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ABSTRACT The smartphone-based human activity recognition (HAR) systems are not capable to deliver
high-end performance for challenging applications. We propose a dedicated hardware-based HAR system
for smart military wearables, which uses a multilayer perceptron (MLP) algorithm to perform activity
classification. To achieve the flexible and efficient hardware design, the inherent MLP architecture with
parallel computation is implemented on FPGA. The system performance has been evaluated using the UCI
human activity dataset with 7767 feature samples of 20 subjects. The three combinations of a dataset are
trained, validated, and tested on ten different MLP models with distinct topologies. The MLP design with the
7-6-5 topology is finalized from the classification accuracy and cross entropy performance. The five versions
of the final MLP design (7-6-5) with different data precision are implemented on FPGA. The analysis shows
that the MLP designed with 16-bit fixed-point data precision is the most efficient MLP implementation
in the context of classification accuracy, resource utilization, and power consumption. The proposed MLP
design requires only 270 ns for classification and consumes 120 mW of power. The recognition accuracy
and hardware results performance achieved are better than many of the recently reported works.

INDEX TERMS Human activity recognition, multilayer perceptron, smart military wearables, classifier

hardware implementation, field programmable gate array.

I. INTRODUCTION

In the area of ubiquitous sensing, the wearable sensors are
used to measure human body attributes like body motion,
location, temperature, ECG, etc. The data received from the
sensors are integrated, processed and analyzed on network-
connected devices like smartphones or laptops. Some of the
meaningful information like human activity is also extracted
on these devices. In the last decade, the Human Activ-
ity Recognition (HAR) based on the wearable sensor has
attracted many researchers [1]. Nowadays, the smartphones
have become the most feasible device for HAR implemen-
tations, because smartphones are equipped with a variety
of low power and small size sensors [2], [5]. Many such
HAR based applications are successfully implemented on the
smartphone platforms [5], [33], [34], like complex activity
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recognition [3], sporting activity detection [4], etc. How-
ever, the smartphone based HAR systems are not suitable
and capable to deliver the required performance in case of
challenging applications like the workforce monitoring in a
military combat scenario [6], [10].

A real-time soldier activity information along with other
sensory information is a useful feedback for workforce mon-
itoring, smart backup, rescue operation and virtual war field
mapping [6], [10]. This inspired us to incorporate soldier
activity recognition in the smart military wearables. Due
to difficult combat conditions, the hardware of smart wear-
ables has to meet the stringent system requirements like
fast response time, high performance per watt ratio, small
form factor, higher reliability and flexibility [10]. Such
requirements are achievable only by using parallel process-
ing hardware solutions like FPGAs [22], [28]. The efficient
implementation of an activity recognition algorithm on such
devices plays a crucial role in wearable system performance.
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The customized hardware implementation has the capa-
bility to achieve low latency and low power consumption
compared with the software implementations. Hence, the
hardware is a favorable choice for HAR implementation for
the challenging applications. Few attempts of HAR algorithm
implementation on reconfigurable hardware are reported in
the literature [22], [29], [30]. These implementations are
focused on the hardware design and modeling of activity
classifier. Because these classifiers are computationally com-
plex and heavy, it highly influences the overall hardware
performance of a HAR system. Therefore, the efficient and
flexible hardware implementation of an activity classifier is a
challenging problem for the development of the customized
HAR system.

