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ABSTRACT In detection-based multi-object tracking (MOT), one challenging problem is to design a robust
affinity model for data association. Moreover, since these approaches entirely rely on detection responses
to locate targets, a strategy should be taken to deal with a detector’s defect. In this paper, we propose a
robust online MOT tracking method that can handle these two issues effectively. We first present a novel
affinity model by jointly learning more powerful feature representation and distance metric within a deep
architecture. Specifically, we design a convolutional neural network to extract appearance cue tailored
toward person Re-ID and a long short-term memory network to extract motion cue to encode dynamics
of targets. Both the cues are then combined with a triplet loss function, which performs end-to-end deep
metric learning to encode dependences across both cues automatically and thus generates fused features
in embedding space to distinguish targets. To overcome the detector’s limitation, a trajectory estimation
strategy is presented. We design a recurrent neural network-based Bayesian filtering module, which takes
a hidden state of the above-mentioned LSTM network as an input and performs recursive prediction and
update for explicitly estimating targets state. In this way, we can reconstruct trajectories by filling the gaps
where no detections are present or adjusting the exact locations of trajectory where detections are imprecise.
The experiments on the challenging MOT 2015 and 2016 datasets show very competitive results when
comparing our method with the recent state-of-the-art batch and online tracking approaches. We achieve
top one in terms of multiple objects tracking accuracy and multiple objects tracking precision among online
methods on the MOT2016 dataset.

INDEX TERMS Multi-object tracking, deep learning, data association, trajectory reconstruction.

I. INTRODUCTION
Multi-object tracking (MOT) aims at locating multiple
objects, maintaining their identities, and yielding individ-
ual trajectories given an input video. MOT is of sig-
nificant relevance for various applications, such as video
surveillance, human behavior analysis, autonomous driv-
ing and robot navigations. Despite substantial progress in
recent years, multi-object tracking remains very challenging
when dealing with large appearance variation, high motion
complexity, interactions and occlusions among multiple
objects [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Li He.

To address this challenge, most current approaches fol-
low tracking-by-detection framework, where object detectors
like [2]–[4] provide potential locations of the objects of inter-
est in the form of bounding boxes, i.e. detection responses.
The task of multi-object tracking is then cast as a data
association problem, where detection responses are assigned
different unique IDs corresponding to different targets, based
on shape, motion, and appearance cues [5]. To achieve this,
an affinity model is required to estimate the linking proba-
bility (also called assignment cost) between detections and
targets, followed by an association optimization strategy that
determines which of the targets should be linked considering
their affinity measurements. The main motivation in this
paper is to develop a robust affinity model.
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Feature representation is crucial in affinity model design-
ing. In the past decades, different kinds of features have
been developed to build a robust appearance model, includ-
ing color histograms [6]–[8] the Histogram of Gradi-
ents (HOG) [9], [10], covariance matrix [11], [12] etc.
To produce more accurate affinity scores, motion cues
like velocity or position are also utilized to encode
dynamics of targets and combined with the target appear-
ance [8], [12]–[15]. While appearance and motion cues are
complementary, each of the two is usually treated as separate
learning task and the final affinity score is a simple linear
combination without metric learning mechanism in many
previous works. When faced with MOTChallenge bench-
marks [16], [17], where more challenging scene is presented
such like great appearance deformation, very low illumina-
tion and severe occlusions, the discriminability of the above
representation learning methods is often limited due to their
shallow representation models. In this case, it is essential to
learn more powerful feature representation so that the affinity
model is robust to the variation between intra-target, yet
remains discriminative for the inter-target variation.

Obviously, if the detector is flawless at finding all targets,
the multi-object tracking problem can be solved solely by
data association [14], [18], [19]. However, object detectors
are not perfect: missed detections, false alarms, and inac-
curate responses are still common in challenging real-world
environments. For instance, missed detections(i.e., false neg-
atives) caused mainly by severe occlusion will lead to track
fragments during the data association stage. The presence
of projected shadows, clutter, or partial occlusion usually
produce imprecise detection responses, which will result in
inaccurate target localization and size. To remedy this, tra-
jectory estimation has been utilized to reconstruct the entire
trajectory of each target by filling in the gaps where no
detections are present, or to adjust the exact course of a
trajectory which tends to deviate due to imprecise target
localization [14], [18]. Although interpolation has been used
in [12], [20], and [21], as a straightforward method, it cannot
handle such situations where targets move unpredictably.
Some previous approaches employ delicate techniques for
this purpose, e.g., particle filtering based prediction [22]
and trajectory extension [23]. However, motion models in
these approaches are still relatively simple and do not con-
sider the interactions between targets. It should be noted
that a reasonable strategy is to estimate the state of trajec-
tory by modeling the temporal dynamic of targets [8], [24],
but explicitly reasoning the state of each target is relatively
less investigated in the recent literature of MOT despite its
importance.

Over the last few years, the computer vision commu-
nity has gone through a revolution fueled by deep learning.
As deep neural networks (DNNs) can learn rich represen-
tations, a current trend of MOT is to directly extract hier-
archical features from raw images by DNNs and then to
build an affinity model [25]–[29]. Another paradigm that has
been used in conjunction with discriminative representation

is metric learning. In this setting, a distance metric between
measurements in an embedding space is learned from train-
ing data to address the variability in object appearance. For
instance, methods in [30] and [31] have been attempted to
jointly learn the deep features and temporally constrained
metrics in a unified convolutional neural networks (CNNs).
Although some significant progress has been achieved, there
are only a few deep learning approaches to multi-object
tracking [31] compared with other computer vision tasks
such like object detection and recognition [24]. Furthermore,
the problem of trajectory estimation is not taken into account
in these deep learning methods.

Motivated by the above fact and recent success of
deep learning in computer vision, this paper attempts to
address two problems in detection based multi-object track-
ing: (1) affinity model designing for data association and
(2) trajectory estimation to deal with detector’s defect, both
are investigated within a unified deep architecture.

