (yp′1 + ypstart )/2). Similarly, the coordinate of point p′m3
is (xp′3 , (yp′3 + ypend )/2). The distance d between p′m1 and p

′

m3,
as shown in Fig. 3(b) is calculated as follows

d =
√
(xp′1 − xp′3 )

2 + ((yp′1 + ypstart )/2− (yp′3 + ypend )/2)
2

(2)

A ROI with size of d×d is segmented from the hand image
(Fig.3(c)). To facilitate verification, all images are resized to
100 × 100 for scale normalization, as shown in Fig.3(d).

III. ITERATIVE DEEP NEURAL NETWORK FOR
HAND-VEIN PATTERN EXTRACTION
Recently, deep neural networks such as Convolutional Neural
Networks (CNN) and Deep Belief Networks (DBN) have
shown a strong ability to learn effective feature representa-
tions from input data and have been successfully applied for
computation vision tasks [40]–[42], [48]. However, current
deep learning based solutions mainly depend on domain
knowledge such as manually labeling. We will propose a new
scheme to train them for hand-vein verification with very
limited domain knowledge. In this section we take DBN as
an example to introduce our approach because it involves less
hyper-parameters than CNN. Firstly, we show the theoreti-
cal background of DBN and a practical architecture of our
deep neural network model. Then, an iterative deep learn-
ing model is proposed to extract the hand-vein features for
verification.

FIGURE 4. The graphical model representations for (a) an RBM, (b) a two
hidden layer DBN and (c) a neural network.

A. DBN ARCHITECTURE
A Deep Belief Network (DBN) [52] is a probabilistic
generative model with deep architecture. A DBN is con-
structed by stacking a predefined number of restricted
Boltzmannmachines(RBMs), as shown in Fig.4. An effective
greedy layer-wise algorithm is used to pre-train each layer
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of networks. In a binary RBM, an energy is defined as follows

E(v, h; θ ) = −
I∑
i=1

J∑
j=1

wi,jvihj −
I∑
i=1

bivi −
J∑
j=1

bjhj (3)

where model parameters θ = {W , b, a} and vi, hj ∈ {0, 1}.
W is the weight with V × H dimensions, where wij is the
symmetric interaction term between visible unit vi and hidden
unit hj. bi and aj are the bias term, I and J are the numbers of
visible and hidden units. The network assigns a probability
to every possible visible-hidden vector pair via the energy
function.

p(v, h; θ ) =
exp(−E(v, h; θ ))

Z
(4)

The normlization term Z is computed by

Z =
∑
v,h

exp(−E(v, h)) (5)

The conditional probabilities can be obtained as

P(hj = 1|v; θ ) = σ (
I∑
i=1

wi,jvi + aj) (6)

P(vi = 1|v; θ ) = σ (
J∑
j=1

wi,jhj + bi) (7)

where σ (x) = 1/(1+ exp(x))
After computing the gradient of the log likelihood function

logp(v; θ ), we update the parameters of the RBM by the
following rule.

1Wij = ε(〈vihj〉data − 〈vihj〉model) (8)

here ε is the learning rate,〈vihj〉data is the expectation
observed in the training set and 〈vihj〉model is the expectation
of the distribution defined by the model. It is exponentially
expensive to compute the exact 〈vihj〉model so the Contrastive
Divergence (CD) technique is employed to approximate the
gradient by replacing 〈vihj〉model with 〈vihj〉recon, which is
easier and faster to compute [53].

We stack RBMs to construct DBN (as shown in
Fig.4(b)) and train it using a greedy layer-wise pre-training
method [54]. Then the bottom up weights of the resulting
DBN can be used to initialize the weights of a multi-layer
feed-forward neural network with a Softmax output layer
(as shown in Fig.4(c)), which can then be discriminatively
fine-tuned by back-propagating error derivatives.

B. ITERATIVE DBN FOR FINGER-VEIN EXTRACTION
In many applications [40]–[49], the labels for classification
are labeled manually and a robust feature representation is
extracted by training the DBN. So, once the networks are
successfully trained, the performance mainly depends on the
prior knowledge associated with the manual labels. How-
ever, the labels are not always provided or are expensive to
obtain. Besides, the manual or automatic labeling schemes