In presented work, the hardware-based MLP classifier has
been developed for activity recognition in the smart wearable
gateway (Xilinx Artix-7 FPGA). The activity classification
is obtained from a single accelerometer placed on the sol-
dier’s waist. The activity is classified into five basic classes:
walking, sitting, standing, laying and activity transitions.
Ten MLP models with different numbers of hidden layer
perceptrons have been trained and tested on HAR dataset
of 20 subjects. For final hardware implementations, an MLP
topology with 7-6-5 is selected from the simulation results.
Then, the five hardware models of MLP design with different
data precision are synthesized, implemented and tested on the
Artix-7 FPGA. The detailed competitive analysis of classifi-
cation accuracy, hardware resource utilization, classification
latency and power consumption has been presented for all
five models in this work. The real-time and power-efficient
intellectual property (IP) core for HAR with adequate classi-
fication accuracy is the main contribution of this work. This
IP core enables the smart wearable gateway to recognize the
current soldier activity in real-time with decent classification
accuracy. Likewise, the achieved minimum power consump-
tion of IP core increases the battery life of the smart wearable.
The same IP core and development methodology can be
further extended to the build the smart wearables for fire-
fighters, police professionals, mines workers, etc. In addition,
the comparison of this work with other existing HAR systems
and FPGA based MLP implementations is also presented.

The remainder of the paper is organized as follows.
In Section-1I, we review HAR classifier algorithms and hard-
ware implementation of MLP classifiers reported for various
applications including HAR. Section-III discusses detailed
hardware design architectures of a perceptron and MLP.
In Section-IV, we describe the complete hardware implemen-
tation and testing procedures. Section-V discusses the imple-
mentation and performance analysis of MLP designs. Finally,
Section-VI concludes this work with important research
findings.

Il. RELATED WORK

Many HAR systems adopted various classification algo-
rithms like the decision tree, Markov models, domain
transform, fuzzy logic, support vector machine (SVM),
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regression methods, artificial neural networks (ANN),
K-nearest neighbor (KNN), etc. [1]. Wei et al. [7] proposed
the two-layer Hidden Markov Model (HMM) for continues
and long-term daily activity monitoring which uses wearable
body sensors. Andreu and Angelov [8] suggested the fuzzy
based algorithm for real-time human activity recognition.
In this work, rule-based and self-learning fuzzy classifier
extracts class information from wearable wireless accelerom-
eters. After the extensive analysis, Janidarmian et al. [31]
found that the KNN with ensembles methods shows the
best robust results among the other machine-learning mod-
els. Rodriguez et al. [23] reported BioHarness and smart-
phone based activity recognition using decision tree for the
classification. Zebin et al. [24] conducted the comparison
between different HAR algorithms for the inertial sensor data.
Tang and Sazonov [9] compared the ANN and SVM clas-
sification algorithms for the smart shoe. From the accuracy
results, Tang et al. concluded that the ANN classification
algorithms performs well compared with the SVM algorithm.
Therefore, we adopted ANN as an activity classification
algorithm for the workforce monitoring.

Many applications adopted ANN for classification, control
and calibration tasks in biomedical instrumentation [11], [12],
control systems [13], [14], non-conventional energy produc-
tion [15], [16], etc. However, the efficient implementation and
real-time execution of ANN models on embedded platforms
are still a challenging problem because it involves plenty of
nonlinear activation functions, numerous amounts of addi-
tions and multiplications. The implementation of these algo-
rithms demands high performance parallel computing devices
like FPGA’s. Because of an inherently parallel architecture of
ANN algorithms, FPGA devices are becoming a favorable
choice compared with sequential devices [17], [25]. The
modern FPGA has specialized blocks like DSP and BRAM to
handle complex mathematical operations. The soft-core and
hardcore processor are also available to enhance sequential
capability. This makes the FPGA technology most suitable
for the implementation of soft-computing algorithms (like
ANN) for real-time applications [18].

The feed-forward type of ANN architecture is the most
commonly used ANN architectures, it is also generally
known as the MLP. Many FPGA based MLP classifier models
are reported in the literature for various applications. Gas
classification is one of the popular application of these types
of classifiers [19]. Recently, Zhai et al. [20] proposed a real-
time gas classification system, which takes 540 nanoseconds
for the classification. Bahoura [21] designed MLP based
blue whale calls classifier using Xilinx system generator
toolbox. However, this model is unable to achieve real-
time performance. Nevertheless, it requires significantly less
development time compared with traditional design methods.
Therefore, we selected high-level programming methodology
for the development of target MLP design.

