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ABSTRACT A common way to estimate dynamic origin–destination (O-D) flows is to establish and solve
a bilevel optimization model. Though numerous efforts have been devoted to effectively and efficiently
solving the model, challenges still exist because of the interdependence of jointly solving the upper level
O-D estimation and lower level traffic assignment problems and the nonconvexity of the model. This paper
presents an alternative framework for estimating dynamic O-D flows usingmachine learning algorithms. The
framework consists of threemajormodules: a learner that learns the dynamicmapping patterns describing the
relationship between prior O-D flows and observed link flows, an assigner that assigns a given O-D matrix
to different links based on the learner, and a searcher that iteratively searches the optimal O-D solution using
the assigner. A convolutional neural network is designed as the learner and trained as the assigner. Next,
the algorithms to estimate a regular O-D matrix and real-time O-D flows are separately developed by using
the assigner and two designed genetic algorithms built as the searcher. The framework was evaluated with a
realistic network in the downtown area of Kunshan, China. The experimental studies show that the framework
can achieve satisfactory estimation performances in real time. Meanwhile, it takes raw flow ranges as the
prior inputs, making it robust in the case of lacking an accurate target O-D matrix.

INDEX TERMS Dynamic O-D estimation, bilevel optimization, convolutional neural network, genetic
algorithm.

I. INTRODUCTION
Real-time estimation of dynamic origin-destination (O-D)
flows plays an important role in proactive traffic control
and dynamic route guidance in intelligent transportation sys-
tems (ITSs). For a general network, e.g. an open urban
network with limited number of links, a typical way for
acquiring dynamic O-D flows is to estimate them indirectly
from observed link flows [1]–[3]. To achieve this goal, two
major issues need to be properly tackled. The first lies in
how to formulate and solve the problem of dynamic O-D
estimation (DODE) with a well-designed optimization model
in an effort to minimize the difference between the estimated
O-D matrix and the target O-D matrix. The second concerns
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on developing a dynamic traffic assignment (DTA) model to
establish the dynamic mappings between the estimated O-D
flows and the observed link flows. The two issues need to be
solved endogenously, meaning the sought O-D matrix should
not be determined by using an independent DTA process. The
underlying reason is that there is an inconsistency between
the O-D matrix estimated from the observed link flows and
the link flows obtained by assigning the O-D matrix to the
network when using the same set of route choice proportions
[4], [5]. In a realistic congested network, the inconsistency
would become more apparent.

An effective way to avoid the inconsistency is to com-
bine the DODE and DTA problems into one solution frame-
work. Formally, the framework can be formulated as a
bilevel optimization model, where the upper-level is to solve
a DODE problem using a constrained objective function
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(e.g. generalized least squares) or a state transition equation
(e.g. Kalman filter), and the lower-level is to solve a DTA
problem satisfying a dynamic user equilibrium (DUE) con-
straint. Because evaluating the upper-level objective function
requires solutions of the lower-level problem, it is generally
difficult to solve the bilevel optimization model [6]. More
specifically, the intrinsic nonlinearity of the lower-level DTA
problem can easily cause the nonconvexity of the bilevel
optimization problem, and consequently, a global optimum
might be hard to find [5]. For real-time application scenar-
ios, the solving complexity of the problem would be fur-
ther increased because of the high computational efficiency
requirements.

To find a satisfactory DUE solution to the DTA problem,
it usually needs to establish an iterative solving process since
‘‘each traveler’s best route choice depends on congestion
levels throughout the journey, which in turn depend on the
route choices and progress through the network of other
travelers who depart earlier, at the same time or later’’ [7].
Moreover, a DTA process commonly requires an elegant
design and a careful calibration, making the DTA a quite
challenging task in transportation network modeling. For the
DODE problem, a key role of a DTA model is to establish
the dynamic mappings between the estimated time-varying
O-D flows and the assigned link flows. By iteratively using
the established mappings to assign O-D flows to different
links, the DTA model gradually converges to a DUE solu-
tion. Because the establishment of the dynamic mappings
involves an iterative and intractable assignment modeling
process, a question is raised: can we learn and capture the
dynamic mapping patterns for real-time dynamic O-D esti-
mation with a satisfactory accuracy but a low computational
cost?