To build a robust affinity model, we propose to learn
feature representations based on multiple cue and deep met-
ric learning. Specifically, we employ a CNN to extract
appearance cue tailored towards person Re-ID, and a Long
Short-Term Memory network (LSTM) to extract motion cue
aiming at encoding position information of each target. Both
feature cues are then combined with a triplet loss function
that performs end-to-end deep metric learning and generates
the embedding of the fused appearance and motion features.
The proposed CNN+LSTMmodel together with a triplet loss
function can be considered as learning a mapping function
that maps each detection into an embedding space, where the
difference between detections of the same target is less than
that of different targets.

To overcome detector’s limitation, a recurrent neural net-
works (RNN) that is embedded in the above motion model
is designed to conduct classical Bayesian filtering for the
task of trajectory estimation. The hidden state of the LSTM
that encode targets dynamics is fed into the RNN. In the
proceeding of data association, a noisy detection may be
assigned to a previous target and serves as a new mea-
surement to update prediction of the target state. A detec-
tion may also be associated to no target when a new
object appears or detector runs wrong. In this situation,
no available observation is provided for updating step, and
the state estimated by hidden state in prediction stage is
used instead as the target trajectory. Intuitively, Bayesian
filtering facilitates more accurate localization of targets,
and consequently results in more reliable and smoothed
trajectories.

To summarize, the main contributions of this paper are as
follows:

1) Proposition of a unified deep architecture to address
affinity model for data association, and trajectory esti-
mation for better targets’ localization.

2) Proposition of a robust affinity model by learning
strong feature representations based on multiple cues
and deep distance metric.
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3) Proposition of a RNN-based Bayesian filtering module
to deal with detector’s defect by explicitly inferring the
location of each target.

The rest of the paper is organized as follows. We first
discuss related work in Section II. The architecture and
characteristics of our approach are presented in Section III.
We describe the implementation details in both training and
testing stage in Section IV. The experimental results are pre-
sented and discussed in Section V, and conclusions are drawn
in Section VI.

II. RELATED WORK
As summarized in [18], the task of detection based multi-
object tracking is twofold: data association and trajectory esti-
mation. In this section, we briefly review previous research
relevant to our work, with a focus on deep learning based
approaches.

A. FEATURE REPRESENTATION
Feature representation is critical for affinity model in data
association, and usually depends on the combination of mul-
tiple cues, e.g. appearance and motion.

1) APPEARANCE CUE
Most traditional methods adopt weak affinity measures based
on appearance model such as spatial affinity, e.g. bound-
ing box overlap or Euclidean distance [32], [33], or sim-
ple appearance similarity, e.g. intersection kernel with color
histogram [34]. With the recent rise of deep learning,
CNNs are exploited to extract hierarchical features to model
appearance similarity [25]–[29]. The architecture extensively
used in MOT is the Siamese network [26], [30]. Siamese
network processes two inputs simultaneously using multi-
ple layers with shared weights and seems useful for the
task of comparing two image patches. However, Siamese
models trained with verification loss (or binary classifica-
tion) only answer the question ‘‘How similar are these two
detections or patches?’’ [35], without taking into account
‘‘where and when these detections originated’’ [26]. To alle-
viate this problem, Leal-Taixé et al. [26] train a CNN in a
Siamese configuration, and the outputs of CNN are combined
with contextual features by a gradient boosting algorithm.
Amore appropriate viewpoint is to treat MOT as a retrieval or
Re-ID problem, and to build appearancemodel based on iden-
tity classification loss (i.e. identity preserving loss). Along
this line, Tang et al. [28] developed a Siamese ID-Net for per-
son Re-ID, where the appearance learned by deep networks
is combined with body pose information.

2) MOTION CUE
In scenarios where objects have similar appearance or small
size, motion features can capture the dynamic nature of the
scene that is complementary to appearance features, and
therefore are usually utilized in conjunction with appearance
to predict the target location [10], [14], [24], [27], [30].
Although linear motion models are popular [10], [30], [36]

with a priori assumption that targets follow a linearmovement
with constant velocity across frames, the simple mechanism
behind linear model makes it hard to produce more accurate
prediction, and might yield unrealistic or unreasonable tra-
jectories due to the complexity of human motion patterns.
In [15], more sophisticated linear model has been taken
into account to increase the discriminating power for asso-
ciation, where a dynamic motion affinity is considered by
modeling the target motion as a sequence of piecewise linear
regressions from the available trajectory. Several works pro-
posed non-linear motion models that consider more complex
motion dependency between targets [37], [38]. For instance,
Yang and Nevatia et al. [37] employ a non-linear motion
model to handle the situation that targets may move freely.
Recently, recurrent neural networks (RNNs) are utilized to
model non-linear motion pattern [24], [27]. RNNs, in partic-
ular LSTM networks, are very powerful in capturing spatial
and temporal dependencies in data sequences by using non-
linear transformations and hidden-state memory built into the
LSTM cells [39]. Milan et al. [24] propose a RNN based
network to learn complex motion model under Bayesian
filtering framework, and the learned temporal dynamics of
targets is utilized to perform state prediction and updating
as well as track management. Sadeghian et al. [27] present
a LSTM model to predict similar motion patterns by con-
sidering the past movements of an object and predicting
its future trajectory. To encode long-term temporal depen-
dencies, a hierarchical RNN is used to jointly reason on
motion, appearance and interaction cues over a temporal
window.

Similar to [27], our approach integrates multiple cues into
feature description. However, our system differs in several
aspects. First, instead of a regular Siamese CNN in [27],
we employ a CNN tailored towards person Re-ID to extract
appearance cue. Second, we model motion dynamics by pre-
dicting target position instead of velocities. Last, we extend
LSTM architecture by incorporating Bayesian state estima-
tion for the task of trajectory estimation, which could further
improve tracking performance.