Many smartphones based HAR systems are available [32],
but a very limited work has been reported on dedicated
hardware (FPGA) based HAR implementation. Like in [30],
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Biswas et al. designed and implemented the real-time
arm movement recognition that required 41.2 microseconds
for recognition. Yan et al. [29] tested the MLP based
HAR design on the two different FPGAs and got impres-
sive results compared to the smartphones implementations.
Basterretxea et al. [22] implemented an MLP algorithm on
FPGA (Xilinx XC6SLX45CSG324-2) for the generalized
HAR system. These work motivated us to implement efficient
hardware based activity classification for the smart military
wearables. This study explore the efficient and flexible hard-
ware implementation approach for the MLP based activity
recognition.

lIl. HARDWARE ARCHITECTURE

The hardware design of the MLP classifier is broadly divided
into two parts. The elementary unit of the architecture is a
perceptron model and a united network of these perceptrons
is MLP model. A group of multiple and independent percep-
trons are referred as a perceptron layer. The feature informa-
tion is processed and forwarded from one layer to another
completely connected layer. This multiple layers of percep-
tron’s are used to solve complex classification problems like
activity recognition. This type of network is also known as
fully connected feed-forward neural network. In this work,
the final MLP activity classifier is constructed from elemen-
tary perceptrons using Xilinx system generator toolbox. The
detailed mathematical formulation and hardware design of
a perceptron and MLP classifier have been discussed in the
following two subsections.

A. PERCEPTRON MODEL

A perceptron is a fundamental block of MLP architecture,
which is inspired by brain neuron cell. A perceptron receives
inputs from the previous layer and forwards the output to
next layer after performing some mathematical operations.
Equation (1) shows the mathematical operation performed by
a perceptron.

Yi(x) =f {Z(Wk,-x,- + b@} ey

i=1

where, Y} is a output of k" perceptron, wy; is i element of
the pre-trained weight matrix of k™ perceptron in /" layer,
x; is i’ input of perceptron and by, is the bias of a perceptron
and f is the activation function. In this work, we are using the
sigmoid function as the non-linear activation function and it
is the most computationally intensive part in the perceptron
design. Therefore, we used the approximation of this func-
tion known as the PLAN function (f). The PLAN function
is one of the best approximations of the sigmoid function
that requires less hardware resource as compared to other
sigmoid approximations [25]. The mathematical description
of PLAN function is shown in Table 1. Mathematical model
of a perceptron that is designed for the FPGA implementation
is presented in Figure 1.
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TABLE 1. Approximation of sigmoid function.

x ftx)

0< |a| <1 0.25% |z|+ 0.5

1< |z| <2375 | 0.0125x|a|+ 0.625
2.375< |z <5 | 0.03125% |x|+ 0.84375
5< |a 1

As highlighted in Figure 1, the input signals are multiplied
with the pre-trained weights and then added together with
the pre-trained bias. The pre-trained weights and biases are
stored in the distributed memory of FPGA fabric. The output
of an addition block is connected to the PLAN function. The
PLAN function (f) is efficiently modeled using elementary
computational blocks that requires minimum FPGA hardware
resource [25]. This same design method has been used for
designing of all perceptrons.

We used high-level FPGA design methodology for the
implementation of perceptron model. This programming
technique significantly reduces the design time and provides
sufficient design flexibility. Figure 10 (See Appendix. B)
shows a perceptron model designed by the Xilinx system
generator toolbox.

B. MLP MODEL

A MLP model contains multiple layers of perceptrons con-
nected in a feed-forward manner. The output of the final layer
is terminated with a soft-max function to use it as a classifier.
As our implementation is limited to the testing phase of MLP,
we used normal maximum instead of the soft-max function to
reduce the FPGA resource utilization [26].

The proposed MLP design uses three layers i.e. input,
output and a hidden layer. As shown in the Figure 2, Layer 1 is
the input layer that performs normalization on all i number
of features. Generally, MLP consist of one or more number
of hidden layers, but in the present work, we used only one
hidden layer to reduce the classification delay and hardware
resource utilization. The complete MLP mathematical model
is shown in Figure 2, a hidden layer (Layer 2) consists of j
number of hidden perceptron. The output matrix of the hidden
layer is shown in (2).