With the advances of computational power of modern com-
puters, artificial intelligent techniques, in particular machine
learning algorithms, achieve breakthroughs during the past
decade. The power of these algorithms lies in their ability
to effectively learn complex and hierarchical features and
patterns from available data. A recent study conducted by
Wu et al. [8] developed a deep learning network model to
estimate hierarchical travel demand, offering a promising
exploration direction for using machine learning algorithms
to solve travel demand estimation problems. In their study,
the machine learning algorithms were tailored to estimate
travel demand for transportation planning purpose. In this
paper, we develop a framework which introduces machine
learning algorithms into real-time dynamic vehicle flow O-D
estimation for online trafficmanagement purpose. The frame-
work consists of three major modules: a learner, an assigner
and a searcher. A convolutional neural network (CNN) is
designed as the learner to capture the patterns that character-
ize the dynamic mappings between the estimated O-D flows
and the assigned link flows. Then, the methods to estimate a
regular O-D matrix and real-time O-D flows are sequentially
developed by using the trained CNN as the assigner and two
developed Genetic Algorithms (GAs) as the searcher.

The contributions of this study are highlighted on the fol-
lowing aspects:

(1) A learning-assigning-searching framework to solve the
real-time DODE problem is proposed. Compared with a
classical solution framework with an iterative and intractable
traffic assignment modeling process, the proposed frame-
work develops a learning-assigning strategy to implement a
one-time assignment, significantly speeding up the solving
process of the DODE problem.

(2) A CNN-based model to learn the patterns that char-
acterize the dynamic mappings between the estimated time-
varying O-D flows and the assigned link flows is developed.
In the model, the time-varying O-D flows are encoded as a
tensor and the assigned link flows are encoded as a vector,
while a series of CNN components are tailored to extract
intrinsic and hierarchical features and patterns from a prior
O-D data set.

(3) Two GA-based algorithms are separately presented for
offline O-D pattern extraction and real-time dynamic O-D
estimation. Unlike the O-D estimation methods that heavily
rely on an accurate target O-D matrix, the presented algo-
rithms take raw flow ranges as the inputs, making them more
robust in the case of lacking an accurate target O-D matrix.

II. LITERATURE REVIEW
For a general network, two issues are usually required to
estimate dynamic O-D flows, i.e. the upper-level dynamic
O-D estimation problem and the lower-level DTA prob-
lem, though some single-level based approaches have been
proposed [9]–[12].

To deal with the first issue, three categories of methods
have been proposed. The first formulates the O-D estima-
tion problem using constrained statistical optimization func-
tions, e.g. entropy maximization, generalized least squares,
and Bayesian inference. Willumsen [13] first extended the
entropy maximization model to handle the dynamic traffic
counts for a general network. Cascetta et al. [1] presented
two types of generalized least squares estimators to infer O-D
demand in a dynamic context. One is a simultaneous estima-
tor that estimates the entire set of dynamic O-D flows in one
step using link traffic counts from all time intervals, while
the second is a sequential estimator that derives the O-Dflows
using both previous O-D estimates and the current and previ-
ous traffic counts. Due to its ability to incorporate prior infor-
mation in a natural manner, the Bayesian inference method
was proposed by Hazelton [14] to estimate time-varying
O-D matrices from link count data collected on a daily basis.
As described, a significant advantage of the Bayesian
approach is that, given the Bayesian posterior distribution
for model parameters, the confidence and prediction inter-
vals can be constructed to provide guidance to the range
of estimated O-D flows. Note that many of the statisti-
cal functions mentioned above are equivalent under certain
assumptions [15].

The second category of the methods aims to build a state
space model to iteratively estimate dynamic O-D flows.
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Typical methods include the Kalman filtering and its vari-
ants. Okutani [16] developed a standard linear Kalman filter
model to obtain optimal estimates of dynamic O-D flows.
Although the model has proven to be potential for online
applications, the use of the autoregressive transition equa-
tion makes it hard to capture complex structural informa-
tion on trip making [17]. To overcome this shortcoming,
Ashok and Ben-Akiva [17], [18] improved the transition
equation by replacing O-D flows with O-D flow deviations.
The use of the deviations better supports the required nor-
mality assumptions, but requires the knowledge of historical
O-D flows [19]. Moreover, the stationary assumption in the
autoregressive model could not be satisfied. In view of this,
Zhou and Mahmassani [20] presented a structural state space
model to incorporate regular demand information, structural
deviations and random fluctuations. Similarly, Lu et al. [21]
developed a Kalman filter model for dynamic O-D estima-
tion using multi-source sensor data. Experiments show the
estimation performance can be effectively improved.

