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ABSTRACT In approximate processing on stream data, most works focus on how to approximate online
arrival data. However, the efficiency of approximation needs to consider multiple aspects. Generally,
customers submit their requests with specific quality requirements (e.g., maximum error). This raises a
critical problem that online quality control is required to meet the desired quality of service. Since the
continuous arriving data may not be entirely stored and needs to be processed immediately, it brings the
difficulty of acquiring knowledge online which significantly affects the quality of results. To address these
problems, we present an online adaptive approximate processing framework with a delicate combination
of data learning, sampling, and quality control. We first design an online data learning strategy for stream
data. With the real-time learning results, we propose a dynamic sampling strategy that switches to different
sampling methods based on the change of the load. Finally, we present a double-check error control
strategy to monitor and correct large errors. Each operation module is correlated through online learning and
feedback. The experiments with both synthetic and real-world datasets show that the proposed approximate
framework is not only applicable to different data distributions but also provides a customized error control.

INDEX TERMS Approximate computing, online stream processing, sampling, error control.

I. INTRODUCTION
In online stream data processing, one can transform contin-
uous raw data into valuable information, which is widely
applied to various fields including online query analysis [1],
network traffic monitor [2], and sensor-based measurement
networks [3]. Among them, data continuously arrives and
users are concerned about real-time results, such as detecting
anomalies within a specific time period when monitoring
network traffic.

However, explosive data volume and real-time require-
ments make it challenging to meet the desired Quality
of Service (QoS). In this case, approximate computing
as an effective solution paradigm, can be applied to
obtain results quickly while ensuring the specified level
of accuracy [4], [5]. Combined with distributed processing
models (e.g., MapReduce [6], Spark [7]), approximate com-
puting is attracting more attention to achieve low latency and
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efficient resource utilization. For instance, when monitoring
network flows online, it is not necessary to compute 100%
accurate traffic status. The approximate computing can be
used to obtain an estimated result, which is often good enough
for the analysis of relative throughput. In addition, the use of
approximate computing can significantly improve the overall
processing performance (also resource utilization).

The most common approximate technique applied in
large-scale computing is sampling, which has been exten-
sively adopted in distributed data analytics [7]. With the
data knowledge (e.g., data distribution), sampling-based
approaches can efficiently process large datasets by comput-
ing a subset of data items. However, existing works focus
on the choice of approximate methods. To ensure efficient
approximate processing, there are three critical problems that
need to be considered comprehensively:

• Data predictability. General sampling methods are
based on the known or predictable data knowledge, such
as data distribution, maximum, minimum. Most existing
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works assume the characteristics of arriving data can
be obtained from historical logs [8]. The preprocessing
operation is used to make preparation for data sam-
pling. However, these strong assumptions may lead to
inconsistent prediction that produces ineffective sam-
ples for processing online stochastic stream data. Since
online stream data continuously arrives without being
stored and the data knowledge is unknown in advance.
Compared with offline data sets, it is difficult to make
effective cognition for real-time stream data. Different
from assuming a priori knowledge in existing works,
we develop an online data learning strategy to better
adapt to the dynamic change of stream data.

• Customer-specific requirements.Generally, users sub-
mit the streaming query to the system with spe-
cific requirements. These requirements refer to either
desired result accuracy, query response time or available
computing resources. Different users and applications
have different requirements [9]. Approximate comput-
ing should not only improve processing performance,
but also ensure the output meets a prescribed level of
quality. To adapt to dynamic stream data, the designed
sampling strategy should be configurable to satisfy dif-
ferent user/system requirements.

• Online error control. In real-time stream applications
where data is not being stored, it is needed to check
the output to ensure accuracy so that the unsatisfactory
results can be corrected in a timely fashion. Currently,
main-stream studies tend to provide an error guarantee.
In [8], Yan et al. proposed an error-bounded stratified
sampling method to approximate big sparse data. The
error bound denotes an interval where the real value
falls in with a high possibility (known as confidence).
However, due to the probabilistic nature of sampling,
it is possible that approximate computing produces
unacceptable errors, which will affect the final out-
put quality and reduce customer satisfaction [9], [10].
To make effective output quality, we need to design
online strategies to control approximate results for cus-
tomized requirements.

TABLE 1. Comparison of different approximate frameworks.

As shown in Table 1, several existing frameworks has been
proposed to address these problems. However, EARL [10],
BlinkDB [4] and ApproxHadoop [19] all aim to address the
stored dataset instead of online stream data. EARL utilizes

a bootstrap method to estimate the accuracy, in which the
number of resamples may be large so that it will result in
more overhead. IncApprox [7] is designed to process online
arriving stream data but it also does not consider the problems
of online data learning and error control.

Taken together, we propose an online adaptive approxi-
mate stream processing framework with delicate combination
of online data learning, sampling and quality control. In the
framework, we design three strategies to tackle these prob-
lems: an online data learning strategy, a dynamic sampling
strategy, and a customized error control strategy. Online data
learning is to acquire the knowledge of data distribution,
which is dynamically updated to fit the change of stream
data. Then the dynamic sampling strategy performs sam-
pling taking into account the fluctuating stream rates. With-
out requiring application-specific approximate algorithms,
the sampling module can execute a self-adjusting compu-
tation. Furthermore, the error control strategy leverages an
output-basedmethod to detect output and find errors that need
to be corrected.

The design goal is to adaptively approximate dynamic
real-time stream data even without prior data knowledge and
monitor output to implement online quality control. With
these strategies, our proposed approximate framework can
effectively process online stream data and adaptively meet
different QoS requirements. Each component is correlated
through continuous learning and feedback to better adapt
to the dynamic change in stream computing. Additionally,
we give some improvements to optimize the framework to
maintain output quality and reduce the overhead of error
control. Our contributions of this paper are as follows:
(1) We propose an online data learning strategy with a

triggered weight update strategy. The scheme can ana-
lyze the constantly arriving data to make a weighted
stratification for efficient sampling.

(2) We present a dynamic sampling strategy that is able to
automatically switches to different sampling methods
based on the varying stream rates.

(3) We design a customized error control strategy, which
makes an online monitoring for the output errors. The
strategy incorporates output’s feedback to detect and
timely correct large errors.

(4) We conduct extensive experiments with synthetic and
real-world data to evaluate and validate the effec-
tiveness of our proposed approximate processing
framework.