X2 =f, {szX1+Bz} )

where W2 is the hidden layer weight matrix, X 1 is the output
matrix of an input layer, B2 is the bias matrix of the hidden
layer and f7 is a sigmoidal approximation. The MLP clas-
sifies input features into “k” classes. Therefore, the output
layer (Layer 3) consists of “k” output perceptron. The output
matrix of this output layer is calculated using equation (3).

Yzfz{W3xX2+B3] 3)

where W3 is the weight matrix of the output layer, X2 is the
output matrix of the hidden layer, B3 is the bias matrix of the
output layer and fa is the pure linear activation function.
Figure 11 (See Appendix. B) shows the MLP model with
7-6-5 topology, designed by Xilinx system generator toolbox.
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FIGURE 1. Mathematical model of a perceptron.
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FIGURE 2. Mathematical model of MLP classifier with i-j-k topology.

We selected seven input features for soldier activity recog-
nition that decides numbers of normalization blocks in the
input layer. There are five different essential output classes
identified for the soldier activity classification that decides
numbers of perceptrons in the output layer. The number of
hidden perceptrons has been decided from the experimental
analysis presented in the fourth section.

We used inherent MLP architecture to achieve the min-
imum classification latency and maximum design flexibil-
ity. As shown in Figure 11 (See Appendix. B), the MLP
design consists of eight input signals from which seven sig-
nals (F1 to F7) work as feature inputs and “ST” works
as an enable signal. There are two output signals in which
“CLS” works as an output class signal (walking, sitting,
standing, laying and activity transitions) and “D’’ works as

VOLUME 7, 2019

an acknowledgment signal. All of the perceptrons are con-
nected in a feed-forward manner, which works synchronously
with a control signal. The internal architecture of all hid-
den layer perceptrons is similar as shown in Figure 10 (See
Appendix. B). The architecture of all output layer perceptrons
is also similar to hidden layer perceptron only excluding
activation function approximation.

The MLP mathematical model is inherently parallel i.e.
every perceptron in a layer works independently. Hard-
ware implementation of this parallel algorithm on sequen-
tial devices requires more computation time and power,
compared with the parallel processing devices [17]. Hence,
we used parallel processing device like FPGA for MLP
implementation. The proposed hardware design achieved the
complete hardware parallelism required for the computation
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of a single layer. Every perceptron in the single layer func-
tions independent and parallel with the layer synchronization.
This results into the significant reduction in classification
latency for the time-sensitive applications like soldier activity
recognition.

IV. HARDWARE IMPLEMENTATION AND TESTING

The MLP hardware design is targeted for real-time soldier
activity recognition in smart wearable gateway. The activ-
ity classification is done by the 3-axis accelerometer data
located on the soldier waist. As this work focuses on the
hardware design of the MLP classifier, we used the available
accelerometer data set for the evaluation of MLP classifier
hardware implementation [16]. A sensor node has been sim-
ulated in LabVIEW using this dataset. The simulated node is
used for the performance evaluation of the MLP design in the
hardware. The detailed description of the used dataset, FPGA
implementation and testbed setup is given in the following
subsections.

A. DATASET DESCRIPTION

The training and testing performance analysis of MLP clas-
sifier has been done on UCI transition-aware human activity
recognition dataset [36]. A 3-axial accelerometer is used for
body motion data acquisition that is placed on the subject’s
waist with a sampling frequency of 50 Hz. The generated
raw data is segmented into 2.56 seconds segments with 50%
overlap. Many important features are extracted from these
data segments, out of which we have used seven types of data
features. The selected features are body acceleration standard
deviation of all three axes, the signal magnitude area of body
acceleration and gravity acceleration mean of all axis [27].
The five basic and important output classes (walking, sitting,
standing, laying and activity transition) are selected for the
soldier activity recognition. This work used 7767 feature
vector samples of 20 subjects from the complete dataset.
The three different combinations of training, validation and
testing samples are selected from the original dataset. The
numbers of training, validation and testing samples selected
for each dataset are mentioned in Table 5 (See Appendix. A).