The third category of the methods uses heuristic search
algorithms since the DODE problem is usually formulated
as a nonconvex optimization problem. Yin [6] proposed a
GA-based (GAB) approach to solving bilevel programming
problems, and concluded the approach is more efficient than
the sensitivity-analysis-based approach presented byYang [5]
in a simpler manner. Subsequently, Kim et al. [22] proposed
a GAB approach for the cases with significant differences
between the target and true O-D matrices. Later, a series
of work has been explored with respect to using heuristic
search algorithms, e.g. Baek et al. [23], Stathopoulos and
Tsekeris [24], Yun and Park [25], Kattan and Abdulhai [26],
Park and Zhu [27], and Huang et al. [28].
To solve the lower-level DTA problem, the analytical and

simulation-based DTA models have been presented, most of
which are subject to a user equilibrium constrain. Earlier
analytical studies [29]–[31] simply used link performance
functions to determine path travel costs, and suffer from the
limitation to represent the dynamics and complexity of real-
world traffic flow systems [12]. Therefore, simulation-based
DTA models have been proposed. Zhou and Mahmassani [2]
employed the DYNASMART-P simulation program [32] to
obtain the link flow and link-to-link flow proportions for
DODE. Huang et al. [28] applied the microscopic simula-
tion tool, TRANSIMS, to estimate dynamic O-D flows with
hourly traffic counts. Toledo and Kolechkina [33] proposed a
scheme for off-line DODE problem, where the mesoscopic
traffic simulation model, Mezzo, was adopted to conduct
network loading. Other simulation models employed include
VISSIM [34], DynaMIT [35], PARAMICS [36], etc.

In a bilevel solution framework, the lower-level DTA
model is to establish the dynamic mappings between the
estimated time-varying O-D flows and the assigned link
flows. Generally, the establishment of the dynamic mappings
involves an iterative and intractable assignment modeling
process. A potential idea is that if we can learn and capture
the patterns of the dynamic mappings, the iterative process

could be thus avoided to speed up the solving process of
the DODE problem. For a given road network, though the
mappings vary time-to-time, they show time-of-day and day-
of-week patterns because of regular travel behaviors and
traffic conditions in the network. In the following sections, we
try to present a solution framework for the real-time DODE
problem using machine learning algorithms which can learn
and capture the patterns.

III. METHODOLOGY
A. PROBLEM STATEMENT AND DEFINITIONS
In general, the DODE problem that uses observed link flows
to indirectly infer dynamic O-D flows can be formulated as
the following optimization problem:

min
dt ,vt

[
F1
(
dt , d̄t

)
+ F2 (vt , v̄t)

]
, (1)

subject to

vt = M (dt−δ, . . . , dt−1, dt) , (2)

where
t is the time interval that is usually defined as 15-min for
online traffic management and control, as adopted in this
study,
dt is the estimated O-D matrix (represented as vector) in
time interval t whose element, d it (1 ≤ i ≤ n), is the trips
between the ith of n O-D pairs in the network,
d̄t is the target O-D matrix in time interval t obtained by
traffic surveys or a prior estimator,
vt is the vector of estimated link flows in time interval t
whose element, vjt (1 ≤ j ≤ m), is the flow on the jth of m
links in the network,
v̄t is the vector of observed link flows in time interval t ,
F1
(
dt , d̄t

)
represents the function of generalized distance

measurement or errors between dt and d̄t , e.g. Euclidean
distance function or entropy function,
F2 (vt , v̄t) represents the function of generalized distance
measurement or errors between vt and v̄t ,
δ is the maximum number of time intervals during which
the O-D flows leave origins and reach target links, i.e. vt
is made up of time-varying O-D flows dt−δ, . . . , dt−1, dt ,
and M (dt−δ, . . . , dt−1, dt) represents the function of the
dynamic mappings that describe the relationship between
the time-varying O-D flows dt−δ, . . . , dt−1, dt and the
observed link flows vt .

B. PROPOSED FRAMEWORK
Figure 1 shows the proposed framework of the methodology
with four major steps. Step 1 collects and prepares reliable
traffic flow data by means of a series of data preprocess-
ing operations. In Step 2, a CNN model is developed as
the learner to capture the dynamic mappings between the
estimated time-varying O-D flows and the assigned link
flows. In Step 3, the CNN model trained with the prior O-
D data set is used as the assigner and the offline O-D pattern
(regular O-D matrix) is estimated as a template for real-time
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FIGURE 1. The proposed framework for real-time DODE.

O-D estimation. In Step 4, by taking the regular O-D matrix
as the initialization solution, the GA combined with the
assigner are utilized to estimate real-time O-D flows using
real-time link flows and turning movement flows. Note that
Step 2 and 3 are conducted in an offline manner, and could
be monthly or seasonally updated, depending on traffic con-
dition patterns for the network.