The remaining of the paper is organized as follows.
Section 2 gives a design overview of the approximate frame-
work. Section 3 details the design of online approximate
procedure for stream data including online data learning and
dynamic sampling strategies. An online error control strategy
is introduced in Section 4. Enhancements for the framework
is presented in Section 5. Experimental results are shown in
Section 6. We discuss related work in Section 7 and conclude
the paper in Section 8.
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FIGURE 1. A general approximate processing framework over online data streams.

II. OVERVIEW
Figure 1 depicts a high-level block diagram of the approx-
imate framework. Following existing works [7], our com-
putation model for stream processing is based on sliding
windows. Given specific user requirements as an input item,
the framework makes approximate processing with online
data learning and error monitoring. As shown in Figure 1,
there are three main components.

A. DATA LEARNING STRATEGY
In this paper, we mainly consider stratified sampling method
because it can produce more representative samples with the
knowledge of data distribution [8]. To ensure efficient sam-
pling, we first design a stratification strategy for the online
learning of knowledge, which can be performed without prior
knowledge. Based on the current value range obtained online,
the stratification process leverages the binary tree structure to
compute the appropriate sampling weights for each stratum.
We also present a weight update strategy to dynamically
adjust weights, so as to better adapt to the varying charac-
teristics of the stream data. The learning strategy aims to
provide preliminary knowledge and make preparation for the
subsequent sampling operation.

B. DYNAMIC SAMPLING STRATEGY
We propose a dynamic sampling strategy (DSS), which con-
siders the effect of varying stream rates on the current work-
load. Based on stratification results, a basic stratified random
sampling scheme (bSRS) is designed to get representative
samples. Then we dynamically switch to different sampling
methods based on the comparison of real-time stream rate
rs and the low rate threshold Tsl . There is a switch opera-
tion: execute a random sampling and bSRS when rs < Tsl ;
otherwise, execute two bSRS methods. Executing sampling
twice is used to compare estimated results in the following
error detection module. Moreover, as shown in Figure 1,
if rs < Tsl , the framework will send a feedback to inform
the stratification operation to update weight.

TABLE 2. Frequently used notation.

C. CUSTOMIZED ERROR CONTROL STRATEGY
With the result generated by DSS, we design an online
error control component to assess the relative quality of
approximate output. Here error control includes two parts:
error detection and correction. By theoretically analyzing the
probability of a large error, the detection module compares
the output results of two sampling methods. If large errors
are detected, the correction module utilizes the re-sampling
method to correct the output. Moreover, the outputs are
detected in a double-check mode. If the output of the cur-
rent window is first detected, the correction decision is to
re-sample data. Otherwise, we also need to adjust weights
before re-sampling. The error control module continuously
monitors output and provides a feedback to the data learning
or sampling module as shown in Figure 1. Due to the diffi-
culty of acquiring exact values for stream data, it is efficient
to evaluate output quality by comparing two sampling results.

III. DESIGN OF APPROXIMATE MODULE
In this section, we present the online approximate process-
ing module including online data learning and dynamic
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sampling strategies. We use the stratified sampling method
to approximate stream data. Here, the learning weight infor-
mation refers to the sampling weight of each stratum [11].

A. ONLINE DATA LEARNING
Firstly, we design a stratification strategy to learn data
knowledge for online arrival data. It can be seen as a prepro-
cessing operation. The online data learning adopts a divide-
and-conquer method. Considering the data distribution is a
critical factor for online stream applications, the stratification
strategy gradually divides the stream according to the value
range of data. Then at the end of the partition, each sub-range
can be associated with a weight, which will be merged as the
final learning result.

1) DATA RANGE UPDATE
Before stratification, the value range of stream data (min,
max) need be set. To get the value range online, we uti-
lize the idea of the invalid timer to set the value range.
In network routing protocol, the invalid timer specifies how
long a routing entry can be in the routing table without
being updated [12]. For real data stream, the varying stream
means that the value range may change over time. Therefore,
to adapt for the online stream data, we first present a dynamic
range update scheme based on a timer.

To explain the process, we use the minimize value as an
example and the maximum value is set in the same way.
There are two parameters: the learning minimummin and the
observed minimummino that is updated based on the arriving
data. Initially, a timer is empirically set and the value range
can be set based on historical logs. When data arrives and
the timer isn’t expired, we compare the value of min and
the update observed minimum mino as follows: if detecting
mino = min, the timer is reset; ifmino < min, then we update
minwithmino and reset the timer.Moreover, when the timer is
expired, reset and update min with mino, the recent minimum
value. Through the control of the timer, the value range can
be obtained online and dynamically updated.

2) STRATIFICATION STRATEGY
With the current value range, the method needs to divide the
arrival data set into two or more strata while each stratum
selects different and appropriate weights. Figure 2 shows we
use a binary tree structure to express the process of weight
computation. At first we set the average estimated by random
sampling as the reference value, v̂ref , which is the comparison
sample in the following stratification phase. For random sam-
pling, the sampling weights from the minimum to maximum
at this phase are the same.

We denote the tree height of stratification as L. In the
first level, data items are divided into two strata according
to their value ranges, (min, mid) and (mid , max). With the
value of v̂ref , we first analyze the weights of these two strata,
denoted as ω1

11 and ω1
12. After stratification, the average

value of each stratum can be obtained based on data items
from each stratum, denoted as v̂111 and v̂

1
12. According to the

FIGURE 2. The process of stratification with the binary tree.

sampling theory [11], the definition of the sampling weight
is the reciprocal of the inclusion probability: ωi = 1

πi
, where

πi is the probability that unit i is included in the sample and∑
πi = 1. If two strata have the same inclusion probability

(π1 = π2 = 1
2 ), the overall average value is

v̂ref =
1
2
v̂111 +

1
2
v̂112 (1)

where v̂ref is computed as a reference value to adjust the
weights of strata. Compared with the initial value v̂ref ,
the weight of each sub-range (ω1

11 or ω1
12) can be updated.

Denote β as the proportion tuning parameter and we use
β to adjust the values of ω1

11 and ω1
12. Through comparing

v̂111 and v̂
2
11, there are:

(1). If v̂ref ≥ v̂11, set (
1
2 + β)v̂

1
11 + ( 12 − β)v̂

1
12 = v̂ref where

ω1
11 =

1
1
2+β

and ω1
12 =

1
1
2−β

.