B. FPGA IMPLEMENTATION

The present application demands efficient MLP performance
for field operations. After completion of appropriate training,
MLP design works in the testing phase. Thus, there is no need
to implement training hardware in actual field operations.
Therefore, this work uses the off-line training method to
avoid unnecessary hardware burden of training. These MLP
designs are trained off-line using the MATLAB. Ten MLP
models per dataset with distinct topologies have been trained
and validated to finalize the optimum MLP topology. Three
sets of testing samples(1165, 1941 and 2718) are used for
the testing of all MLP models in MATLAB simulation. The
comprehensive analysis of testing results is presented in the
next section.

26700

After training, calculated weight and bias matrices have
been included in the hardware model of the MLP design.
These parameters are stored in the distributed memory of
FPGA fabric to avoid time and power-consuming memory
read cycles required for external memory access. The five
different variant of MLP design has been implemented with
five distinct input-output (IO) data precision of all percep-
trons. In addition, the data precision of all weights and biases
has been set constant with fixed-point 16-bit precision. The
complete MLP has been designed by Xilinx system generator
design toolbox, which helps to reduce development time and
generate the flexible design. This MLP design is packaged
into a Xilinx IP Core after completion of design and perfor-
mance evaluation. This flexible IP core can be implemented
on the any Xilinx FPGA by only changing the design token
configurations. In this work, the MLP IP core is implemented
on the Xilinx FPGA (Artix-7-35T, xc7a35ticsg324-1L) with
operating frequency of 100 MHz. The softcore processor
(Microblaze) based IP test system has been developed for the
hardware performance evaluation of MLP IP core. Figure 12
(See Appendix. B) shows the hardware design of Microblaze
based IP test system. The Vivado IP integrator software is
used for the complete development of IP test system. The
MicroBlaze is programed with IP test application using Xil-
inx SDK.

C. TESTBED SETUP

The hardware testing is important to evaluate the operational
performance of the MLP IP core. Figure 3 shows hardware
testbed setup for MLP IP core testing. Setup is divided into
two parts, the first part is Microblaze based IP test design
with MLP IP core and second part is LabVIEW based sensor
node simulator and receiver simulator. The sensor node in a
targeted application handles the data acquisition, segmenta-
tion and feature extraction, which is forwarded to the gateway
using UART communication link. After the evaluation of
output class, the current soldier activity is further forwarded
to the receiver. As shown in Figure 3, the same practical
scenario has been simulated using LabVIEW based GUI. The
sensor node simulator sends test features of dataset-A to the
gateway (Artix-7 FPGA) through UART-1 communication
link. The activity classification is performed on the gateway
using the MLP IP core running and then calculated class is
forwarded to receiver simulator using UART-2 link.

V. PERFORMANCE EVALUATION

To meet the defense field requirements, the performance eval-
uation of MLP IP core is focused on optimum topology selec-
tion, classification accuracy, hardware resource utilization,
classifier power consumption and classification latency. The
detailed analysis of simulation and implementation results
have been discussed in the following subsections.

A. MLP TOPOLOGY SELECTION
The training and validation of basic MLP design have been
conducted on MATLAB using back-propagation algorithms.
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FIGURE 3. Hardware testbed setup for MLP IP Core testing.

FIGURE 4. Change in classification accuracy with the respective number
of hidden layer perceptrons.

This work used MLP with a single hidden layer, which helps
to reduce the classification latency, hardware resources and
power consumption. This configuration also minimizes the
over fitting in MLP design [40]. The seven types of features
are selected for the classification and five output classes are
chosen, which gives the MLP design with seven perceptrons
in an input layer and five perceptrons in an output layer.
Now, the final topology of MLP design depends only on the
numbers of hidden layer perceptrons, which is decided from
the following analysis.