are prone to errors, so the performance of DBN is still lim-
ited even when it is trained successfully. To overcome this
problem, in this section, the DBN are iteratively trained to
model the distribution of vein pixels with very limited prior
knowledge. In other words, the performance of the proposed
model weakly depends on the prior knowledge i.e. labels.
First, we label each pixel of a training image as either vein
or background using one baseline verification system. For
each pixel, the window centered on it is input to DBN for
training. The missing pixels are synthesized by mirroring if
a window extends outside of the image boundary. The output
of the last DBN layer is interpreted as the probability of the
patch center pixel to belong to a vein pattern. Applying DBN
to all the pixels in this way, the vein features are extracted
based on a probability threshold of 0.5. The resulting bina-
rized images are subsequently used to re-label pixels (label
correction) and a new training set is constructed to retrain
DBN for segmentation. This training process is repeated until
the DBN achieves satisfying verification accuracy on a vali-
dation dataset (detailed in Section IV-E). During the iterative
training procedure, the incorrect pixel labels are statistically
corrected which enables DBN to achieve better performance.
The proposed DBN model is detailed in Algorithm 2.

1) LABELING FINGER-VEIN PATTERN
In this section, we assign a label for each pixel using one
baseline. For an image f (Fig.5(a)), we segment it into vein
features and background by four baseline algorithms i.e.
Repeated line tracking [19], Gabor filter [4], Maximum prin-
ciple curvature [16], and Hessian phase [14]. Fig.5 shows an
example of the extracted patterns by the various approaches.
For a pixel (x, y) in each binary image, its value can be treated
as its label. As shown in Fig.5(b)-Fig.(d), the value of vein
pixel (white region) is 1 and the value of background pixel
(black region) is 0.

We label pixels (0 and 1 denote background and vein pixels
respectively) in a grayscale finger-vein image (Fig.5(a)) by
a binary image (as shown in Fig.5(b), Fig.5(c), Fig.5(d),
or Fig.5(e)). Based on resulting labels, an image is split into
different patches with size ofN×N which are input into DBN
to learn to extract vein features.

2) TRAINING AND TEST OF DBN
For DBN training, the input data consists of patches with size
N × N . The dimension of output is decided according to
the number of classes to predict. After forward propagation
through the network layers, the output from each layer of
DBN is the representation of an input image. After training,
given a patch either from a training or a test image, the DBN
computes the probability of its center to belong to a vein fea-
ture, and labels it according to the winning class (i.e. a prob-
ability threshold of 0.5). In our experiments, we build a
database consisting of 100000 patches for each class to train
the DBN. First, all pixels are labeled based on vein network
(binary image) from any one baseline. 100000 vein patches
and 100000 non-vein patches are randomly selected and a
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Algorithm 2 Iterative DBN for hand-vein feature extraction.
Input: The original hand-vein image f (x, y), training

dataset �, and validation dataset C ;
Output: Hand-vein segmentation image F(x, y);

Step 1:Segmenting the hand-vein feature based on one
baseline.
Step 2: Assigning a label for each pixel based on the
resulting binary vein image (0 and 1 denote background
and vein pixels respectively), and selecting some patches
centered on the vein pixels as positive samples and
patches centered on the background pixels as negative
samples to form the training set A.
Step 3: Training DBN by stochastic gradient descent.
Step 4: Input images from C into DBN to obtain proba-
bility maps, which are binarlized to extract vein structure
using a threshold of 0.5.
Step 5: Matching the resulting binary images to compute
the recognition accuracy on validation dataset. If the
highest verification accuracy on a validation dataset is
achieved, stop iteration and go to Step 7; Otherwise, go to
Step 6.
Step 6: Input an image from � into DBN to obtain a
probabilitymapP′(x, y), based onwhichwe re-label each
pixel and construct training set. For example, we select
some patches with high probability belonged to vein as
positive samples (P′(x, y)>0.6) and patches with high
probability belonged to background as negative samples
(P′(x, y)<0.4) to construct the training setA′. Then, go to
Step 3.
Step 7: Input image f (x, y) into DBN to obtain
enhanced image and the resulting image is subject to
binarilization to generate the vein feature image F(x, y).
Return F(x, y);

patch based training set is constructed for DBN training. For
an input patch, the DBNoutputs the probability of its center to
belong to a vein pattern. When computing the probability of
all pixels in an image, the DBN outputs a probability map.
Secondly, we select 100000 patches with higher probabil-
ity (i.e. larger than 0.6) as belonging to vein patterns and
100000 patches with lower probability (i.e. less than 0.4) as
belonging to vein patterns and build a new training set to
retrain our DBN. Subsequently, a probability map obtained
from DBN is employed to reconstruct the training set. The
training is done in a recursive way. The iterative process
will be stopped by verification accuracy on validation dataset
(as detailed in Section IV-E ). Finally, the vein network is
extracted by binarizing the output of last DBN layer using a
threshold of 0.5. The detailed training process is depicted in
Algorithm 2.