(2). If v̂ref < v̂11, set (
1
2 − β)v̂

1
11 + ( 12 + β)v̂

1
12 = v̂ref where

ω1
11 =

1
1
2−β

and ω1
12 =

1
1
2+β

.

Conditions (1) and (2) correspond to different proportions
of two sub-ranges. Hence, the weight values at these two
strata can be modified based on conditions (1) and (2).
As shown in Figure 2, each stratified value range is further
divided into two child nodes with smaller value ranges in
the next level. We use the first level as an example to intro-
duce the stratification method. Then we use Algorithm 1 to
summarize the stratification strategy. For each child node,
a smaller stratum will get a new weight value using the same
method as described in the first level. The modified weights
at the first level will be set as the reference weights of the
next stratified sampling until the partition ends. Following
the example, in the second level, v111 is used to compare the
average estimated by random sampling. Then we estimate
ω2
11 andω

2
12 based on the estimated value of each smaller stra-

tum v̂211, v̂
2
12. The computation of the tree height L depends on

the difference between the maximum and minimum value of
the sub-range. During the weight computing phase, a weight
learning threshold Tω is needed to judge whether to end the
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Algorithm 1 Stratification strategy
1: for k ≤ L − 1 do
2: Divide the value range of each node (level k) into two

child nodes with smaller value ranges in the next level
(level k + 1);

3: set v̂ref as the average estimated by random sampling;
4: for i = 1 to 2k do
5: if v̂ref ≥ v̂ki1 then // If dividing the right child,

we compare v̂ii2 with v̂ref .
6: compute β as ( 12 + β)v̂

k+1
i1 + ( 12 − β)v̂

k+1
i2 =

v̂ref ;
7: ω1

i1 =
1

1
2+β

, ω1
i2 =

1
1
2−β

;

8: else
9: compute β as ( 12 − β)v̂

k+1
i1 + ( 12 + β)v̂

k+1
i2 =

v̂ref ;
10: ω1

k1 =
1

1
2−β

, ω1
k2 =

1
1
2+β

11: end if
12: end for
13: end for

process of weight update. Tω can be obtained by evaluating
the difference of weights before and after the update. Even-
tually, at each phase, the weights are modified as stream data
constantly arriving.

In the end of stratification, our proposed divide-and-
conquer method partitions the value range of data items into
m strata, Si = [ai, bi] , i = 1, · · · ,m, which corresponds to
the leaf nodes of the tree, and each stratum owns a weight, ωi.
With these stratified weights, a sampling scheme can be
constructed to process the real-time data stream. When the
value range is changed over time, we can make new stratifi-
cation with the updated range to generate more representative
samples for the recently arriving data.

B. DYNAMIC SAMPLING STRATEGY
The approximate processing module shown in Figure 1
describes a complete execution for online data streams.
The current stream rate is used to trigger the switch of
approximate methods. The designed strategy considers the
change of the load which depends on fluctuating stream rates.
We denote Tsl as the low threshold of the data arrival rate, and
the system can set the value of Tsl according to its processing
capacity. In the approximate module, we design a dynamic
sampling strategy (DSS) that switches to different sampling
methods to avoid adding extra overhead during the peak of
data arrival.

We first introduce a basic stratified sampling algorithm that
will be used in DSS. Algorithm 2 describes a basic strati-
fied reservoir sampling algorithm (bSRS). In the algorithm,
we leverage a hash mapping method to stratify the arriving
stream. Based on the weights obtained from the stratification
strategy, it allocates the sample sizes for each stratum and
then fills each sample set using a conventional reservoir
sampling (CRS) [15]. When the sub-sample set is full, we use

Algorithm 2 A Basic Stratified Reservoir Sampling
Algorithm (bSRS)
Input: a real-time data stream, sample size n, weight set {ωi}
1: sample← ∅;
2: if the set {ωi} is updated then
3: Update the input ωi;
4: end if
5: for each current processing window do
6: Compute the sub-sample size ni in each stratum Si

according to input ωi and n;
7: for the arriving item belonging to stratum Si do
8: if (|sample[i]| < ni) then
9: Add the item to sample[i];
10: else
11: p← ni

|Si|
;

12: Replace a random item from sample[i] with a
probability p;

13: end if
14: end for
15: end for

a probability ni
|Si|

to accept or reject the item and it is con-
sistent in each stratum to ensure equal inclusion probability.
If accepted, we replace a randomly selected item from the
sub-sample set with the arriving item. To compute the sample
size as an input, we can adopt existing resource prediction
models [13], [14]. They model a virtual function that con-
verts the user-specified query budget (computing resources,
response time) to the number of items to be processed (sample
size).

The proposed algorithm bSRS can get a representative
sample of stream data and the dynamic switching can quickly
accommodate the fluctuation of data streams. It can avoid
extra overload at the peak of data streams since using random
sampling consumes more resource than stratified sampling.
To introduce DSS, we first use an example to illuminate the
setting of Tsl . Assume the scale of system process capacity
is 2000. If the estimation result shows when the real-time
data volume is large than 500, executing random sampling
will increase the overhead of data processing. Then we can
set the switching threshold of dynamic sampling strategy
as 500 that can be converted to the rate threshold Tsl . The
dynamic sampling strategy (DSS) is described as follows:
(1) If rs < Tsl , we select to perform both the random

sampling and bSRS algorithms concurrently and then
give a feedback to the stratification module.

(2) If rs ≥ Tsl , execute two bSRS sampling algorithms
concurrently.

(3) Return the result to the error detection module.
Executing sampling twice aims to provide the result com-

parison of two sampling methods, which is used to detect the
probability of error occurrence in the design of the online
error control strategy (Section IV). When the stream rate is
low, the switch to different sampling methods is to present
feedback for weight adjustment for the stratification phase

VOLUME 7, 2019 25127



X. Wei et al.: Online Adaptive Approximate Stream Processing With Customized Error Control

when the current load is relatively small. If the comparison
result has a big deviation, the data learning module will be
triggered to update weights (Section V-A).