In this work, the iterative constructive method is used
to decide the optimum numbers of hidden layer percep-
trons [41]. Ten possible MLP designs have been generated
by changing the number of hidden layer perceptrons for each
dataset. Thirty independent MLP models have been trained
and validated on three datasets A, B and C (see Table 5 in
Appendix. A). Then, the generated MLP designs are tested
on test samples of respective datasets that works on floating-
point data operations.

Figure 4 shows the graph of classification accuracy versus
the number of hidden layer perceptrons for all datasets. The
accuracy is the average of 10 similar training, validation
and testing of each MLP models. As each extra perceptron
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FIGURE 5. Change in cross entropy performance with the respective
number of hidden layer perceptrons.

contributes to the hardware resource utilization and power
consumption, hence we allowed maximum ten perceptrons
in the hidden layer. It is clear from the Figure 4 that the MLP
design with six hidden layer perceptrons gives maximum
classification accuracy for all three test datasets. Similarly,
The validation performance in from of average cross entropy
is also shown in Figure 5. The minimum cross entropy is
achieved by the six hidden layer perceptrons for all datasets.
Both results indicate that the hidden layer with six percep-
trons performed better compared with other combinations.
Therefore, we selected MLP topology (7-6-5) with six hidden
layer perceptron for the FPGA implementations.

B. HARDWARE CLASSIFICATION ACCURACY

The hardware of finalized MLP model (7-6-5) has been
designed by Xilinx system generator toolbox. Five different
MLP designs with distinct data precision have been synthe-
sized, implemented and tested. The input and output (IO) bit
precision of all the perceptrons have been set distinct in each
variant of MLP IP core. The selected precision are 24, 20, 16,
12 and 8 bits respectively. However, the precision of weights,
biases and feature inputs have been kept constant as a 16-bitin
all variant MLP IP core. All these versions have been imple-
mented and tested using the same procedure as explained in
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Section-IV (Subsection B and C). The hardware accuracy of
each version is tested on the test data with 1165 samples.
Figure 6 shows the classification accuracy with different
implemented models. The accuracy is almost constant up to
the 16-bit precision model and below this, it starts decaying.
The models with 24 and 20 precision requires more power
and hardware resources compared with the 16-bit precision,
which is explained in the following subsection. Therefore,
as per our application constraint, the MLP IP core with the
16-bit perceptrons 1O precision is proven as the best solution
in the classification accuracy context.

FIGURE 6. Change in classification accuracy with respective MLP IP Core
precision.

TABLE 2. Detailed classification results of MLP design with 16-Bit
precision.

Positive | Sensitivity | Positive Specificity | Negative | Accuracy
Class Predictive Predictive

Value Value
Walking | 100% 98.97% 99.27% 100% 99.57%
Sitting 83.03% 89.6% 97.78% 96.16% 95.02%
Standing |91.71% 85.04% 96.31% 98.07% 95.45%
Laying 99.48% 99.48% 99.9% 99.9% 99.83%
Activity  [99.91% 87.93% 98.08% 99.37% 99.31%
Transition

Table 2 presents the class wise sensitivity, positive predic-
tive value, specificity, negative predictive value, and accu-
racy. The result indicates that the confidence of output sitting
class is comparatively less among all classes. In addition,
the classification results of walking, laying and activity tran-
sition is more accurate than the sitting and standing class.

C. HARDWARE RESOURCE UTILIZATION ANALYSIS

As mentioned in above subsection, the five different versions
of MLP design are implemented on the Artix-7 FPGA. The
implementation reports of all five designs have been analyzed
collectively. The change in perceptron IO precision effects
the hardware resource utilization of MLP IP core design.
As shown in Figure 7, the linear reduction in the FPGA
resource utilization with respective IO precision is observed.
However, the DSP (DSP48E1) utilization remains same for
all MLP versions. From Figure 7, it can be observed that the
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FIGURE 7. Effect of change in MLP perceptrons 10 precision on the FPGA
resource utilization.