C. DATA PREPARATION
The aim of the data preparation is to provide clean and reliable
traffic data for real-time O-D estimation. To this end, several
preprocessing operations need to be carried out. For instance,
data cleaning operation removes duplicate and noisy data
records from raw data, while missing data imputation opera-
tion attempts to estimate missing values for incomplete traffic
flow data. In addition, spatiotemporal aggregation operations
are conducted to obtain the 15-min aggregated link flows and
turning movement flows for DODE.

Three sets of traffic data are required for real-time DODE.
The first is the prior O-D flows and corresponding link flows
and turning movement flows. The prior data is used to train
the CNNmodel to capture the dynamicmapping patterns, and
can be obtained based on traffic simulation, trajectory recon-
struction [37], or other prior O-D estimation methods. In this
paper, we adopt the traffic simulation technique, as shown
in the empirical analysis section. The second set consists of

historical averaged link flows and turning movement flows at
15-min intervals by time-of-day and day-of-week for regular
O-D matrices estimation. The third set is composed of real-
time 15-min link flows and turning movement flows, which
are utilized to estimate time-varying O-D flows in real time.

D. DYNAMIC MAPPING PATTERN LEARNING WITH CNN
A key role of a DTA model under a bilevel solution frame-
work is to assign givenO-Dflows to different links for a given
network. In other words, the DTAmodel aims to establish the
dynamic mappings between the estimated O-D flows and the
assigned link flows. With this in mind, a CNN is designed
as the learner to learn the dynamic mapping patterns from
the prior data set. As the dynamic mapping patterns could
be subject to the change of different traffic control strategies
(e.g. signal metering) and the occurrence of special traffic
events (e.g. work zone), it is necessary to consider these
specific traffic scenarios when establishing the CNN model.
However, since a CNN model is capable of capturing various
patterns from available data, it does not require to be trained
separately for different traffic scenarios, provided the used
data is able to fully reflect the corresponding patterns.

1) CNN ARCHITECTURE DESIGN
In essence, CNN is a special category of feed-forward arti-
ficial neural networks, and has been successfully applied to
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FIGURE 2. Architecture of the designed CNN.

various application fields. In contrast with the conven-
tional feed-forward neural networks, e.g. multilayer percep-
tron (MLP), the CNN exploits spatially local correlation in
data structure by connecting neurons of adjacent layers with
a local connectivity pattern [38]. That is, each neuron in
the current layer is only connected to a small region of the
previous layer. The region is called the receptive field of
the connected neuron. By scanning and stacking receptive
fields of many layers, the CNN is able to extract complex and
hierarchical features and patterns from data. Such an ability
makes the CNN one of the most popular machine learning
algorithms during the past decade [39].

A CNN is composed of a sequence of layers, including
input layer, convolutional layer, pooling layer, fully con-
nected layer, and output layer. These layers are assembled
into a pipeline where data is input, transformed, correlated
and finally output. Figure 2 illustrates the architecture of the
designed CNN. It has one input layer, k + 1 convolutional
layers, k + 1 pooling layers, one fully connected layer, and
one output layer. The parameter k is empirically determined
in the later experiments.
• Input layer and output layer

In the CNNmodel, the prior O-D flows are used as the inputs,
while the outputs are the prior link flows and turning move-
ment flows. As defined in Section III. A, the link flows vt
is made up of the time-varying O-D flows dt−δ, . . . ,dt−1, dt ,
where vt hasm elements, and dt has n×n elements. Therefore,
for the CNN, the input is encoded as an n × n × (δ + 1)
tensor and the output is encoded as anm×1 vector. Note that
the turning movement flows are included in vt because the
performance of a DODE model can be effectively improved
by incorporating turning movement flows into the estimation
process [40]. The parameter δ varies from network to net-
work, and can be determined by computing the longest trip
time in the study network. For instance, if the longest trip time
regarding the network is 17 minutes and the estimation time
interval is defined as 15-min, δ can be simply set as 2.
• Convolutional layer

The convolutional layer serves as feature extractors to learn
multiple feature representations from the inputs of the layer.