Next, we analyze the probabilistic nature of sampling
according to the probability theory [11]. Assume we compute
an AVG value for stream data and denote the approximate
value as ˆ̄v, the exact value as v̄. According to the Hoeffding
inequality [16], the estimated error bound is no more than ε:

P(
∣∣∣ ˆ̄v− v̄∣∣∣ ≥ ε) ≤ 2e

−
2nε2

(bi−ai)
2 (2)

where ai and bi are lower and upper bounds of values. We use
Eq. (2) to estimate error bound when given sample size n.
This probability can be interpreted as the level of significance
α (probability of making an error) for a confidence interval
around ˆ̄v of size 2ε, that is:

α = P(v̄ /∈
∣∣∣ ˆ̄v− ε, ˆ̄v+ ε∣∣∣) ≤ 2e

−
2nε2

(bi−ai)
2 (3)

where the confidence δ = 1− α. We analyze the probability
to explain the cause of error control in the next section. Then,
the estimated error bound is:

ε = (bi − ai)

√
1
2n

ln
2

1− δ
(4)

If the sample size n is larger than the total size, we will
consider the whole data set for sampling. Based on the above
discussion, next we make a quantitative analysis for the supe-
riority of the proposed stratified sampling method.
Theorem 1: Given a sample size n and confidence δ, theo-

retically the error bound εS generated from bSRS and ε0 from
random sampling satisfies: εS

ε0
≤

1
√
m

Proof: When random sampling, according to Eq. (4),

ε0 = (bi − ai)
√

1
2n ln

2
1−δ .

When using the improved stratified sampling method,
assume Si contains Ni values that corresponds to the
sub-sample size ni with its error bound εi. We have:

N = N1 + · · · + Nm (5)

n = n1 + · · · + nm (6)

εS =
N1 · ε1 + · · · + Nm · εm

N
(7)

Next, we extend Eq. (7) using the Hoeffding inequality and
weight values:

εS =
(bi − ai)
mN

[
N1

√
ω1

2n
ln

2
1− δ

+· · ·+Nm

√
ωm

2n
ln

2
1− δ

]

=
(bi − ai)

m

√
1
2n

ln
2

1− δ

(√
1
ω1
+· · ·+

√
1
ωm

)
(8)

The sampling theory defines the definition of the sampling
weight is the reciprocal of the inclusion probability: ωi = 1

πi
,

and πi =
ni
n . It can be seen that the proportion of Ni to N is

nearly consistent with that of ni to n. Therefore, we combine

Eq. (4) and Eq. (7) to model the relation of ωi and n. Then
when comparing εS with ε0:

εS

ε0
=

1
m

(√
1
ω1
+ · · · +

√
1
ωm

)
(9)

Since there is the equation 1
ω1
+ · · · +

1
ωm
= 1, with the

principle of inequality we have:√
1
ω1
+ · · · +

√
1
ωm
≤
√
m (10)

Combining the Eq. (9) and Eq. (10) we finish the proof. �
Theorem 1 makes quantitative analysis that sampling with
the random method need more data than bSRS when given
an error bound. In DSS, We use the low threshold rate rs as a
criteria to judgewhether to switch the samplingmethod. If the
current stream rate rs < Tsl , we perform both the random
and bSRS algorithms. Hence, the setting low threshold rate
affects the total sample size. The smaller the low threshold
rate is, the smaller the total sample size needed is.

IV. CUSTOMIZED ERROR CONTROL STRATEGY
Although these approximate techniques can provide signifi-
cant performance gains, it is still difficult and expensive to
monitor the output quality, especially for online stream data.
Existing work [10] shows that an exact bootstrap for accuracy
estimation needs

(2n−1
n−1

)
resamples where n is the sample size.

Moreover, different applications also have different demands
for output errors: some requests are submitted with the con-
straint of maximum error while some may concern with the
average error.

Currently, most research concentrated on how to obtain
effective approximated results with bounded errors. In the-
ory, the bounded error is given under the condition that the
exact result with at least δ-probability falls in the confidence
interval. Generally, the error guarantee given by the error esti-
mation theory showed in Equation (4) represents the overall
average error value. Owing to the probability of sampling,
it may be that the output error exceeds the specified error
bound (v̄ /∈

∣∣∣ ˆ̄v− ε, ˆ̄v+ ε∣∣∣), which has been explained in

Eqs. (2) and (3). In this case, the accuracy requirement of
output results may still be unsatisfactory from customers’
view. Thus, in order to not affect the final output quality,
we need to reduce these unacceptable results. In particular,
it is also necessary to online check the output for real-time
stream processing.

With different user requirements, we present a customized
error monitoring strategy to detect and correct approximate
outputs. First, we design a double-check error detection
strategy is designed to assess the relative quality of the
approximated output results. The main idea is to analyze the
probability of occurrence of large errors through detecting
output results.

Error detection To evaluate and manage the output qual-
ity, it is important to ensure the error detection model has
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low overhead. In our design, we leverage multiple samples
generated in the sampling stage, to evaluate the output quality.
Relative to comparing with the total dataset, it is light-weight
to make comparison within different samples. In the follow-
ing, we consider the comparison between two samples.

Assume the above approximate module simultaneously
generates two samples, denoted as S1 and S2, with two
estimate values, ˆ̄v1 and ˆ̄v2. According to the Eq. (3), with
the confidence δ the estimation’s error

∣∣∣ ˆ̄v1 − v̄∣∣∣ or ∣∣∣ ˆ̄v2 − v̄∣∣∣
satisfies: ∣∣∣ ˆ̄v1 − v̄∣∣∣ ≤ εS1 , ∣∣∣ ˆ̄v2 − v̄∣∣∣ ≤ εS2 (11)

where v̄ is the exact value and εS1 , εS2 are the corresponding
error bounds for samples S1, S2, respectively. Then we use
Eq. (11) to concatenate two estimate results. To eliminate the
limitation of the unknown of exact results, we consider the
sum of two estimation’s errors:∣∣∣ ˆ̄v1 − v̄∣∣∣+ ∣∣∣ ˆ̄v2 − v̄∣∣∣ ≤ εS1 + εS2
H⇒

∣∣∣ ˆ̄v1 − v̄∣∣∣+ ∣∣∣v̄− ˆ̄v2∣∣∣ = ∣∣∣ ˆ̄v1 − ˆ̄v2∣∣∣ ≤ εS1 + εS2 (12)

For simplicity, let 1 = εS1 + εS2 represent the error devia-
tion that can be obtained from user requirements. We use the
value of1 as a criterion to estimate the probability of a large
error. For the maximum error constraint, if the comparison
result does not satisfy Eq. (12), then the detection module
will report an error. For the average error, the module will
compute the average of multiple comparison results [4].