C. MATCHING
Wecompute thematching score between an enrollment image
and an unlabeled testing image for verification. Let us assume

FIGURE 5. Segmented results. (a) Original hand-vein image, and (b) vein
features extracted from (a) using Gabor filter, (c) vein features extracted
from (a) using Hessian phase, (d) vein features extracted from (a) using
Maximum principle curvature, and (e) vein features extracted from
(a) using Repeated line tracking.

E and F are enrollment and test binarized feature images with
size of x × y, respectively. The width and height of E are
extended to 2w+ x and 2h+ y, and then its expanded image
Ē is obtained and expressed as:

Ē(i, j) =


E(i− w, j− h) if 1+ w ≤ i ≤ x + w,
1+ h ≤ j ≤ y+ h
−1 otherwise

(9)

The matching score between E and F is obtained by

d(E,F)

= min
0≤m≤2w,0≤n≤2h

∑x
i=1

∑y
j=1 hamdis(Ē(i+m, j+n),F(i, j))∑x

i=1
∑y

j=1	(Ē(i+m, j+n),−1)

(10)

where hamdist denotes the hamming distance between two
templates, i.e., summation of the number of pixels with dif-
ferent values and

	(U ,V ) =

{
1 if U 6= V
0 otherwise.

(11)

The parametersw and hwhich control the distance of trans-
lation in horizontal and vertical directions are experimentally
set to 30 and 30, respectively.

However, the matching score computed from Eq.(10) is not
robust to local variations such as local rotation and transla-
tion, which usually exist in contactless captured hand-vein
images. To overcome this problem, local matching scores are
generated to achieve hand-vein verification. For template E
and testing image F , we divide each of them into various
local patches. The obtained kth patches from E and F are
presented as Ek and Fk , k = 1, 2, . . . ,K . Then, we employ
Eq.(10) to match the corresponding partitions and generate
local matching scores. Finally, the local matching scores are
combined to obtain the global matching score for verification
by following Eq.(12).

d ′(E,F) =
1
K

K∑
k=1

d(Ek ,Fk ) (12)
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IV. EXPERIMENTS AND RESULTS
To evaluate the performance of the proposed approach for
vein verification, we carry out experiments on two public
hand-vein databases which are collected using contactless
and contact device at different times. A classical approach
(i.e. Repeated line tracking [26]) and a state of the art
(i.e. Gabor filters [7]) methods have shown promising results
on finger-vein databases. Also, the extraction of hand-vein
features using Hessian phase [9] andMaximum principle cur-
vature [34] achieved high performance for hand-vein verifica-
tion. To test our approach, we employ four baselines to label
pixels and build four training sets, each of which is employed
as initial training set to iteratively train our DBN for palm-
vein verification. To simplify the description, we respec-
tively denote them as ‘‘The propose approach+Repeated line
tracking’’, ‘‘The proposed approach+ Maximum principle
curvature’’, ‘‘The proposed approach + Gabor filters’’ and
‘‘The proposed approach+ Hessian phase’’. Then, the corre-
sponding performance is shown in the following experiments.
Also, we compare all four baselines mentioned above to get
more insights into the problem of hand-vein verification.

A. DATABASE
1) DATABASE A
The CASIA Multi-Spectral Palmprint Image Database [55]
includes 7,200 palm images captured from 100 subjects using
a contactless imaging device. The images were captured in
two separate sessions with a minimum interval of one month.
In each session, the left hand and middle hand of each subject
provided 3 image samples respectively. Each sample con-
tains six palm images which are captured at the same time
where the six spectra are 460nm, 630nm, 700nm, 850nm,
940nm and white light respectively. Therefore, there are
18 (3 samples × 6 spectra ) images for each subject in one
session. As the focus of our work is on palm-vein verifica-
tion, and the palm-vein images are largely observed in NIR,
only the images that were acquired under 850nm wavelength
illumination are employed to evaluate the performance of our
approach. The palm-vein dataset consists of 1200 palm-vein
images (100 subjects × 2 hands × 3 samples × 2 sessions )
with size of 768×576. As the acquired image using a contact-
less imaging device includes more variations such as trans-
lation, rotation, scale and uneven illumination, the acquired
finger vein images are firstly subjected to preprocessing
steps before feature extraction. In our experiments, the region
of interest (ROI) image is extracted, and then translation,
orientation and scale alignment are carried out using our
preprocessing method described in Section II. Fig.9(a) and
Fig.9(b) show the original palm-vein image and normalized
palm-vein image.