The inputs are often convolved with a set of filters to cal-
culate new feature representations. The convolution process
is equivalent to computing dot products between the fil-
ters and the inputs. The obtained feature representations are
called feature maps each of which is a 2-dimensional array.
After stacking the feature maps of all filters along the depth
dimension, an n × n × c tensor can be obtained, where
c is the number of the filters. To introduce nonlinearity
into the designed CNN, a nonlinear activation function is
required to act on each element of the tensor. According to
Glorot et al. [41], the rectified linear units (ReLU) function
allows much smaller training times than the sigmoid and
hyperbolic tangent functions, and is chosen as the activation
function of the convolutional layers. The ReLU function is
mathematically defined as f (x) = max (0,x), where x repre-
sents an element of the input tensor. In addition, to control
the size of the output, zero padding strategy is adopted to
symmetrically add zeros around borders of the input tensor.
• Pooling layer

The pooling layer is to reduce the spatial dimension of the
featuremaps, and hence to control overfittingwhile achieving
spatial and scale invariance to input distortions and transla-
tions [42]. Max pooling is one of the most common pooling
strategies, which operates independently on each feature map
and resizes it spatially. Formally, the max pooling strategy
selects the largest element within each receptive filed such
that

ya,b (c) = max
(p,q)∈Ra,b

xp,q (c), (3)

where
Ra,b is the receptive field associated with the cth feature
map,
ya,b (c) is the output obtained by conducting the pooling
operation on Ra,b, and
xp,q (c) represents the element of the cth feature map at
location (p, q) contained by Ra,b.
• Fully connected layer

The fully connected layer aims to interpret the extracted
features and perform high-level reasoning by establishing full
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connections between the output of the previous layer and
the input of the next layer. In order to establish mappings
from the extracted features to final outputs, a corresponding
mapping function is required. Because of the existence of
the nonlinearity relationship between the time-varying O-D
flows and the link flows, a nonlinear function named Smooth
Adaptive Activation Function (SAAF) is adopted because it
can decrease model bias and complexity simultaneously [43].
The SAAF is in essence a piecewise polynomial. Given ξ +1
real numbers a1, a2, . . . ,aξ+1 in ascending order and a non-
negative integer η, the SAAF is defined as:

f (x) =
∑η−1

c=0
αcpc (x)+

∑ξ

l=1
βlb

η
l (x), (4)

pc (x) =
xc

c!
, (5)

bηl (x) =
∫ ∫

· · ·

∫ x

0︸ ︷︷ ︸
η times

b0l (γ ) d
ηγ, (6)

b0l (x) = I (al ≤ x < al+1) , (7)

where
η is the degree of polynomial segments,
al represents the break points,
pc and bηl are basis functions,
αc and βl are learned parameters, and
I (·) is the indicator function.
From the definition, we can see that the SAAF is a linear

combination of the defined basis functions with adjusted
weights. As a piecewise quadratic SAAF can already achieve
satisfactory results, η is set as 2 and al is distributed in
[−1.1, 1.1], as suggested by Hou et al. [43]. The number
of segments ξ is randomly chosen as 15 based on the proof
that the model complexity can be bounded regardless of the
number of polynomial segments [43].

2) CNN INITIALIZATION
CNN initialization, namely weight initialization, has a pro-
found impact on both the convergence rate and generaliza-
tion ability of the designed network. Large weights lead to
divergence, while small weights do not allow the network to
learn. In this study, a robust initialization method presented
by He et al. [44] is adopted. It initializes the biases to be
0 and samples the initial weights Wl at corresponding layers
from the zero-mean Gaussian distribution whose standard
deviation is

√
2/nl , that is, Wl ∼ N

(
0, 2

nl

)
. Here, nl is the

number of connections from the previous layer.

3) CNN TRAINING
After the architecture design and network configuration,
the CNN model is trained with the back propagation algo-
rithm that uses gradient descent optimization strategy to
update the parameters with the aim of minimizing the loss
function:

L (θ) =
1
2N

∑N

h=1

(
ŷh − yh

)
, (8)

where

ŷh is the predicted value of the hth sample, representing the
assigned link flows and turning movement flows,
yh is the true value of the hth sample, representing the
observed link flows and turning movement flows, and
N is the size of the training set.

A variety of gradient descent optimization strategies have
been proposed in recent years. Among them, Adam [45] is
the most straightforward and popular one. Denote θs as the
learned parameter vector at timestep s, the update rule of the
Adam is described by the following equations:

θs = θs−1 − α ·
ωs

1− βs1

/(√
vs

1− βs2
+ ε

)
, (9)

ωs = β1 · ωs−1 + (1− β1) · gs, (10)

vs = β2 · vs−1 + (1− β2) · g2s , (11)

gs = ∇θLs (θs−1) , (12)

where

gs is the gradient of loss function Ls regarding θ at
timestep s,
ωs is the 1st moment (mean) of the gradient, ω0 = 0,
vs is the 2nd raw moment (uncentered variance) of the
gradient, v0 = 0,
β1, β2 ∈ [0 , 1) are the exponential decay rates for
the moment estimates, and the default values are set as:
β1 = 0.9, β2 = 0.999,
α is the step size that controls the update rate of θ , and the
default value is set as 0.001,
ε is a small constant for avoiding the divisor is 0 and
commonly set as 10−8.