We assume the sampling phase produces the same
error-bound samples, which corresponds to the equation
εS1 = εS2 = εS .
Error correction If the error detectionmodel detects unac-

ceptable errors, we simply utilize the re-sampling method to
correct the output. Since it is feasible to re-sample the data
of the current processing window, the output quality can be
improved by timely correcting unsatisfactory results.

A. ERROR CONTROL STRATEGY
Next, we propose a scheme for the output-based error detec-
tion and correction as shown in Figure 3. Our proposed
approximate schema first generates two samples for compari-
son, and then output the computed values with their estimated
error bounds. The computed results and corresponding error

FIGURE 3. The error detection and correction strategy.

bounds are the inputs of error detection module. For the max-
imum error, we need to detect the output result of each win-
dow. If the difference between two estimated values is larger
than1, we can assure that at least one of the two samples pro-
duces a large error. For the average error, we need to compute
the average value of comparison results generated bymultiple
windows within the given time period. As shown in Figure 3,
|window| denotes the number of detection windows. Once
there are unsatisfactory results, the error detection module
will give a feedback to the Dynamic Sampling Switch (DSS)
module. The feedback notifies to re-sample data in the current
stream processing window to make correction.

The process of double-check error detection process aims
to provide quality-assurance output. Whenmonitoring a large
error, we will judge whether it is detected for the first
time. If so, the decision is to re-sample the data. Otherwise,
the module will feedback to the stratification strategy for
weight adjustment. When the error is detected for the second
time, it means the large error cannot be well corrected only
through re-sampling, and theweights of sampling also need to
be improved to generate more accurate results. The process is
described in Figure 3 that is the refinement of the error control
module shown in the right of Figure 1. Before re-sampling,
we delete the leaf nodes in the stratification binary tree
and go up to select their parent nodes as the reference of
sampling weights. Here the weights obtained by leaf nodes
are considered inappropriate. The new stratification can be
implemented by the weight update strategy discussed in the
next section.

Taking both re-sampling and weight adjustment into
account, we can assure the output quality with a higher prob-
ability. Moreover, the error detection strategy cannot only
monitor output quality for error detection and correction, but
also ensure low extra overhead. As previously mentioned,
executing two sampling schemes concurrently aims to update
weights and compute the value of 1. The results of error
detection are beneficial to update weights for better approx-
imate outputs in turn. These proposed modules correlate to
each other and the whole approximated processing frame-
work will be well trained so that it can be used to directly
process subsequent real-time stream data.

In the following, we theoretically analyze the improvement
of output quality when using the error correction strategy.
Denote the confidence values of the two sample sets as δ1, δ2.
The error detection module can directly output if the actual
approximated results both have an error value within the
estimated error bound, which is formulated by Eq. (12). Oth-
erwise, the error detection module switches to re-sampling
process when the results cannot satisfy Eq. (12). In theory,
based on the given confidence values, when assuming that
δ1 = δ2 = δ, the improvement of output quality can be
quantified as below.
Theorem 2: With the error detection and correction strat-

egys, the probability that the approximate error is within
the given error bound at the final output increases at least
δ(1− δ).
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Proof: Given the specified confidence δ, the possibility
that two sampling results both have large errors is (1 − δ)2.
There is at least 1 − (1 − δ)2 probability to ensure that the
approximate error is within ±εS . Therefore, the proposed
detection method can improve at least 1 − (1 − δ)2 − δ =
δ(1− δ). �
For instance, assume the specified confidence δ = 90%.

With our proposed quality monitoring strategy, theoretically
the probability within the given error bound will be raised
from 90% to 99%.

In practice, there are two situations that the error detection
model may fail to find large errors. In this case, the output
results may also be unsatisfactory with large errors. To better
explanation, these situations can be expressed as:

(1)
∣∣∣ ˆ̄v1 − ˆ̄v2∣∣∣ ≤ 1 but ˆ̄v1 − v̄ > εS1 , ˆ̄v2 − v̄ > εS2

(2)
∣∣∣ ˆ̄v1 − ˆ̄v2∣∣∣ ≤ 1 but v̄− ˆ̄v1 > εS1 , v̄− ˆ̄v2 > εS2

Under these conditions, both two compared samples output
undesired results and the proposed model cannot detect the
large errors. However, the given approximate method pro-
vides an error bound guarantee and the probability of the
occurrence of the above cases is low. Theoretically, it is much
less than (1− δ)2.

V. ENHANCEMENTS AND ANALYSIS
To better adapt to the varying stream data, we addition-
ally present some improvements to dynamically maintain
the effectiveness of the approximate framework and further
optimize the cost of approximate processing.

A. TRIGGERED MAINTENANCE OF
STRATIFICATION WEIGHT
In DSPS, we set the whole process of stratification above as
a learning part of approximate computing framework. Owing
to the continuous arriving data, the knowledge obtained from
input data is gradually accumulated and the result of data
learning should be updated. Hence, we need to dynamically
adjust initial weights based on the feedback of sampling
results, so as to better adapt to the characteristics of stream
data and assure the accuracy of approximate results.

Here, we consider the weight maintenance as a triggered
update operation. Considering both computation load and
approximate quality, the following two situations can trigger
a weight update operation:
(a) As described in Section III-B, when the data arrival

rate is below the specified rate threshold Tsl , it can
be triggered to adjust weights of each stratum. Since
the low arrival rate means relatively small computation
overhead, the samplingweights can bemaintained at this
stage.

(b) When the output detection module finds that approxi-
mated results have large errors, it can be triggered to
adjust weights to improve the accuracy of sampling
results.

Figure 1 shows two situations triggered to inform the data
learning module for weight update. With the above-listed

Algorithm 3 Triggered Weight Update Algorithm (TWU)
1: Receive the feedback from the sampling results;
2: Set the current level Lc = L − 1;
3: Based on the stratification tree structure, allocate the

weights for stratified sampling from the Lc level.
4: Compare the results with the random and stratified sam-

pling methods.
5: if the weights of Lc level need to be updated then
6: Backtrack to the upper level;
7: Lc = Lc − 1;
8: Goto line 3;
9: end if
10: Update the weights from Lc to L levels based on the

weight computation method described in Section III-A.
11: Return the updated weights to the DSS module.

trigger conditions, the trigged weight update (TWU) process
is described in Algorithm 3. To ensure low update over-
head as possible, we do not need to re-calculate all weights.
In section III-A, our proposed stratification strategy is based
on the binary tree structure. During the stratification tree,
the parent node produces two child nodes with two sub-strata.
When updating the weights of the child node, we can back to
its parent node (line 2) and recalculate weights of sub-strata
based on current data items (line 4). Therefore, the weight
can be updated by their parent (line 7) or ancestor nodes of
the upper levels, which is a layer-by-layer operation. Besides,
the modification on Lc in TWU at line 7 can also be set as
Lc = Lc − 2 to faster end the loop operation of line 5.