2) DATABASE B
The PolyU multispectral palmprint Database [4] was col-
lected from 250 volunteers under four illuminations e.g. blue,
green, red and near-infrared (NIR), in two sessions, separated

by about 9 days. Each volunteer provided 24 images from
left hand and right hand (12 for each hand) in each session
under each illumination. 6000 NIR images (12 NIR images×
2 hands× 250 subjects) are employed to test our approach as
we aim to perform vein verification. Original images have the
spatial resolution of 288× 352. In their work, as the captured
images include background, our ROI extraction algorithm is
applied to the Blue band to find the ROI coordinate system.

B. EXPERIMENTS SETTING
All the experiments are implemented in Matlab and con-
ducted on a high performance computer with 8 Core
E3-1270v3 3.5 GHz processor, 16GB of RAM, and a
NVIDIA Quadro GTX1070 graphics cards. The public
database is divided into three sub-datasets for training,
validation and testing, respectively, to test our approach.
For database A, there are only 100 subjects associated
with 200 hands to provide 1200 images in two sessions,
as described in IV-A. The different hands are treated as
different classes, based on which we split the dataset
into three subsets: training dataset with 300 (50 right-
hands × 6 images) images, validation dataset with 300
(50 right-hands × 6 images) images and test dataset with
600 (100 left-hands × 6 images) images. To simplify
the description, the three datasets are denoted as dataset
A1, A2 and A3, respectively. For database B, there are
500 palms associated with 6000 images. Similarly, there are
2400 (200 hands × 12 images) images in training set B1,
600 (50 hands × 12 images) images in testing set B3, and
3000 (250 hands × 12 images) images in testing set B3.
To extract vein patterns, theDBN is trained as follows: Firstly,
the vein and background image pixels from the training set
are labeled using the scheme described in subsection III-B-1).
Then, to train the DBN, we select patches centered on vein
pixels as positive samples and patches centered on back-
ground pixels as negative samples. In the experiments, for
each image in database A and database B, about 334 and
43 vein pixels are select as positive examples, and we
use the same amount of pixels randomly sampled (with-
out repetitions) among all background pixels, which results
in 200,000 training examples in total (100,000 positive exam-
ples and 100,000 negative examples). The validation sets
A2 and B2 are used to select parameters, and the datasets
A3 and B3 are employed for testing.

C. PARAMETER SELECTION FOR DBN
In this section, we modify the parameters of a basic DBN
network to investigate the best trade-off between accuracy
and speed. In our experiment, the basic network consists
of two hidden layers, one input layer, and one output layer
(as shown in Fig.4(c)). The number of units in the two hidden
layers are 100 and 100 respectively. The number of neurons
in the input layer is decided by the dimension of the input
vector, and the dimension of output is decided upon according
to the number of classes to be predicted. The size of training
patch is initialized to 15×15 (resulting in a 225-dimensional
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input vector) and vein segmentation is a binary classifica-
tion problem (vein and background), so the number of units
in the input layer and output layer are 225 and 2, respec-
tively. To simplify description, we denote the basic DBN
as 225-100-100-2. In addition, to determine the architecture
of DBN, the iteration step is fixed to 1 and the classic repeated
line tracking approach [19]) is employed to label pixels for
parameter selection of DBN.

1) NUMBER OF LAYERS
In this section, to determine the layers of DBN, we shrink and
extend the basic network by reducing and adding some hidden
layers. For example, two networks (225-200-200-200-2,225-
200-2) are created by adding and reducing a hidden layer
to the basic network (225-200-200-2), respectively. The two
new DBNs and the basic one are compared by the following
experiments. The three DBNs above (225-200-2, 225-200-
200-2, 225-200-200-200-2) are trained to extract the vein
patterns of images in dataset A2. The genuine matching
scores are computed by matching the images from same
palm while the impostor matching scores are computed by
matching images from different palms. Therefore, there are
150 (50 × 3) genuine scores and 3675 (50 × 49 × 3/2)
impostor scores. The False Rejection Rate (FRR) is computed
by genuine scores and the False Acceptance Rate is computed
by impostor scores. The Equal Error Rate (EER) is the error
rate when FAR is equal to FRR. Table 1 shows the EER and
the average feature extraction processing time from one hand-
vein image for different DBNs. From Table 1, we observe
that, compared to the two-hidden layers network, the three-
hidden layers networks achieve the same accuracy on the
validation set, but the time cost increases while the two-
hidden layers network achieves similar performance with less
time.