The parameter vector θ is iteratively updated during the
training phase. In addition, a validation data set is required to
evaluate the performance of the trained model during each
training epoch. When the model achieves the best perfor-
mance on the validation set, the training will be terminated.

E. OFFLINE O-D PATTERN EXTRACTION BASED ON GA
The offline O-D pattern extraction is to estimate a template
O-D matrix based on historical averaged link flows and turn-
ing movement flows. To this end, an O-D pattern estimation
algorithm based on GA is presented. Figure 3 shows the
pseudocode of the algorithm. The main input is a set of his-
torical averaged flows (i.e. link flows and turning movement
flows) collected over T time intervals of the study period. The
output is an O-D pattern that is composed of the regular O-D
matrices regarding the T time intervals.

The method starts at generating a set of random solutions
D = {Dh | 1 ≤h ≤ N } in a constrained search space R =
{τc}

n∗n∗T
c=1 , where τc is the range that the cth of (n ∗ n ∗ T )

O-D flow falls into. Here, n is the number of O-D pairs
in the network. In other words, each solution of the GA is
encoded as a group of integers representing (n ∗ n ∗ T ) O-D
flows during the T time intervals. To measure the quality of
each solution, a proper fitness function is required, which is
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FIGURE 3. Pseudocode of the presented offline O-D pattern extraction algorithm.

defined as follows:

fitness (Dh) =
1

∑T
t=δ+1

 1
m

∑m
j=1

√
2
(
v̂jt−v̄∗

j
t

)2
v̂ jt+v̄∗

j
t

 , (13)

where
v̂jt represents the assigned historical averaged flow on the jth

link during the time interval t for the solution Dh,
v̄∗jt represents the observed historical averaged flow on
the jth link during the time interval t for the solution
Dh, and m is the number of monitored links in the
network.
As the equation shows, the fitness of a solution is defined

as the reciprocal of GEH statistic which contains both infor-
mation from the absolute error and the absolute percentage
error [46]. The higher the fitness, the higher the probability
of the solution being selected. After computing the fitness
of all candidate solutions, the probability of a solution being
selected is calculated as:

p (Dh) =
fitness (Dh)∑N
h=1 fitness (Dh)

. (14)

According to the value of p, a pair of solutions are selected
to produce a new offspring by conducting the crossover oper-
ation with a probability ofµ. During this process, a crossover
point is randomly determined, and all values beyond this point
in either solution are swapped between the two parent solu-
tions. The selection and crossover operations are repeated

N
/
2 times to make the population size unchanged. In some

cases, the solutions in the initial population have the same
value at a particular position, making all future offspring
cannot change this value in the whole search process. To pre-
vent this problem, the mutation operation is conducted to
introduce some randomness into the search process based on
the mutation probability λ. In this situation, the value at the
mutation position c is randomly set as an integer within the
given range τc. The above process is repeated until the maxi-
mum number of iterations I is reached. The final solution D∗

is determined as the solution with the highest fitness in the
candidate solution set D.

F. REAL-TIME O-D ESTIMATION BASED ON GA
In a realistic network, traffic count on a given link is usually
contributed by the O-D flows during several continuous time
intervals. Therefore, an algorithm for real-time dynamic O-D
estimation is presented. The pseudocode of the algorithm is
depicted in Figure 4.

In contrast with the offline O-D pattern extraction algo-
rithm, the real-time algorithm takes the real-time link and
turning movement flows and the extracted O-D pattern D∗

as the inputs. During initialization stage, a set of N solutions
are produced by generating random integers in the range
constrained byD∗. For instance, an O-D flow in a certain time
interval is 50 (veh/15 min), the range is defined as an integer
interval which allows the flow to fluctuate around it about
50 percent, i.e. [25, 75]. This initialization strategy ensures
the method to produce reasonable O-D solutions. After that,
the generated solutions are evaluated by the following fitness
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FIGURE 4. Pseudocode of the presented real-time dynamic O-D estimation algorithm.

function:

fitness (Dh) =
1 1

m

∑m
j=1

√
2
(
v̂jt−v̄

j
t

)2
v̂jt+v̄

j
t

 , (15)

where
v̂jt represents the assigned real-time link flows and turning
movement flows on the jth link in the time interval t for the
solution Dh, and
v̄jt represents the observed real-time link flows and turning
movement flows on the jth link in the time interval t for the
solution Dh.
The following selection-crossover-mutation steps are as

similar as that of the offline version. After conducting the
maximum number of iterations I , the algorithm is terminated,
and the optimal solution is determined as the solution with the
highest fitness while δ + 1 ≤ t ≤ T . While 1 ≤ t ≤ δ, the
corresponding flow vector d̄t in D∗ is used as the alternative
solution because during these δ time intervals, no sufficient
historical O-D flows can be used to estimate the dynamic O-D
flows.