3) DEEP METRIC LEARNING
Different from traditional metric learning methods [40], [41]
which learn a single linear transformation to project original
data points into another feature space, deep metric learning
(DML) cast the problem as a constrained optimization prob-
lem within deep neural networks and explicitly learn several
hierarchical non-linear transformations. In [30], a Siamese
CNN pre-trained on the auxiliary data is used to extract
appearance features. A loss function is proposed consisting
of a common Mahalanobis distance metric and a temporally
constrained segment-wise metric. The Siamese CNN and
temporally constrained metrics are jointly learned to gener-
ate the appearance-based tracklet affinity. In [31], a quadru-
plet architecture (Quad-CNN) is proposed to learn more
sophisticated representations. A bounding box regression loss
and a multi-task ranking loss that considers appearance and
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motion-aware position between four images are employed to
jointly optimize the Quad-CNN end-to-end.

Different from [30] and [31], our method employs CNN
and LSTM to learn appearance and motion features sepa-
rately. Furthermore, a triplet loss is adopted to perform end-
to-end deep metric learning and generates the embedding of
the fused appearance and motion features.

B. TRAJECTORY ESTIMATION
Most existing tracking techniques entirely rely on detec-
tion responses to derive the locations of targets, However,
detectors are not perfect: missed detections, false alarms,
and inaccurate responses are still common in challenging
real-world scenarios. A solution to this problem is trajectory
estimation, i.e., to fill in the gaps where no detections are
present, or to adjust the exact locations of trajectory where
detections are imprecision. In [8], the state (i.e. the location)
of each target is explicitly represented, and then estimated
directly by minimizing an energy function which is defined
in continuous space. To deal with trajectory gaps due to occlu-
sion or detection failures, Tang et al. [28] estimate a smoothed
trajectory from the detections that belongs to the same clus-
ter in a similar manner in [8], and then fill in the missing
detections along the estimated trajectory. Trajectory exten-
sion is also employed in [23] to track reliable targets so that
missed head or tail parts of tracklets are partially recovered.
In [36], particle filtering based strategy is presented, where
a novel mutual occlusion reasoning and targets’ interactions
are considered for more accurate observation likelihood and
refining the final trajectories. Bounding box regression is also
leveraged for better localization [31]. However, this vision
based strategy is limited in the case of heavy occlusions
since the observations of an occluded target may drastically
decrease even if the estimated location is accurate. More
recently, Milan et al. [24] present an elegant formulation
that employs an end-to-end training for multi-object tracking.
In their work, a RNN-based architecture is used for Bayesian
state estimation, i.e. trajectory estimation, and a LSTM-based
model is designed for data association.

Inspired by [24], we design a neural network to conduct
Bayesian inference that is composed of both state prediction
and updating. Furthermore, the Bayesian neural network is
embedded in LSTM motion model, which not only enables
the extended LSTM architecture to capture motion patterns
containing identity to distinguish targets, but also allows for
explicitly estimating the location of each target for the task of
trajectory estimation.

III. MULTIPLE OBJECT TRACKING FRAMEWORK
Given a set of already tracked targets at current time, the task
of our tracking framework is to associate each new detec-
tion in the next time to a corresponding target. Meanwhile,
a trajectory estimation strategy is employed to overcome the
detector’s limitation and to improve final tracking perfor-
mance. In this section, we describe the details of components
in our approach, including how to build affinity model for

FIGURE 1. Architecture overview. The system consist of two parts.
In affinity model (the blue dashed rectangle),the A-Net and LSTM network
extract appearance cue and motion cue, respectively. Both cues are
combined in Metric-Net with a triplet loss function that performs
end-to-end learning of multiple-cue representations and produces the
desired embedding features. In matching part (the yellow dashed
rectangle), a bipartite graph is constructed by association cost between
already tracked targets and new detections, and inference is achieved by
Hungarian algorithm. Finally, Bayesian filtering module(BF-Net)
embedded in M-Net is employed to refine tracks with or without the
associated detections.

data association and how to design Bayesian filtering network
for trajectory estimation. The architecture overview of our
tracking framework is shown in Fig. 1.

A. APPEARANCE MODEL
The motivation of our appearance model is to develop more
discriminative and robust representations for visual feature
property. To this end, we employ a CNN with the iden-
tity classification loss, which is usually used in person
Re-ID community.

1) DATA COLLECTION
It is well known that deep architectures require vast amounts
of training data in order to avoid overfitting of model.
To learn A-Net, we collect training set from two differ-
ent datasets. Training images are collected firstly from the
2DMOT2015 benchmark training set [16] and 5 sequences
in the MOT16 benchmark training set [17]. We also col-
lect person identity examples from the CUHK03 and
Market-1501 [42] datasets. For validation set, we use the
MOT16-02 andMOT16-11 sequences from theMOT16 train-
ing set. Overall a total of 2551 identities are used for training
and 123 identities for validating.

2) ARCHITECTURE
We use VGG-16 Net [43] as the base CNN architecture.
Specifically, by training VGG-16 to recognize Y = 2551
unique identities, the learning can be viewed as a Y -way
classification problem. Training images are re-sized to 224×
224 × 3 and each image Ii corresponds to a ground-truth
identity label li ∈ { 1, 2, · · · Y }. The network is trained using
the Softmax loss to estimate the probability of each image
being each label by a forward pass.
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Since data association relies on accurate object local-
ization, we incorporate bounding-box regression in [31] as
an additional objective to learn the A-Net. Specifically,
We employ a multi-task loss to jointly learn appearance
cue and bounding box regression for better localization. The
bounding box regression loss Lb, following the fully con-
nected layer φf 7(4096-dimension), is given by

Lb =
∑

i∈{u,v,w,h}

smoothL1 (gi − pi) (1)

where g = {gu, gv, gw, gh} denotes an offset of ground-
truth bounding box, and p = {pu, pv, pw, ph} is a predicted
bounding-box regression offset. The L1 smooth loss function
is given by

smoothL1 (x) =

{
0.5 x2 if |a| < 1
|x| − 0.5 otherwise

(2)

For bounding box regression, we adopt the 4 coordinates
parameterizations, specifying the pixel coordinates of the
center of box together as well as the box’s width and height
in pixels. Note that in the test time, we use the fully con-
nected layer φf 7 as the appearance feature φA(Ii) and the box
localizations refined by bounding-box regression as the input
for M-Net.