TABLE 1. Results of using different layer numbers.

2) NUMBER OF KERNELS
In general, increasing neurons in hidden layers results in
better verification accuracy, but it will lead to large time
cost accordingly. We change the neuron number in the basic
network and create a larger network 225-400-400-2, and
two smaller networks 225-100-100-2, 225-50-50-2. Then,
the ERRs and computation time of the three networks on
dataset A2 are reported in this section. Also, the experimental
results of the basic network are illustrated in Table 2 to facil-
itate comparison. From the experimental results in Table 2,
we see that the networks 225-200-200-2 and 225-100-100-2
achieve the same EER. However, the smaller network
225-100-100-2 requires less the computation time.

TABLE 2. Results of using different neuron numbers.

TABLE 3. Results of using different patches.

FIGURE 6. Relationship between patch size and EER.

3) PATCH SIZE
The selection of the patch size for DBN is critical for
achieving high performance. If the selected size is too small,
the patch may represent noise but dominate vein feature.
In other words, the extracted image includes more noise
which produces mismatch errors. On the contrary, too large
patches include more global information than needed as
vein patterns that are far away from the center pixel may
actually confuse DBN training. In this section, an appropri-
ate patch size for DBN is determined experimentally and
Table 3 depicts the relationship between the patch size and
the EER. It can be observed that a smaller error is achieved
when patch size is equal to 11.

D. PATCH SIZE FOR MATCHING
To overcome local variations such as local translation and
local rotation, the enrollment template and testing image
are divided into non-overlapping regions for matching. The
selection of appropriate patch size is important to improve-
ment of verification performance. If the patch size is too
small, it will not include enough discriminative vein patterns
to achieve high verification accuracy. In other words, patches
with a too small size result in higher genuine matches, but
they also lead to higher impostor matches which degrades the
performance. By contrast, a large patch may include enough
discriminative information, but it emphasizes on the global
features and is not robust to local variations such as local
translation and rotation which results in high verification
error. Fig.6 illustrates the relationships between partition size
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and EER on the CASIA database. It can be observed from
Fig.6 that a smaller equal error rate is achieved when patch
size ranges from 50 to 70. As the larger patch leads to large
matching time, we fixed patch size to 50× 50 for matching.

FIGURE 7. Relationship between iteration step and EER.

E. ITERATION NUMBER
In our approach, the DBN takes a patch labeled by one base-
line as input and provides its probability to belong to a vein
pattern. Then, this output of DBN is employed to generate
a more accurate label, based on which a training dataset
is reconstructed by the scheme described in Section IV-B.
If the patches from the reconstructed training set are taken
as input of DBN, more robust vein patterns can be extracted,
which enables the segmentation to be done in a recursive
way. The number of iteration steps is important to achieve
low verification error. If the number of the iteration steps is
small, some incorrect labels may not be statistically corrected
by DBN. By contrast, if the number of iteration steps is
large, the DBN is likely to be over-fitting. In this section,
we optimized the number of the iteration steps by evaluating
the performance on a validation dataset. In our experiment,
the number of iterative steps is optimized by computing the
EER on validation set A2. First, four baselines i.e. Hessian
phase, Repeated line tracking, Maximum principle curvature,
and Gabor filters are respectively employed to label each
pixel, based on which the training set is obtained (as shown
in Section III-B-2)). Second, the DBN is iteratively trained
and the binary vein network is extracted at different iterative
steps. Third, we select some images captured in first session
for training and remaining ones for testing. 300 (50 × 6)
genuine matching score and 3675 (50 × 49 × 3/2) impostor
scores are generated by matching images from same and dif-
ferent hands, respectively. ERR is computed by genuine and
impost scores. Fig.7 illustrates the EER at different numbers
of iterative steps using different baselines for verification.
From the experimental results in Fig.8, it can be seen that the
EERs for Hessian phase, Repeated line tracking, Maximum
principle curvature, and Gabor filters are 1.33, 4.0, 4.37,
and 2.81, respectively, which are significantly reduced by
the proposed approach. The lower EERs for five baselines
are achieved when the numbers of iteration steps are 2, 2, 5,
and 3, respectively. So, the iteration steps of 2, 2, 3, and 5 are

respectively determined for Hessian phase, Repeated line
tracking, Maximum principle curvature, and Gabor filters.
From the experimental results in Fig.7, we observe that
the verification accuracy is significantly improved using our
model at one iteration. The reason may be explained by
the following fact. There may be many incorrect labels in
the segmented images from the four hand-crafted baselines
(i.e. the four baselines achieve high EERs 1.33, 4.0, 4.37,
and 2.81) because they segment images base on image pro-
cessing techniques, only considering its pixels and their cor-
relations. On the contrary, the DBN relies on rich statistics
on nonlinear pixels correlations because it is trained using
a large training set, which enables it to learn a hierarchical
feature representation. However, more iteration steps can not
result in more improvement of EERs because the incorrect
labels are effectively corrected by DBN after each iteration.