B. IMPROVEMENT WITH STREAM EVOLUTION
As new stream data arrives, the learning result of stratifica-
tion tends to be stable and the corresponding output results
will satisfy customer requirement with higher probabilities.
At this moment, some improvements can be designed to
reduce the overhead of online approximate processing.

First, we can make improvement by decreasing the fre-
quency of weight update. In our design, the stratification
module will receive a feedback when the stream rate is lower
than Tsl . With the stream evolution, the feedback can be
reduced to lower the frequency of weight update. In this way,
the weight update feedback is not always triggered when
rs < Tsl . We can set a count control parameter at the DSS and
selectively provide a feedback to the stratification module.

Second, the frequency of error control can also be reduced
as data continuously arriving. The process of comparing two
estimated results can be executed in a samplingway. InDSPS,
our computation model is based on the sliding window.
Videlicet, it is not necessary to constantly monitor the quality
and we can compare results to detect errors generated by
partial windows. Referring to the idea in Paraprox [17], it can
be implemented by setting a fixed checking interval N and
checks are performed every N th invocation. At other time,
we do not need to execute sampling twice.
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FIGURE 4. (a) The probability density of datasets. (b) Weight learning result (c) Comparison with and without triggered weight update with
stream rate threshold.

These improvements are designed to further reduce the
overhead of online learning and quality control. Compared
with the difficulty of correcting the approximate outputs after
processing, it is light-weight to execute sampling twice for
quality checking.

C. ANALYSIS OF COMPUTATIONAL COST
To validate the efficiency of the framework, next we analyze
the overhead of the approximate strategy through computing
the execution time. Eq.(13) shows the ratio of the total execu-
tion time between approximate and exact computation. te is
the execution time of one exact processing, and td is the error
detection time. The numerator indicates the approximation
overhead including extra cost generated by the error control
strategy. nw is the number of windows that executes sampling
twice.

Costapprox =
(N + nw)× ts + td

N × te
, ts =

te
G(ratio)

(13)

In parallel distributed execution environment, it is com-
monly observed that processing time grows linearly with
input size for the majority of I/O bounded queries [4], [18].
Based on this, we can estimate ts using the time of exact
execution (te) and approximation gains (G(ratio)). We use
G(ratio) to represent the inversely linear proportion between
the sampling ratio and approximation gains. Compared with
the actual execution, the time of comparing sampling results
to detect error td is negligible.

VI. PERFORMANCE EVALUATION
We implement the proposed online approximate strategies
and evaluate their performance both with the synthetic and
real-world datasets. To analyze the effectiveness of the online
approximate and error detection strategies, we drive exper-
iments with the online aggregation operation, AVG and
the other common aggregation operators (SUM, COUNT,
RATIO) are similar. We used two datasets:
(1) Synthetic data: To evaluate the results of different data

distributions, four classical probability distributions are
tested including beta distribution, normal distribution,
uniform distribution and Zipf distribution. We generate

1,000,000 data items for each kind of distribution to
show the effects of online data learning.

(2) Real-world data:We study an available large-scale data
analysis application, WikiLength [20], which analyzes
lengths of web pages (bytes) [21]. The real dataset
includes the December 2016 snapshot of Wikipedia,
which contains millions of English articles in XML
format. The data file is a bzip2-compressed type with
12.6GB.

We respectively examine the effects of varying different
parameters in our evaluation, including the sample ratio, win-
dow size, weight learning threshold and maximum/average
error deviations.

In the settings, we use the Sine function to simulate the
arrival rate of stream data, which refers to real-time analysis
applications mentioned in [22]. Data is processed in the cor-
responding sliding window, and we analyze the average page
length in each processing window so that the real-time query
results can be obtained. For simplify, the statistical error of the
entire dataset denoted as εT and the current sliding window
denoted as εw are both considered for real-time approximate
processing.

A. STRATIFICATION LEARNING ANALYSIS
In this section, we mainly test the performance of the pro-
posed approximate framework through real datasets. The
AVG operation selectively computes web pages whose values
range from 1 to 15,000 bytes and we fix the confidence to
95%. We first construct a binary tree for online data learning.
In each partition, the weight update is computed as data
continuously arriving, and the difference before and after the
update is compared to judge whether to end each partition.
In practical applications, it is also advisable to end partition
when the weight of the corresponding value range changes
tinily.

The accurate probability density distribution in Figure 4(a)
indicates that data is highly skewed. Figure 4(b) illustrates
the detailed process of weight change through stream data
learning. The initial weight of each strata is allocated equally
and then updated with new arriving data. A three-level binary
tree is constructed and the value range of page length is
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FIGURE 5. (a)&(b) Effects of window size. (c) Weight learning result.

partitioned into four strata. The accurate ratio of each stratum
is listed in the rightmost histogram of Figure 4(b). At the end
of the learning phase, the estimated weight in the first stratum
is about 0.8382 compared with the accurate value 0.8405.
We can see that the weight learning process gradually closes
to the exact values and the final result is nearly consistent.

In experiments, the weight update will combine the weight
information of the previous state with the current data distri-
bution where we set a parameter to trade off these two factors.
When the data volume increases, it is possible the initial
learning result may have some deviation, but the deviation
can be updated by the later triggered update. Figure 4(c)
shows the comparison result before and after adding triggered
weight update with stream rate threshold Tsl . It can be seen
that the triggered update operation can assure more accurate
approximate results.

B. EFFECTS OF WINDOW SIZE
Considering the stream processing model, we analyze the
effects of varying window sizes on sampling. Through setting
different window sizes, we measure the average approximate
error under online processing windows. Here the window size
increases from 1000 to 4000 items. To better validate the
impact of window sizes, we respectively test the statistical
errors for windows εw with different sampling ratios and data
volumes. Each time the experiment is repeated 20 executions
and then we compute an average value.