B. MOTION MODEL
Since motion model encodes the dynamics of trajectories that
is complementary to appearance cue, it could be exploited to
distinguish targets during data association (discrete problem)
as well as to predict positions of targets for trajectory esti-
mation (continuous problem for state estimation). This paper
proposes a neural network, denoted as M-Net, to learn the
temporal dynamics of targets, and attempts to address the
above two problems. In this subsection, we explain how to
construct a LSTM network with verification loss to extract
motion cue for affinity model. The designing of Bayesian
filtering network for the task of trajectory estimation is left in
subsection III (D). Our M-Net is illustrated in Fig. 2, where
the left part represents the LSTM network used to extract
motion cues.

1) ARCHITECTURE
The task of motion model is to determine whether a trajec-
tory should be located at a particular position or not. Our
LSTM accepts as inputs the positions of trajectory i
with length of N frames, denoted as T ti = [pt−(N−1)i ,

pt−(N−2)i , · · · , pti ], and produces a H-dimensional output φti .
We also pass a position pt+1j at the next time which we wish
to determine whether it corresponds to the true trajectory T ti
or not, through a fully-connected layer (FC2) that maps it
to a H-dimensional vector denoted as φt+1j . The difference
between φti and φt+1j is passed to another fully connected
layer (FC3), followed by a Softmax layer to produce an
assignment probability A(T ti , p

t+1
j ) over binary classifica-

tion. Intuitively, it is reasonable to judge whether position

FIGURE 2. Motion model (M-Net) consists of two modules. The first
(left part) is LSTM based feature extractor that takes as input a series of
position coordinates of a trajectory T t

i and a position pt+1
j . The second

(right part) is Bayesian filtering network denoted by BF-Net. The hidden
state ht

i produced by LSTM and the detection z t+1
i (i.e. measurement) by

association inference are fed as input into prediction and update block,
respectively.

pt+1j corresponds to a true trajectory T ti by H-dimensional
output of layer FC3 that is represented as φM (T ti , p

t+1
j ).

We define φM (T ti , p
t+1
j ) as the final motion feature vector in

testing stage.
Given A(T ti , p

t+1
j ), the assignment probability that trajec-

tory T ti should be located at pt+1j , the LSTM based fea-
ture extractor is learned by minimizing the binary cross
entropy (BCE) loss:

Lv = −[
_

A(T ti , p
t+1
j )logA(T ti , p

t+1
j )

+(1−
_

A(T ti , p
t+1
j ))log(1−A(T ti , p

t+1
j ))] (3)

Here Â(T ti , p
t+1
j ) is the true association distribution of T ti

and pt+1j .

2) DATA COLLECTION
Due to the very tedious and time-consuming task of video
annotation, only very limited amount of real data for
pedestrian tracking is publicly available. We therefore resort
to synthetic data augmentation [24] by sampling from a
simple generative trajectory model learned from MOT15
and MOT16. We refer to [24] for more details. There are
about 100K trajectories in the collected training set, each
of 20 frames in length. The data is divided into mini-
batches of 10 samples per batch and normalized to the range
[−0.5, 0.5], w.r.t. the image dimensions. As mentioned pre-
viously, each sample is a data pair consisting of a trajectory
T ti (N frames in length) and a position pt+1j . While positive
samples are generated by randomly sampling T ti and its true
position pt+1i , negative samples are composed of T ti and a
position pt+1j from a different trajectory j.

C. DEEP METRIC LEARNING
Deep metric learning is an efficient strategy to addressing the
problems of variability in object appearance and motion [5].
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FIGURE 3. Metric-Net training framework. Triplet training images are fed
into three-channel CNN-LSTM networks with the shared parameter set.
The triplet loss function is used to train the Metric-Net, making the
distance between inputs of the same targets is less than that of
different targets.

The Metric-Net is designed for that purpose, as illustrated
in Fig. 3. The core of this network is a triplet loss function that
encodes dependencies across appearance and motion cues
automatically. We first pre-trained appearance and motion
model separately. Then we train Metric-Net by fine-tuning
the weights of each individual component in an end-to-end
fashion and fitting appearance and motion features into the
triplet loss function. The detail about our deepmetric learning
is discussed next.

1) DATA COLLECTION
A triplet training example is constituted of an image patch Ii,
a trajectory T ti and a position pt+1j . Similar to [44] and [45],
we construct a triplet example Zi = 〈Zoi ,Z

+

i ,Z
−

i 〉 with three
items. In anchor Zoi = 〈Ii,T

t1
i , p

t1+1
i 〉, Ii, T

t1
i and pt1+1i are

all from target i. Anchor-positive Z+i = 〈I
′
i ,T

t2
i , p

t2+1
i 〉 is

similar to anchor item but with different time stamp. The
underlying principle behind our metric learning is to pull
together samples from the same class in terms of appearance
and motion, while pushing apart those with either differ-
ent appearance or unreasonable motion state. Consequently,
in anchor-negative Z−i = 〈I

′
j ,T

t3
j , p

t3+1
k 〉, I ′j and T

t3
j come

from a target j that is different from i. Note that in this case,
we don’t care about whether pt3+1k is the real position of
T t3j or not.

For experiments, we collect triplet examples from
MOT15 benchmark training set and 6 sequences of the-
MOT16 benchmark training set. The MOT16-02 sequences
in the MOT16 training set are used as validation sets. Overall
a total of 851 identities are used for training and 54 identities
for validating. We generate triplet examples as follows: for
each batch of 100 instances, we select 5 persons and gen-
erate 20 instances for each person. In each triplet instance,
the anchor and anchor-positive are randomly selected from
the same identity, and the negative item is also randomly
selected, but from the remaining identities.