F. VISUAL ASSESSMENT
In this section, we visually analyze and assess the perfor-
mance of various approaches, so that more insights into
the proposed approach are obtained. Fig.8 illustrates the
hand-vein extraction results using the proposed approach
on CASIA database. Fig.8(a) shows an original image from
CASIA database. The sub figures Fig.8(b) shows the vein
features segmented by four baselines, e.g. Gabor filters,
Maximun Curvature points, Hessian Phase, and Repeated
line tracking. Fig.8(c), Fig.8(d), Fig.8(e) and Fig.8(f) illus-
trates vein feature images obtained at different iteration steps
i.e. 1,2,3,4.

From the obtained results in Fig.8, we can see that, there is
a large difference between the obtained vein features by five
baselines (as shown Fig.8(b)). For example, the Gabor filters
(segmentation results at first row in Fig.8(b)) and Hessian
Phase (segmentation results at third row in Fig.8(b)) extract
smoother vein features while there are more noises and cor-
rupted vein features in the images obtained byMaximun Cur-
vature points ( segmentation results at second row in Fig.8(b))
and Repeated line tracking (segmentation results at last row
in Fig.8(b)). The larger difference is explained by the follow-
ing fact. (1) the five handcrafted methods are designed based
on different assumptions. For example, in [7], a vein pattern
is defined as a line-like texture in a predefined neighborhood
region andGabor filters are employed to extract vein features.
However, Hessian Phase, Maximun Curvature points, and
Repeated line tracking are proposed to extract vein feature by
observation that the cross-sectional profile of a vein pattern
shows a valley shape. (2) the mathematical models for vein
feature extraction are different.

Compared to the experimental results from four baselines,
the proposed method effectively suppresses the noise and
extracts smoother and continuous vein features from raw
finger-vein images. Surprisingly, with the increasing of iter-
ation steps, vein patterns extracted by the proposed approach
show similar noise distribution, similar smoothness and sim-
ilar continuous features even if its initial labels are from four
different baselines. This may be explained by the fact that
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FIGURE 8. Extracted results of a finger image; (a) original image;(b) vein features extracted by four
baselines (From top to bottom, the vein features are obtained by Gabor filters, Maximun Curvature
points, Hessian Phase, and Repeated line tracking.); (c) vein features extracted by the proposed
approach (the number of iteration steps is 1);(d) vein features extracted by the proposed approach
(the number of iteration steps is 2);(e) vein features extracted by the proposed
approach (the number of iteration steps is 3); and (f) vein features extracted by the
proposed approach (the number of iteration steps is 4).

the DBN learns statistical distributions of vein patterns based
on a number of patches which are not easy to be learned by
human.

To investigate how to correct the labels of pixels by the
proposed approach, we show the corrected pixels (the colored
region in Fig.9) at each iteration step. In Fig.9, the color
regions in each column are differences between vein feature
images in two adjacent columns from Fig.8. For example,
the color regions in Fig.9(a) denote the different pixel points
between vein feature images from four baselines (Fig.8(b))
and ones at one iteration step (Fig.8(c)). From Fig.8 and
Fig.9, it can be observed that the difference (colored region) is
reduced with the increase of the iteration step. The large color
regions in Fig.9(a) imply that more vein pixels are corrected
at the first iteration. In other words, there are more incorrect
labeling pixels in Fig.8(a). From Figures.8 and 9, we also
see that the amount of different pixels (as shown in colored
region Fig.9(b)-(d)) will decrease after several iterations. For
example, it is difficult to observe the colored region when the
number of iteration step is 4. These experimental results in
this section are consistent with the trends in Section IV-E.

G. VERIFICATION RESULTS BASED ON IMAGE
DATASET FROM TWO SESSIONS
In this section, we carry out rigorous experiments to evaluate
the performance of the proposed approach based on CASIA
database and PolyU database collected from both sessions.
For testing subset A3, 100 hands provided 600 images at two
sessions, 300 images for one session. In dataset B3, there are

FIGURE 9. Corrected pixels (marked in color); (a) difference (colored
region) between image from Fig.8(b) and image from Fig.8(c);
(b) difference (colored region) between image from Fig.8(c) and image
from Fig.8(d); (c) difference (color region) between image from Fig.8(d)
and image from Fig.8(e); and (d) difference (color region) between image
from Fig.8(e) and image from Fig.8(f).