As shown in Figure 5, we compare approximate errors
under different sampling ratios (0.05 and 0.1). At the small
data scale shown in Figure 5(a), when setting the sampling
ratio to 0.05, the approximate accuracy computed under each
processing window increases by about 83%. For instance,
when the window size becomes 4000, the approximate error
reduces to 0.02. The larger data scale in Figure 5(b) can also
demonstrate the effect. The reason is that the larger window
sizes can obtain a more comprehensive data information,
which is critical for a good learning result, and the sampling
result directly depends on stratified weight values. However,
it is bounded and Figure 5(a) & 5(b) illustrates that the trend
of improvement is gradually slow.

When considering different data volumes, the value of
εw with a small data volume shown in Figure 5(a) is lower

than that in Figure 5(b). According to the compared results,
if setting window size to 4000 and sampling ratio 0.1, we can
see that the average error εw with smaller volume is about
2.16% but with large volume reaches 8.44%. For the same
window size, the proportion of data with small volume is
larger than that with large volume. The stratification strategy
will acquire relatively comprehensive knowledge in a larger
window to obtain more accurate outputs.

C. EFFECTS OF WEIGHT LEARNING THRESHOLD
During the stratification phase, we utilize the arriving data
to adjust weights from the upper to lower nodes. To judge
whether to end the adjustment, an appropriate weight learning
threshold Tw needs to be set. In this section, we vary the value
of Tw from 0.001 to 0.01 to choose the best threshold by
evaluating εw and εT .

Figure 5(c) lists the average error for windows (Y-axis on
left) and the total approximate error (Y-axis on right). When
Tw increases from 0.001 to 0.01, the values of statistical error
have the same changing trend, which both decrease and then
increase. Especially, the overall error will reduce by 68%
(from 1.56% to 0.58%) when Tw varies from 0.001 to 0.005.
If Tw is set too small, the weight of each stratum may be
adjusted higher than the accurate result since smaller thresh-
olds cause overfitting for those strata with heavy weights.
Then, the statistical errors trend to rise when Tw increasing
from 0.005 to 0.1. The reason is that setting lager thresholds
will cause insufficient learning process where weights are
estimated with more deviations. Therefore, it is significant
to choose appropriate learning thresholds for more efficient
approximate processing.

D. EFFECTS OF DIFFERENT DISTRIBUTIONS
To validate the effectiveness of the online approximate strat-
egy, we generate four datasets that respectively correspond
to different common distributions as shown in Figure 6(a).
As a comparison, we measure the average errors both with
random and stratified sampling (bSRS). The sampling ratio
varies from 0 to 0.5.

From Figure 6(b) and 6(c), we can see that the sampling
results are different with different distributions. The results
demonstrate that stratified sampling performs better than
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FIGURE 6. (a) Different common distributions. (b)&(c) Error comparison with random and stratified sampling.

FIGURE 7. (a)&(b) Effects of different max deviation thresholds 1.

random sampling for these distributions, which also reflects
the effectiveness of our proposed approximate processing
strategy. However, for the exponential distribution, when the
sampling ratio is larger, random sampling performs better
because it can uniformly sample the data from the head and
tail.

E. EFFECTS OF ERROR CONTROL
In this section, we evaluate the performance of the error
control strategy. Tomeet the customer requirements, different
deviation thresholds1 are set.We test the variation of εw with
different thresholds 1, which reflects the effect of quality
control in the case of the unknown of exact results. Then
we compare approximate results with and without the error
control to show the effect of online error control.

In the experiments, when detecting
∣∣∣ ˆ̄v1 − ˆ̄v2∣∣∣ > 1,

the error control module will give a feedback to adjust
weights as described in Figure 3. Here we fix the sampling
ratio as 1% and1 varies from 30 to 200. First, we set1 as the
maximum deviation threshold and compare whether the dif-
ference between two sampling results generated exceeds 1.
As shown in Figure 7(a), our error control strategy can reduce
the average window error since it can detect large errors and
make timely correction by sampling. Then we consider 1 as
the average deviation threshold to test the effect of average
error constraints. Figure 7(b) depicts the error for windows
when each time detecting the average error of the recent five

processing windows. Similar to setting a maximum threshold
in Figure 7(a), the error control strategy can reduce overall
errors. Experiments indicate that online error detection can
decrease accuracy loss and improve output quality.

FIGURE 8. Effects of varying the error control frequency N th.

As mentioned in section V-B, the overhead of error control
can be optimized through performing error checking every
N th invocation. Next, we analyze the effects of setting differ-
ent N (e.g., 1, 2, 4) to εT when varying the sampling ratio.
As shown in Figure 8, the sampling error is increased when
reducing the error control frequency while the corresponding
sampling cost is reduced. The symbol N : 1(1000) means the
number of extra increased processing window used to detect
error is 1000, and so on.
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To verify the comparison listed in Table 1, we also assess
the effect of error control compared with IncApprox [7].
With the same parameters, Figure 9 shows the comparison of
accuracy loss with different sampling ratios when sampling
with the methods of IncApprox and the addition of the error
control strategy. The result also indicates that the error control
strategy can contribute to a better approximate result.

FIGURE 9. Error comparison with IncApprox and the addition of error
control.

In actual stream applications, it is impractical to know
accurate results when using approxiamtion. Therefore, our
proposed error control scheme cannot detect all situations
when large errors occur. In the same way, some detected
large errors may not be actually a large error. Fortunately,
the probability of the occurrence of this case is low. The extra
cost caused by unnecessary re-sampling in this case can be
ignored.

F. COMPARISON WITH RANDOM SAMPLING
Next, we evaluate our proposed sampling algorithm (bSRS)
by comparing with random sampling. In this group of exper-
iments, the value of Tw is set to 0.005. We test the average
error of windows εw that reflects the performance of real-time
processing and also record the approximate error for the
total input stream data εT . Setting different window sizes
can also affect the results of sampling shown in section 6.2.
Thus, we set two window sizes (1000 and 2000) to separately
generate approximate results.

Figure 10 depicts the comparison results of two sampling
methods with different window sizes. When increasing the
sampling ratio from 0.05 to 0.5, the value of εw reduces
with two sampling schemes. εw decreases from 0.044 to
0.001 when the sampling ratio varies from 0.05 to 0.5. With
our stratified method, the error is lower than that with the
random method. Based on the results of learning weights,
the stratified scheme can obtain amore representative sample.
Above all, when the window size is larger, the sampling error
will further decrease shown in Figure 10(a). For example,
if setting the sampling ratio to 0.2, the value of εw is about
0.064 with window size 1000 while it reduces to 0.023 in a
larger size. The statistical error for the total εT is compared
in Figure 10(c). Since εT is analyzed equivalent to sample
in the whole static dataset, εT is relatively lower compared
with εw, which is an online statistical operation.