2) ARCHITECTURE
For Metric-Net training, we design a three-channel
appearance-motion model with the shared parameter set.
In each channel, one item in a triplet training example Zi is
mapped into a learned feature space to form a (4096 + H)-
dimensional vector by concatenating appearance and motion
features. A subsequent FC layer is employed for each channel
which brings this concatenated feature to a K = 256 dimen-
sional embedding space by a triplet loss function, where
the embedding feature of Zi is represented by φK (Zi) =
〈φK (Zoi ), φK (Z

+

i ), φK (Z
−

i )〉.The learned embedding space
has the desirable property that the distance between φK (Zoi )
and φK (Z

+

i ) is less than the distance between φK (Zoi ) and
φK (Z

−

i ) by a predefined margin τ , as described by the
following equation:

d(φK (Zoi ), φK (Z
+

i ))− d(φK (Zoi ), φK (Z
−

i )) ≤ τ (4)

where τ is negative.

D. TRAJECTORY ESTIMATION
Another trait of this paper is to propose a deep learning based
trajectory estimation strategy to deal with the limitations of
detectors, including missed detections and imprecise local-
izations. We borrow the idea in [24] where a RNN is learned
to model the temporal dynamics of targets for Bayesian fil-
tering. To this end, we design a Bayesian filtering network
(BF-Net) embedded in the above motion model. The core of
our BF-Net is the hidden state outputted by LSTM, which is
assumed to capture the complete information necessary for
predicting target dynamic model [46] and is given as an input
to the BF-Net.

1) BAYESIAN FILTERING
Bayesian approaches are popular for nonlinear/non-Gaussian
tracking problems. To obtain dynamic state estimation of tar-
gets, this paradigm performs a recursive filtering consisting
of essentially two stages: prediction and update [47].

For notational consistency with most previous literature,
let xt and zt represent the target state and measurement at
time step t , respectively. Suppose the probability distribution
function (pdf) p(xt−1|z1 : t−1) at time t−1 is available, the pre-
diction stage involves using the system model to obtain the
prior pdf of the state at current time t:.

p(xt |z1: t−1) =
∫
p(xt |xt−1)p(xt−1|z1:t−1)dxt−1 (5)

where p(xt+1|xt ) represents the state transition probability
and is defined by the system equation under one orderMarkov
assumption.

When a measurement zt becomes available at time step t ,
the update stage applies Bayes rule to modify the prediction
pdf and obtains the required posterior density of the current
state:

p(xt |z1 : t ) ∝ p(zt |xt )p(xt |z1: t−1) (6)
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where p(zt |xt ) represents observation likelihood defined by
measurement model.

Recursive propagation of the posterior density by conduct-
ing Equation(5) and (6) forms the basis for Bayesian filter-
ing. Traditionally, two of the most widely used techniques
for solving the above equations are Kalman filter [48] and
particle filter [49]. In contrast, we leverage a RNN to resolve
this optimal Bayesian solution.

2) ARCHITECTURE
When applying Bayesian filtering to multi-object tracking,
one is faced with two additional challenges. 1) Before the
state update is performed, it is crucial to determine which
measurement is associated with which target. In [24], this
combinatorial problem of data association is solved by
another LSTM network for each frame. Different from [24],
the focus of our work is to build a robust affinity model.
We achieve the data association inference by Hungarian algo-
rithm, as the yellow dashed rectangle in Fig. 1. 2) The suit-
able belief state representation as well as the explicit knowl-
edge of the distributions are required to estimate the state
of targets [50]. Like many deep learning based approaches,
we bypass the need to specify this knowledge explicitly and
instead use a highly expressive recurrent neural networks to
learn their functions directly from the data. As illustrated
in Fig. 2, our BF-Net consists of two blocks corresponding to
prediction and update, respectively. In each block, a nonlinear
function is learned to that purpose, which will be discussed
next.

a: PREDICTION
Given the dynamics and the filtering distribution already
estimated at the current time, the prior distribution of state
p(xt+1|z1: t ) for the next time step is derived in the absence of
measurements. Specifically, the hidden state (ht ) outputted by
LSTM is fed into a fully connected layer (FC4). Assuming
this hidden state encodes enough information necessary for
predicting motion dynamics of targets, the prior state can be
learned as:

p(xt+1|z1: t ) = F1(θp, ht ) (7)

where F1(·) is the learned prediction function, θp represents
network’s weights. We denote the predicted state as X∗t+1i .

b: UPDATE
Assuming a particular target is associated with a measure-
ment zt+1i at the current time. We train the network to correct
the state distribution based on detection measurement zt+1i ,
predicted state X∗t+1i and the hidden state ht . The posterior
state is obtained as:

p(xt+1|z1: t+1) = F2(θu, ht , x
∗t+1
i , zt+1i ) (8)

whereF2 is the learned update function, θu denotes network’s
weights. The corrected state of target is outputted by FC6.

Note that when missed detections occur, no measurement
is assigned to a particular target. In this case, we cease update
operation and use the predicted state as the output of BF-Net.

3) LOSS FUNCTION AND DATA COLLECTION
We train our Bayesian model directly according to Equa-
tion (5) and (6), which are predicting the target’s position
as well as correcting the position state close to the ground
truth tracks. To that end, we minimize the mean squared error
(MSE) between state predictions and state update and the
ground truth:

LB =
1
M

∑
||x∗ − x̃||2︸ ︷︷ ︸

prediction

+
1
M

∑
||x − x̃||2︸ ︷︷ ︸

update

(9)

where x∗, x are the predicted value and update value, respec-
tively, x̃ denotes the true state, andM is the number of training
samples.

As mentioned in section III (B), for training LSTM based
feature extractor, we have generated about 100K trajectories,
where each sample is a data pair consisting of a trajectory T ti
and a position pt+1j . To learn BF-Net, we randomly select
samples from positive data pairs, each pair consisting of a
N frames length trajectory and its true position pt+1i . Further-
more, for each target we generate a noisy detection from the
true position as described in [24].

4) TRAINING FOR M-NET
So far we have detailed the whole architecture of M-Net,
which can be decomposed into two major components: a
LSTM for feature extracting and a BF-Net for trajectory
estimation. In fact, the two networks can be trained together
as a single one with multiple cost functions provided in
Equation(3)and(9). Experimentally, we learn the parameters
in M-Net by minimizing LV and LB alternately. This not
only enables the two networks to adapt to each other, but also
allows for learning an optimal hidden state representation for
Bayesian prediction and update.