IV. EMPIRICAL ANALYSIS
A. NETWORK DESCRIPTION
The proposed framework is evaluated using a realistic urban
road network, which covers the downtown area of Kunshan,
China. There are 32 intersections and 143 links in the net-
work. Among the intersections, 27 of them are signal con-
trolled, while the remaining are non-signal controlled.

Traffic flow data were archived through three data col-
lection ways. The first is the use of microwave detectors to
collect link flows. The second is the use of high-resolution
video detectors to collect turning movement flows. The third
is the use of automatic license plate system to collect travel
time information. As a consequence, a total of 111 links
and 127 turning movements were monitored in the network.
In addition, based on the division of the functional district of
the network, a total of 25 traffic analysis zones were defined
for the dynamic O-D estimation task, as shown in Figure 5.

B. DATA DESCRIPTION
As mentioned above, a total of 111 link flows and 127 turn-
ing movement flows were collected for estimating dynamic
O-D flows in the study network. The study period covers
the morning hours from 6:00 AM to 11:00 AM in June 5 to
June 19, 2017. As the estimation time interval is defined as
15-min, the study period was finally divided into 20 time
intervals, denoted as TI1, TI2, . . . , TI20, respectively.

By inspecting the automatic license plate data, we found
the longest trip time in the study network is 23 minutes, and
the parameter δ was thus set as 2 in the DODE process.
Meanwhile, the traffic flow data collected from June 5 to
June 18 was used for offline O-D patter extraction, while the
corresponding data collected in June 19 was used for real-
time DODE performance evaluation.

A key problem in the DODE modeling process is how
to acquire prior O-D flows and the corresponding link
flows and turning movement flows to train the CNN model.
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FIGURE 5. Network topology representation.

Traffic survey is one of the most common means for prior
O-D data collection. However, such means is unsuitable for
our task because numerous samples are required to train a
satisfactory CNN model, making it cost-expensive to collect
so many samples. Another potential means is to use vehi-
cle trajectory reconstruction technique to obtain prior O-D
data. It should be noted that extra cares need to be taken
for modeling the market penetration rate factor when using
this technique. In this study, we present a simulation-based
method to establish the prior data set. The main procedure of
the method is described as follows:
a. For a given O-D pair at timestamp t , estimate a raw

range of its flow value according to a prior estimator
(e.g. a license plate matching estimator or an earlier
O-D estimator) or a traffic survey;

b. Generate a random integer within the range and use it
as the flow value of the O-D;

c. Repeat steps a and b for all O-D pairs to generate an
O-Dmatrix Xt (represented as a vector) at timestamp t;

d. Repeat step c to generate an O-D matrix for each of the
T time intervals in the study period, and finally, we can
get an O-D matrix set

{
X1, . . . ,XT−1,XT

}
;

e. Assign the generated O-D matrices to the network
using a simulation software, e.g. PARAMICS, and
extract the corresponding link flows and turning move-
ment flows

{
Y1, . . . ,YT−1,YT

}
;

f. Join Xt−δ, . . . ,Xt−1,Xt and Yt together to produce
a prior O-D sample St =

(
Xt−δ, . . . ,Xt−1,Xt ,Yt

)
at

timestamp t , where δ + 1 ≤ t ≤ T ;
g. Repeat step f to produce a prior O-D sample for each

of (T − δ) time intervals;

h. Generate N prior O-D samples to constitute the prior
O-D data set

{
Sti
}N |T
i=1|t=δ+1 by repeating step g.

In the study, N is set as 1100, that is, a total of 1100 prior
data samples were generated using the above way. Among
them, 1000 data samples were used as the training set of the
CNNmodel, while the remaining 100 data samples were used
as the test set for model evaluation. N was set as a relatively
small number because it needs to take a time-consuming
simulation process to generate a prior data sample, while the
generated data set withN = 1100 is sufficient enough to train
a well-performed CNN model.