G. EVALUATION OF COMPUTATIONAL COST
We compute the computational cost to evaluate the rela-
tive gains of approximation. Here we set the sampling ratio
1% and vary N from 1 to 20. Figure 11 illustrates the
computational cost with different quality checking intervals.
We can see that the approximation cost decreases as increas-
ing the checking interval, which further reduces the extra cost
brought by evaluating the output quality. For instance, when
comparing results of a window in an interval (|window| =
1), the approximation cost decreases from 1.87% to 0.97%.
The result shows detecting more windows in an interval also
increases the computation cost.

In conclusion, the above experiment results show the effec-
tiveness of our proposed online approximate stream process-
ing framework. It is applicable for different data distributions.
By setting different learning parameters, the combination of
online data learning and stratified sampling can make an
efficient approximation. Compared with other frameworks,
it also provides a customized error control to correct large
errors online.

VII. RELATED WORK
There have been numerous researches about approximate
computing for big data processing. Approximation tech-
niques such as sampling [23], [24], sketches [25], and online
aggregation [26], have been extensively studied to achieve
high-efficiency processing. Among them, the sampling tech-
nique is most often applied to generate data summaries
and make approximate computation. In this section, we dis-
cuss the sampling technique used for large-scale stream
processing.

Many samplingmethods are first proposed to process static
data, like those stored in database systems [27]. Conventional
methods include random sampling, weight sampling [28],
stratified sampling [29], etc. To ensure a better approximation
results, different improved sampling schemes have been pro-
posed to be more suitable for different situations in research
literature [1], [3], [30]. For instance, Roy et al. proposed a
distributed stratified-sampling method which partitions the
surveyed population into homogeneous subgroups over social
networks used in the MapReduce framework [31]. With the
prior knowledge of stored data sets, appropriate sampling
methods can be applied for more efficient queries. Most
works create samples based on the assumptions the future
workload is predictable through historical usage [4]. With
sampling, sometimes the approximate result need to satisfy
user-defined requirements, such as error demand, response
time. To meet the demand, [4] used stratified sampling to
build multiple offline samples with different error bounds.
Yan et al. proposed an error-bounded stratified sampling
technique to minimize the sample size while satisfying a
predefined error bound [8].

These sampling methods can also be extended to parallel
and distributed systems to significantly reduce application
execution time [32]. Combined with parallel frameworks
like MapReduce, [6], [10], [31] respectively improved the
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FIGURE 10. (a)(b)(c) Average error comparison with random and stratified sampling schemes. (a) Window Size: 1000. (b) Window Size: 2000. (c) Error
comparison for the total.

FIGURE 11. Computational cost of approximation including error control
with different checking intervals.

processing performance for different data structures and
application fields, including data mining, social networks.
Based on the MapReduce framework, Goiri et al. [19]
designed a prototype system, ApproxHadoop, to implement
approximation-enabled applications through input data sam-
pling and task dropping.

In recent years, more and more applications concen-
trate on streaming computing [33]–[35]. Different from static
data, data streams continuously arrive at a high rate, which
increases the difficulty of processing. On one hand, stream
data may not be stored owing to storage limits, and we
need to process them in a single pass; on the other hand,
continuous arriving data brings about the problem that we
cannot predict in advance its prior distribution information.
Although the assumption is the future workload is similar to
historical information, it is not always consistent with the real
situation. The inconsistent prediction will produce ineffective
samples [4].

In the early stage, Aggarwal [28] designed a tempo-
ral biased reservoir sampling for the data stream. The
time-relevant weighted sampling was presented to find recent
frequent items in [36]. They considered the effect of time dur-
ing the stream evolution. Although these common sampling
methods are available for streams, it is still inefficient without

considering the context of stream data (e.g., data distribution).
In recent works, Krishnan et al. [7] implemented a stratified
reservoir sampling algorithm based on Spark framework.
The initial sampling proportion depends on the number of
items seen in the current sliding window and will be adjusted
periodically. Reference [37] described the stratified method
can generate more representative samples with more accu-
rate results. For online stream processing, [37] proposed two
challenges: choosing the size of samples inside each stratum
and the number of strata is difficult since the knowledge of
data is unknown.

To overcome these limitations, we propose a tree-based
online data learning strategy to divide the data items and allo-
cate the weight for each stratum. In [8], Yan et al. proposed
a stratified sampling technique to minimize the sample size
while satisfying a predefined error bound. But they need to
know the knowledge of data distribution and perform sorting,
which may not be practical for online arriving data. To make
an improvement, we design a hash mapping to stratify the
arrived data to the corresponding strata.

To ensure the output quality, most sampling-based works
tend to provide a theoretical error guarantee [11], [16]. How-
ever, the output quality may not be guaranteed and it is pos-
sible that estimated results are unsatisfactory for customers
because of the probability of sampling. Then we focus on the
problem of quality control for the real-time stream process-
ing. It is more significant since data arriving without being
stored increases the difficulty of error correction.

There exist a few quality management strategies
when using approximate techniques from the system
level [38], [39]. For instance, Rumba is an online qual-
ity management system applied in an approximate
accelerator-based computing environment [9]. It employs
continuous light-weight check to automatically detect and
correct large approximation errors.

In our paper, we target the real-time stream processing and
also propose a customized error control strategy to assure
output quality. When users specify an output quality require-
ment, our proposed strategy can make a corresponding error
detection operation to instantly correct unsatisfactory results.

VOLUME 7, 2019 25135



X. Wei et al.: Online Adaptive Approximate Stream Processing With Customized Error Control

VIII. CONCLUSION
In this paper, we consider the problems of online data
cognition and error control in real-time stream processing.
We design an adaptive approximate processing framework
to tackle these problems. The framework provides an online
learning strategy to relieve the limitation of unknown knowl-
edge for continuously arriving data. According to the stratifi-
cation result obtained from data learning, a dynamic sampling
scheme is designed to make a self-adjusting computation. For
different user requirements, a customized error control strat-
egy is designed to detect approximate results so as to timely
correct larger errors. Experiment results with real-world
datasets show that our proposed approximate framework can
be well applied to real-time stream processing environments
to make efficient approximate processing with online quality
control.
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