3000 images from 250 hands for verification.We select hand-
vein images collected in the first session as training set
while the remaining images acquired in the second session
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are employed as testing data to assess the verification per-
formance. Matching images from the same finger produces
genuine scores while the impostor scores are created by
matching images from different hands. This results in 300
(100× 3) genuine scores and 1, 500 (250× 6) genuine scores
for CASIA database and PolyU database, respectively. The
computation for impostor matching score is time consuming
because there are 178, 200 (6 × 6 × 100 × 99 /2) matching
groups and 4, 482, 000 (12× 12 × 250 × 249/2) matching
groups for A3 and B3. To reduce computation time, similar
to [34], all hands are randomly split into 10 groups and then
the impostor matching scores are computed for each group.
For example, we divide the 100 hands fromA3 into 10 groups
and each group includes 60 (6×10) images from 10 hands.
For each group, matching the i-th sample at different ses-
sions from different hands (i = 1, 2, 3, 4, 5, 6) produces
impostor matching scores, which results in 270 (10 × 9 × 3)
impostor matching scores. Hence, there are totally 2, 700
(270 × 10 groups) matching scores for 10 groups on A3.
Similarly, there are 36, 000 (25 × 24 × 6 × 10 groups)
impostor matching scores for B3. The experimental results
from various approaches are listed in Table 4 and the corre-
sponding receiver operating characteristics (ROC) curves (the
Genuine acceptance rate (GAR = 1-FAR) against the FAR)
are illustrated in Fig.10.

FIGURE 10. Receiver operating characteristics from (a) Database A and
(b) Database B.

It can be observed from the presented results that our
approaches achieve more than 98% GAR at FAR = 0.1%
on database A and more than 99% GAR at FAR = 0.1%
on database B, which are significantly higher than accuracies
achieved by corresponding baseline. The experimental results
in Table 4 shows similar trend that the proposed approach
achieves lower EER than corresponding baseline when the
vein features from baseline are employed to label pixels for
the training of our model. In our experiments, compared to
the Hessian Phase and Repeated line tracking, the Gabor
filters and Maximun Curvature points show lower EER, but
the proposed approaches trained by labeling data from four
baselines show similar verification accuracy and achieve the
state of the art level on both datasets. The lowest EERs 0.33%
for database A and 0.015% for database B are achieved by
the proposed approach + Hessian phase which is trained by
labeling data obtained from Hessian phase.

TABLE 4. EER of various approaches on image data from two different
sessions.

FIGURE 11. Receiver operating characteristics from (a) Datbase A and
(b) Database B.

H. VERIFICATION RESULTS BASED ON IMAGE
DATASET FROM TWO MIXED SESSIONS
In this section, the performance of mixed scores from same
session and two sessions is reported. For A3, 600 images
are collected from 100 hands at two sessions and each
hand provided 3 images at one session. In dataset B3, there
are 3000 images captured from 250 hands at two sessions
and 6 images are acquired from each hand at one ses-
sion. We match images from same hand to generate 1, 500
(C6

2 × 100) genuine matching scores for A3 and 16, 500
(C12

2 × 250) genuine scores for B3.We adopt a similar exper-
imental protocol to that described in the previous section to
generate impostor scores, which results in 2, 700 (10 hands×
9 hands × 3 images × 10 groups) impostor matching scores
for A3 and 36, 000 (25 hands × 24 hands × 6 images ×
10 groups) impostor matching scores for B3, respectively.
The experimental results for various approaches are summa-
rized in Table 5. The receiver operating characteristics (ROC)
curves for the corresponding performances are illustrated
in Fig.11.

The experimental results summarized in Fig.11 and
Table 5 are quite consistent with the trends from the exper-
iments in the previous section. The proposed approach sig-
nificantly outperforms the existing baselines in terms of EER
improvement and achieve the best performance among all the
approaches considered in this work, i.e. 0.20% for database
A and 0.007% for database B. Another observation that
can be noticed from the results in Fig.11 is that the pro-
posed approach (almost) consistently achieves higher GAR,
especially in the lower FAR region, as compared to four
baselines.
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TABLE 5. EER of various approaches on image data from two mixed
sessions.