FIGURE 8. Effect of change in MLP perceptrons IO precision on the
designs power consumption.

MLP design with 8-bit perceptrons IO precision has emerged
as the most efficient design. However, as shown in Figure 6,
the classification accuracy of 8-bit MLP design is lowest
among all. Therefore, the MLP design with 16-bit 10 pre-
cision has proved as a high accuracy and moderate resource
utilization model.

D. POWER CONSUMPTION ANALYSIS

The power consumption of all designs has been estimated by
Xilinx power estimator toolbox with same parameter settings.
The operating frequency of FPGA is set at 100 MHz for all
models.

The power consumption significantly depends upon the
FPGA resource utilization and operating frequency. There-
fore, the same trends have been observed like hardware
resource utilization in power consumption estimations as
shown in Figure 8. The DSP slices are the major contribu-
tor to the total power consumption of MLP design. It adds
44 milliwatts of dynamic power into each design. As the
DSP slices used by all the designs are same, therefore there
is a gradual change in the power consumption profile. Like
resource utilization scenario, the MLP design with 16-bit IO
precision has emerged as an optimal solution for accuracy and
power consumption.
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FIGURE 9. Timing response of interfacing signals during live design run on FPGA.

TABLE 3. The accuracy comparison with other HAR implementations.

Works Classification Algorithm | Implementation Method | Subjects | Activities | Platform Overall Accuracy
[34] Multi-classifier Software 29 5 Android phone 91.70%
[37] Random Forest Software 10 8 Weka Software with PC 89.40%
[39] Multiple Regression Software 6 12 Matlab Software with PC 90.30%
[38] 1D CNN Software 5 3 TensorFlow Software with PC 92.71%
[32] Random Forests Software 10 5 MEXZU MX3 with Android OS 4.4x | 86.20%
[22] MLP Hardware 6 7 Spartan-6 (XC6SLX45CSG324-2) 89.20%
This Work | MLP Hardware 20 5 Artix-7 (35T,xc7a35ticsg324-1L) 94.60 %

TABLE 4. FPGA performance comparison with MLP classifiers.

Works MLP Topology | FPGA Platform Data Precision g\;:;s(i:isc:i(:ld'sl’)ime ’(I;(:)tr?slfn(i:t?(;n g;l:;;m;;es;l;rces Iit[i}i;ation
[22] 14-19-19-7 (S)‘(’ ?:rg;“L';%CSGaM_z) 16 800 ns 294 mw 39 7 |74 |1032

[21] 12-7-3 2:::;17000 24 19968 ns 123 mw 2 219 [ 1333021648
[20] 12-3-1 fﬁé@;ﬁfgpl cLoan, |2 540 ns 1776 mw 2 28 |2863 |4032
This Work | 7-6-5 222;17335ticsg324-1L) 16 270 ns 241 mw 0 81 |569 3466

E. CLASSIFICATION LATENCY

The hardware testing of MLP design is conducted by
MicroBlaze based test system and LabVIEW based GUT’s.
The MLP design is packaged in an IP core, which communi-
cates with a test system using AXI-Lite interface mentioned
in Figure 12 (See Appendix. B). The classification latency is
calculated by observation of AXI-Lite bus transitions during
live hardware design run. The bus transitions are acquired
by USB-JTAG programming circuitry and Vivado system
debugger toolbox. Figure 9 shows signal transitions during
actual MLP algorithm execution with 16-bit IO precisions
on FPGA. After sending last feature (f7) to MLP IP core,
“st” signal becomes high. At this point, IP starts classifi-
cation task and generate acknowledgment signal “d” after
completion. Total 27 clock cycles are required for classifi-
cation. The test system and MLP IP operates on 100 MHz so
total 270 nanoseconds are required for classification. As high-
lighted in Figure 9, the “cls” signal is output class send by
MLP IP, which is two (sitting) for present feature vector.
The hardware architecture of all MLP version is same except
perceptrons IO precision. Therefore, the classification latency
of all MLP versions is the same.
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F. COMPARISON WITH EXISTING WORKS