IV. IMPLEMENTATION DETAILS
This section describes details of the proposed method in both
training and testing stage.

A. TRAINING
It is more desirable to use detection bounding boxes formodel
training, since the characteristics of detections and ground-
truths are different and only detection bounding boxes are
available for inference. In training stages we train our models
with detection bounding boxes with associated IDs which are
generated by using the ground-truth boxes and adding noise
to modify the center, width and height of box. To avoid confu-
sion in the training progress, only detections whose visibility
are larger than 0.5 are picked. To this end, we borrow the
idea in [8] and [14] to design an explicit occlusion reasoning
model to compute the visibility for each target. The training
proceeds in the following two steps:
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FIGURE 4. The description of our data inputting strategy to compute the association cost between an already tracked target
and a new detection.

1) A-Net and M-Net are first pre-trained separately for
extracting appearance and motion features, respec-
tively. To learn the A-Net, our VGG model is pre-
trained on the ImageNet Classification datasets, and
then fine-turned on the MOT and person identity
datasets. The learning rate is set initially to 0.0001 and
decreased by 10% every 10000 iterations. We set
the maximum iteration number to 600000, which is
enough to reach convergence. We train M-Net from
scratch. The weights are initialized from zero-mean
Gaussian distributions with the standard deviation 0.01.
The bias terms are set to 0. We use Rmsprop [51]
to minimize the loss. The LSTM is trained with one
layer and 300 hidden units. And the iteration step
is experimentally set to 6 for all data sets. We have
also considered using a more complex net size for
more representation power but could not achieve rea-
sonable performance. The learning rate is set initially
to 0.0003 and decreased by 5% every 20000 iterations.
The maximum number of iterations is set to 200000 for
convergence. In every 1000 steps, we train M-Net with
LV loss for the first 500 steps, and with LB for the next
500 steps.

2) The metric learning is jointly trained end-to-end with
the component A-Net and M-Net. Specifically, we use
our A-Net and M-Net as initialization for our metric
learningmodel whichmakes the training faster and pro-
duces better results. In experiments, the parameter τ ,
the margin of triplet loss function, is experimentally set
to −2.

B. TESTING
In testing stage, the main focus is to build a robust affinity
model to provide the association cost between an already
tracked target and a new detection. We now describe the
details of data input strategy and association strategy used in
this work.

1) DATA INPUT STRATEGY
For a particular tracked target i at time t , we pass its last
image patch (at time t) to A-Net. We also pass its trajectory
T t−1i = [pt−Ni , pt−(N−1)i , · · · pt−1i ] and position pti to M-Net,
where T t−1i is fed as input into the LSTM and pti into
the FC layer. As illustrated in Fig. 4(a), the output of our
affinity model is the embedding feature for target i, denotes
as φK (T ti ).
For a new detection d t+1j , its image patch at time step t+1

is fed into A-Net. As illustrated in Fig. 4(b) and described in
sub-section III(B), we pass T ti = [pt−N−1i , pt−(N−1)i , · · · pti ]
and position pt+1j of d t+1j to M-Net. In this case, the output
of affinity model is φK (d

t+1
j ). The association cost between

d t+1j and target i is defined as the Euclidean distance between
φK (T ti ) and φK (d

t+1
j ):

C(T ti , d
t+1
j ) = ||φK (T ti )− φK (d

t+1
j )||2 (10)

Note that to handle noisy detections, we employ bounding
box regression in A-Net, and the resulted update localization
is given as an input for M-Net.

2) ASSOCIATION STRATEGY
In experiments, we perform two-level association to grad-
ually link detections to longer tracks. In the first round,
the tracked targets and new detections in neighboring frames
are linked only if the association cost is less than a pre-defined
threshold η1 = 2.5. The lower the threshold, the less likely
detections is associated, leading to fewer ID switches but
more fragments. In fact, missed detections, false detections
and unassociated detections will inevitably lead to fragments
during the first round association. To alleviate this problem,
another round of association is taken over those short but
reliable tracks in the first round, and fragment tracks are
gradually reconnected. To reduce latency, we track targets
within a slidingwindow in the second round, and only appear-
ance cue is employed for association. Specifically, the size

27930 VOLUME 7, 2019



J. Xiang et al.: Online MOT Based on Feature Representation and Bayesian Filtering

of sliding window is set to 250 frames and overlap between
neighboring windows is 50%. In this stage, association costs
of fragment pairs are computed by using only appearance
embeddings, and the threshold is set to η2 = 1.5. Overall,
the two-level association strategy will help to improve track-
ing performance in complex scenes.

Once two-level association is performed, we implement
trajectory estimation using BF-Net. The Bayesian filtering
not only corrects the tracks in light of new measurements,
but also estimates the position of targets in the absence of
any detection.

V. EXPERIMENTAL RESULT
In this section, we first describe evaluationmetrics. The effect
of each component in our method, as well as the result of the
ablation study are then analyzed. We demonstrate validity of
the proposed method by comparing with several state-of-the-
art approaches on the benchmark of MOTChallenge. Finally,
we give a further discussion about performance of ourmethod
as well as running time.

A. EVALUATION METRICS
We follow the standard MOT2D Benchmark challenge [16]
for evaluating multi-object tracking performance. These met-
rics include: Multiple Object Tracking Accuracy (MOTA↑),
Multiple Object Tracking Precision (MOTP↑), Mostly Track
targets (MT↑), Mostly Lost targets (ML↓), False Posi-
tives (FP↓), False Negatives (FN↓), Fragmentation (FM↓),
ID Switches (IDS↓) and finally the number of frames pro-
cessed in one second (Hz ↑). For items with (↑), higher
scores indicate better results;and items with (↓) represent the
opposite.