V. DISCUSSION
The experimental results depicted in Table 4 and Table 5 (and
Fig.10 and Fig.11) show that using the vein feature images
obtained from different baselines as labels to train our DBN
achieves higher performance than the baselines mentioned
above. Surprisingly, the proposed approach still achieves
state-of-the-art EER level even when the baselines for label-
ing have higher verification error. For example, as illustrated
in Table 4, the two baselines Repeated line tracking achieves
4.00% EER on database A and Maximum principle curva-
ture achieves 3.87% EER on database B. However, taking
labeling data from the two baselines as input of our iterative
DBN, the verification errors are reduced to 0.67% and 0.33%
(in Table 4).

Such a good performance may be explained as follows:
1) the handcrafted segmentation-based approaches do not
infer any knowledge from the different images because
they segment each image independently from the others.
On the contrary, we employ handcrafted segmentation-based
approaches to generate huge patch sets from different images
for DBN training, which enables our approach to harness
a rich prior knowledge so that it is capable of distin-
guishing vein patterns from background. 2) the handcrafted
segmentation-based methods extract explicitly some image
processing-based features (low level features) that might
discard relevant information for vein pattern classification.
By contrast, DBN can automatically learns high level features
that are directly related to vein patterns. 3) the label of each
pixel is corrected by iteratively training our DBN (as shown
Fig.8 and Fig.9) and the corrected labels enable our DBN
to learn more robust features for vein pattern representation.
Therefore, the proposed approach is capable of predicting the
probability of a pixel to belong to a vein pattern even if some
baselines provide incorrect labels for some training patches.

From the experimental results (Table 4, Table 5, Figure 10,
and Figure 11), we see that all approaches achieve improve-
ment in terms of verification accuracy on image datasets
acquired in two mixed sessions. Such a good performance
can be attributed to the fact that the genuine matching
from images captured at the same session are considered
in the second verification experiments (Section IV-H). The
images collected at the same session have smaller within-
class variations because the capturing environment and user
behavior are almost the same during finger-vein image
acquisition within a short duration, which results in better

verification performance. On the contrary, in the first veri-
fication experiments (Section IV-G), the genuine matching is
computed between the images collected at two separate ses-
sions. However, there are large within-class variations in such
images, matching fromwhichwill ultimately compromise the
performance of the authentication system.

TABLE 6. Summary of EERs derived from recently published palm-vein
recognition papers on CASIA Database and PolyU Database.

As awhole, the proposed approach achieves state-of the-art
recognition results on database B w.r.t on database A. Cer-
tainly, the verification accuracies may be further enhanced
by incorporating other deep learning models into our
approach. In the experiments, we have also embedded CNN
into our approach by replacing DBN and evaluated this
approach on both databases. As a result, the CNN based
approach achieves similar performance compared to our
approach, but it requires more computation time to segment
an image. Like other works [9], [34], [60], [59], we sum-
marize the representative palm-vein approaches in the exist-
ing literature in Table 6 to estimate the performance of our
approach. The experimental protocol employed by the works
in Table 4 are different and can be broadly categorized in
two categories: (1) in the first category, the hand-vein images
acquired during the first imaging session are selected as
training data while the remaining images acquired during
the second session are employed as testing data to assess
the verification performance [4], [9], [58]. The matching
is performed between images collected at first session and
at second session. (2) In the second protocol, each image from
two mixed sessions is selected for training and the remain-
ing images are employed for testing [34], [59], [56]. The
genuine matching is produced using all images from same
hand regardless of the variation between the two sessions.
In our experiments, we employ both protocols to estimate
the performance of our approach and the best verification
performance is listed in Table 6 to facilitate comparison. The
proposed approach achieves 0.33% on CASIA database and
0.015% on PloyU database using fist protocol, and 0.20% on
CASIA database and 0.007% on PloyU using second protocol
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(as listed in Table 6), which implies that the proposed method
has a powerful capacity to achieve state-of-the-art EER level
compared with others.

VI. CONCLUSION
This paper proposed an iterative deep learning approach
to predict probability of pixels to belong to veins or to
background by learning a deep feature representation. First,
the pixel in an image is labeled as vein and background by a
baseline method. The patches centered in each labeled pixel
are employed to construct the training dataset. Then, a DBN
is proposed to extract the vein feature for vein segmentation.
The DBN is iteratively trained to correct the incorrect labels,
so it avoids the tedious and prone-to-error automatic labeling
and achieves good performance. Experimental results on two
public databases show that the proposed approach signifi-
cantly improves the verification error rate and achieves a state
of the art level performance.
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