The HAR systems reliability depends upon the activity recog-
nition accuracy. Table 3 shows the accuracy comparison with
some previous works. Various types of HAR classification
algorithms were adopted for accelerometer inputs in these
works. In works [32], [34], classification algorithms are
implemented on the smartphone platform with floating point
data precision. The work presented in [22] and this work
implemented a classification algorithm on the customized
hardware with fixed bit precision. The comparison shows
that the accuracy of the proposed classifier outperforms all
implementations.

Many recently reported research work implemented the
MLP algorithm on various FPGA platforms. We compared
this work with similar FPGA based MLP classifier imple-
mentations designed for various applications. Table 4 shows
the hardware performance comparison of this MLP IP (16-bit
precisions) with other MLP implementations. Hardware
design simplicity affects the maximum operating frequency,
which directly decides classification latency of MLP design.
To achieve optimum hardware performance, we adopted the
inherent MLP architecture in hardware designing and we
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TABLE 5. Details of classification datasets.

Dataset Training | Validation | Testing | Training+Validation
Samples | Samples | Samples | to Testing Ratio

Dataset A | 5612 990 1165 85:15

Dataset B | 4952 874 1941 75:25

Dataset C | 4292 757 2718 65:35

used DSP blocks for multiplications.Due to this approach,
the MLP IP core achieved 270 nanosecond classification
latency, which is the lowest among all mentioned mod-
els. We chose Artix-7 35T (xc7a35ticsg324-1L), which is
specially designed to achieve optimum power performance.
This FPGA fabric runs on the 0.95 volts supply, which
saves around 30% power compared with normal Artix-7
devices [35]. As shown in Table 4, the total FPGA power
consumption of complete test design is 241 mill watts out
of which 120 mill watts is consumed by MLP IP core.

FIGURE 10. Xilinx system generator design of a perceptron.

The comparison shows that the performance of MLP IP core
is best among other works in terms of time and power.

VI. CONCLUSION

In this paper, we proposed hardware implementation of the
MLP classifier for activity classification in smart military
wearables. The simulation results prove that the MLP design
with 7-6-5 topology gives maximum classification accuracy.
The five variants of final MLP designs (7-6-5) with different
data precision implemented on the Xilinx Artix-7 FPGA.
In which, the classification accuracy of the MLP model with
the 24, 20, 16 bits precision is almost constant, below 16-bit it
starts decaying. The collective analysis shows that the reduc-
tion in resource utilization and power consumption without
compromising of the classification accuracy is achievable by
reducing the perceptrons 10 precision. 0.9% to 3.33% clas-
sification accuracy reduction have been observed between
simulation and hardware testing results. It is mainly because

FIGURE 11. Xilinx system generator design of MLP classifier.
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FIGURE 12. Vivado IP integrator design of microblaze based MLP IP test system.

of data format switching (Floating point to fixed point) and
sigmoid function approximation.

The implementation result shows that the MLP design
with 16-bit fixed-point data precision is the most effi-
cient MLP design in the context of classification accuracy,
latency, power consumption and resource utilization. This
MLP design requires only 270 nanoseconds for classifica-
tion using 120 mill watts of dynamic power. The classifi-
cation accuracy of the proposed HAR classifier is greater
among many HAR implementations reported in the litera-
ture. Moreover, the proposed MLP classifier outperforms the
recently reported FPGA based MLP design in terms of the
classification time and power consumptions.

The presented work can be further extended to implement
on-chip learning in the hardware that can be integrated into
an on-line training hardware of the smart suit. Some of the
extra essential output classes also can be easily incorporated
into the hardware design due to the flexibility offered by this
design.

APPENDIX A
DATASET DESCRIPTION
See Table 5.

APPENDIX B
FPGA IMPLEMENTATION DESIGNS
See Figures 10-12.
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