B. EXPERIMENTAL ANALYSIS
In this sub-section, we analyze the performance of each com-
ponent in our model. We conduct experiments on MOT16 to
investigate the validity of appearance cue, motion cue, and
metric learning model. 123 person identities collected from
MOT16-02 and MOT16-11 are used as test samples. Detec-
tions that are considered as true positives for a certain identity
are those whose intersection-over-union with the ground truth
of the identity are larger than 0.5.

1) VALIDITY OF A-NET
We evaluate our appearance model for identity verification
task. Given the true detections for all the test identities,
we randomly select 2000 positive pairs assigned to the same
identity, and 4000 negative pairs assigned to different identi-
ties as our test set. We use the verification accuracy metric,
the ratio of correctly classified pairs. The verification result is
obtained by comparing the L2 distance between the extracted
features and a threshold. The threshold is obtained on a
separate validation dataset by maximizing the verification
accuracy, which is set to 0.5 in experiment. We also report
the verification result of our A-Net in a Siamese architecture
manner (denoted as SA-Net), i.e. an additional FC layer on

TABLE 1. Validity of A-Net.

FIGURE 5. Analysis of different sequence length for LSTM mode on the
MOT16-02 set.

the top of the twin A-Net is employed to model a 2-way
classification.

It can be seen from Table 1 that our A-Net already pro-
duces reasonable verification accuracy. The performance is
further improved by SA-Net from 78.4% to 84.2%. More-
over, we also report tracking accuracy (MOTA) of the both
networks on MOT16-02. While the MOTA result is unsatis-
factory due to considering nomotion cue, it demonstrates that
the A-Net alone can extract meaningful appearance represen-
tation for association task. In addition, the result that A-Net
achieves a good verification accuracy but a poor MOTA has
validated our previous viewpoint that models trained with the
verification loss are ‘‘arbitrary’’ to some degree when applied
in assignment task.

2) VALIDITY OF M-NET
One of the hyper parameters of M-Net is the sequence
length N , which is the number of unrolled time steps used
while training the LSTM model and enables M-Net being
capable to memorize long term dependencies of position cues
across time. We investigate the impact of this parameter.
Fig. 5 shows theMOTA score under different sequence length
for our LSTMmodel.We can see that increasing the sequence
length from 1 to 6 positively impacts the MOTA, and then the
performance saturates after 6 frames and the MOTA slightly
decreases. It can be explained by the vanishing gradients.
Although the architectures of LSTM provide mechanism to
deal with the issue of gradient vanishing to some extent,
it does not work well in trajectory modeling problem where
long-term occlusions occur frequently.

3) VALIDITY OF BF-NET
To demonstrate the functionality of Bayesian filtering in
M-Net, we perform experiments on simulated data. Fig. 6
shows an example of tracking result on synthetic data. Four
targets in different colors are generated in a rather cluttered
environment. The dash and solid lines represent the ground
truth trajectories and filtering results, respectively. The filled
rectangles are detections. It is observed from Fig. 6 that detec-
tions usually deviate far from their ground truth, and rugged
curves will be formed accordingly if connecting detections
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FIGURE 6. Tracking results of Bayesian filtering on synthetic data. The
filled rectangles denote the detections, the dash and solid lines represent
the ground truth trajectories and filtering results, respectively. And the
colors indicate different targets.

of a particular target. In contrast, our Bayesian model can
be viewed as performing ‘‘intelligent smoothing’’, yielding
natural and smooth trajectories (solid lines) that could better
fit the ground truth (dash lines).

C. ABLATION STUDY
We investigate the contribution of different components in
our framework with detailed tracking metrics on MOT16-
02 dataset. Several variants of our algorithm with the same
deep architectures are tested. ‘‘T’’ and ‘‘V’’ mean testing
with the triplet loss and verification loss, respectively. ‘‘BR’’
and ‘‘BF’’ represent testing with bounding box regression
and Bayesian filtering, respectively. We denote appearance
cue and motion cue by ‘‘A’’ and ‘‘M’’, respectively. The
evaluation results are presented in Table 2 and summarized
as follow:
• The appearance cue is the most important one. It can
be explained by the fact that representations of people
appearance can be learned for varying viewpoint and
motion, while less easy to achieve by motion models
especially for monocular video sequences due to the
complexity of motion. Note that similar conclusions are
also reported in [27] and [28].

• The motion cue helps to increase the performance.
In highly crowded scenes with clutter and occlusions,
our LSTM based motion model can facilitate localiza-
tion of the targets, while appearance is usually sensitive
since the observation likelihood of occluded targets may
decrease drastically. In this case, both cues are comple-
mentary to make a better performance.

• The triplet loss outperforms the verification loss by a
large margin on the available datasets in the terms of
MOTA (23% of A +M + T versus 17% of A+M+V).
The result also echoes our claim that using triplet loss
to optimize the embedding space is more suitable for
retrieval or assignment task.

• The bounding-box regression helps to improve tracking
metrics. In fact, we employ bounding-box regression

TABLE 2. Analysis of our framework using a different set of components
on MOT16-02. (A)Appearance, (M)Motion, (T)Triplet loss, (V)Verification
loss, (BR)Bounding box regression and (BF)Bayesian filtering.

TABLE 3. Ablation study on the generated 2DMOT2015 validation set.
(A)Appearance, (M)Motion, (T)Triplet loss and (BR)Bounding box
regression and (BF)Bayesian filtering.

to handle noisy localization of detected objects since
the motion based association relies on accurate object
localization. Compared with A+M+T, the architecture
of A +M + T + BR achieves better results in terms of
multiple metrics, including MOTA (23.5% versus 23%),
MOTP (80.3% versus 74%), FP (147 versus 188),
FN (13464 versus 13542) and IDS (48 versus 53).

• The Bayesian filtering network (BF-Net) is learned to
model the temporal dynamics of targets, and then is
utilized for recursive prediction and update. In this way,
the trajectory estimation is implemented. It can be seen
from Table 2 that our full model (A+M+T+BR+BF)
outperforms all other variant versions in all evaluation
metrics, which clearly suggests that each components in
our method is helpful for performance gains. Moreover,
since BF-Net reduces identity switches significantly
(IDS = 33), it yields preferable visual tracking results.

We also conduct ablation study on 2DMOT2015 val-
idation set which includes TUD-Campus, ETH-Bahnhof,
ADL-Rundle-8 and KITTI-17. As illustrated in Table 3, con-
clusions consistent with the above discussion could be drawn.

D. COMPARISON WITH THE STATE OF THE ART
Our full model method(A + M + T + BR + BF), denoted
by TripT+ BF, are compared with the best published results
on the MOT16 test set. The quantitative results presented
in Table 4 show that onMOT16, our method achieves the best
MOTA,MOTP,ML and FN among all online approaches. Our
method even outperforms several offline methods [25], [31],
[52] that have access to the whole set of future detections
to reason on the data association step, in terms of most
metrics except IDS and HZ. The top one tracker in Table 4
is LMP [28], where complex graph-cut association strategy
is employed in a batch of several frames and a post trajectory
estimation step is used to handle missing detections. In con-
trast, we adopt a simple linear assignment strategy, which
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TABLE 4. Result on the MOT16 test dataset. Best in bold, second best in red, our method is denoted by TripT+BF.

TABLE 5. Result on the 2DMOT2015 test dataset. Best in bold, second best in red, our method is denoted by TripT+BF.

is local optimal and whose goal is to match the tracks with
detections at a time frame. We speculate that the ranking
first performance of LMP is partially attributed to the more
sophisticated and delicate optimization strategy, which can be
utilized in our future work to obtain better tracking results.

We also present performance of TripT+BF on 2DMOT2015
dataset in the MOTChallenge benchmark. The quantitative
results are presented in Table 5, which shows that TripT+BF
is very competitive with the state-of-the-art methods. Our
proposed method not only achieves the second best tracking
accuracy in terms of MOTA, but outperforms all offline
methods in Table 5.

E. DISCUSSION
First, we give an analysis between our method and some
relevant approaches. AMIR [27] is themost relevant approach
to ours where appearance, motion and interaction cues are
merged for affinity model and Hungarian algorithm is used
for association. On MOT16 test sets our algorithm outper-
forms AMIR in most evaluation metrics in Table 4. Partic-
ularly, we obtain better MOTA (48.3 versus 47.2), MOTP
(76.7 versus 75.8), MT(15.4% versus 14%) and IDS (543 ver-
sus 774). This means that our method can track more targets
(MT) with higher tracking accuracy (MOTA), tracking pre-
cision (MOTP), as well as less number of identity switches
(IDS), i.e., the performance of our association is more robust.

We attribute this excellent property to the proposed frame-
work of learning feature representation and distance met-
ric jointly, which could discriminate targets effectively in
crowded scene where occlusions occur frequently, especially
in MOT16 dataset. Similar conclusions can also be found
in Table 5 on MOT15 test sets, where we have comparable
tracking accuracy (MOTA) with better tracking precision
(MOTP), as well as less number of identity switches (IDS).

Another two relevant approaches are Quad-CNN [31]
and CNNTCM [30], in which the deep metric learning are
also adopted in MOT framework. Compared with Quad-
CNN [31] that employed the quadruplet loss and bound-
ing box regression, our method obtains an improvement in
MOTA (37.1% versus 33.8% in MOT15, and 48.3% versus
44.1% in MOT16). Our MOTA outperforms CNNTCM by a
relative large margin(37.1% versus 29.6% in MOT15). The
underlying reasons for this improvement are twofold. First,
we design a triplet loss to combine appearance and motion
cues. Second, instead of CNN used in Quad-CNN [31] and
CNNTCM [30], LSTM networks are utilized in our method
to encode targets dynamics, which are particular helpful to
capture spatial and temporal dependencies in data sequences.

Finally, we investigate the impact of Bayesian filtering net-
work on tracking performance. We compare TripT+BF with
its variant denoted as TripT (i.e. without BF-Net). Table 4
and Table 5 have shown that by adding BF-Net for trajectory
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estimation, evident performance gains are achieved in most
metrics, especially inMOAT (37.1%versus35.7% inMOT15,
and 48.3% versus 48.1% in MOT16), MOTP (72.5% versus
71.7% in MOT15, and 76.7% versus 75.5% in MOT16), IDS
(580 versus 655 in MOT15, and 543 versus 563 in MOT16).
MOTA, MOTP and IDS are the three metrics that most
directly depict the quality of tracking and association [62].
In realistic scenarios, lower IDS number often implies better
capability to handle occlusion, which is a desirable property
in online multiple object tracking. The above consistent gains
on both MOTChallenge test sets have demonstrated that by
using BF-Net, the proposed trajectory estimation strategy
can deal with detector’s defect and indeed improve tracking
performance.

F. RUNNING TIME
We implemented our framework in TensorFlow on a server
with a 2.40GHz CPU and a single GTX 1080Ti GPU.
The overall tracking speed of the proposed methods on
MOT15 and MOT16 test sequence is 1.0 and 0.5 HZ respec-
tively, excluding the detection step. The results are shown
in Table 4 and Table 5, we can see that the proposed method is
at least comparable with the state of the art in running time.
Note that speed-up can be achieved by further optimization
of the codes.

VI. CONCLUSION
In this work, we have proposed a robust multi-object tracking
method based on a novel affinity model for data association
and a trajectory estimation strategy to deal with detector’s
defect, both are investigated within a unified deep archi-
tecture. To learn more discriminative feature representation,
appearance cue and motion cue are extracted separately and
are then fused with a triplet loss function in an end-to-end
deep metric learning manner. To overcome detector’s limita-
tion, we design a RNN based Bayesian network, which can be
utilized to perform classical Bayesian filtering for explicitly
estimating targets state and thus for trajectory estimation.

Experiments in the challenging MOT benchmark have
proved the effect and usefulness of the proposed method.
Since we have used a simple linear program algorithm for
association, more delicate and effective optimization strat-
egy would be beneficial to further improve the tracking
performance.
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