C. PERFORMANCE MEASURES
To evaluate the proposed framework, three performance
measures are adopted:

MAE =
1
n

∑n

i=1

∣∣yi − ŷi∣∣ , (16)

MAPE =
1
n

∑n

i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ , (17)

GEH =

√
2
(
ŷi − yi

)2
ŷi + yi

, (18)

where
yi is the actual value of the ith sample for the considered
variable,
ŷi is the estimated value of the ith sample for the considered
variable, and
n is the number of samples.
The MAE and MAPE measures are used to quantify the

difference between the actual O-D flows and the estimated
O-D flows, while all of the three measures are utilized to
measure the difference between the actual link flows and the
assigned link flows.

D. CNN MODEL VALIDATION
To validate the CNN model, its overall performance on the
test set of the prior traffic data was first evaluated. After that,
the effect of the number of network layers and the effect of the
size of training set on the model performance are separately
explored.

1) OVERALL PERFORMANCE EVALUATION
For the CNN model, the input is a 25×25×3 tensor, and the
output is a 238× 1 vector which contains 111 link flows and
127 turningmovement flows. For illustration purpose, wewill
use ‘link’ flows to represent ‘link+ turning movement’ flows
afterward.

As mentioned earlier, 100 samples are used to evaluate the
CNN model. Thus, a total of 23800 assigned link flows can
be estimated. Figure 6 shows the comparisons of the assigned
(estimated) and observed (true) link flows during six typical
time intervals, i.e. TI3, TI4, TI9, TI10, TI19 and TI20. The
time period during from 6:30 AM to 7:00 AM (TI3 and TI4)
is the stage when the traffic in the network is becoming
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FIGURE 6. Comparisons of the assigned and observed flows of the monitored links and turning movements during
typical time periods. (a) TI3 (6:30 AM ∼ 6:45 AM). (b) TI4 (6:45 AM ∼ 7:00 AM). (c) TI9 (8:00 AM ∼ 8:15 AM).
(d) TI10 (8:15 AM ∼ 8:30 AM). (e) TI19 (10:30 AM ∼ 10:45 AM). (f) TI20 (10:45 AM ∼ 11:00 AM).

busy, while the period during from 8:00 AM to 8:30 AM
(TI9 and TI10) is the most crowded time in the morning.
Distinct from the former two periods, in the period during
from 10:30 AM to 11:00 AM (TI19 and TI20), the crowded
traffic begins to calm down, and flows on the links gradually
decrease.

As seen from the figure, the CNN model performs well
on the test set. More specifically, all slopes of the fitted
linear regression models are approximate to 1.0 and the data
points gathered around the regression line, meaning most
of the assigned link flows are close to the true link flows.

Meanwhile, all coefficients of determination, denoted by R2,
are greater than 0.9, demonstrating at least 90 percent of the
data points in each subfigure can be well explained by the fit-
ted regression models. Therefore, it can be seen that the CNN
model has learned and captured the patterns that characterize
the dynamicmappings between prior time-varying O-Dflows
and the corresponding link flows. In addition, the R2 of
TI9 and TI10 are less than that of the other time intervals,
implying the model performs relatively poorer during the two
time intervals. This can also be illustrated by the fact that the
data points associated with TI9 and TI10 are more scattered
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FIGURE 7. MAE and MAPE distributions of the CNN model.

than that of the remaining time intervals. The underlying
reason is that during TI9 and TI10, the traffic was more
congested than that of the other four time intervals, and hence
caused more uncertainties in user route choices, leading to
more complicated patterns that are challenging to precisely
capture by the model.

To go further in evaluating the overall performance of the
CNN model, the MAE and MAPE measures of the assigned
link flows from all 625 O-D pairs were calculated, respec-
tively. Figure 7 provides the distributions of the two mea-
sures. As the figure shows, the model can produce accurate
estimation results during TI3 and TI4 since most MAEs fall
into the range between 10 and 15 vehicles every 15 minutes,
and both of the averaged MAPEs approximate to 6%.
Unsurprisingly, the model performances associated with the
other four time intervals are relatively deteriorated. Even
so, the averaged MAE and MAPE associated with the most
congested time interval TI9 are 23 (veh/15 min) and 11%,
respectively, which are both acceptable in real applications.
It should be noted that there are several outliers in both mea-
sure distributions. Specifically, three evident outliers associ-
ated with TI9, TI19 and TI20 can be identified in Figure 7(a).
Their values are all greater than 30 (veh/15 min). Similarly,
the outliers associated with the same time intervals can also
be found in Figure 7(b), and their MAPEs are all greater
than 14%. These outliers might be partially explained by
the uncertainties resulting from traffic fluctuations in the
network.

2) INFLUENCE OF DIFFERENT NUMBER
OF NETWORK LAYERS
The number of network layers plays an important role in
CNNmodeling. Generally, with the increase of the number of
network layers, the generalization ability of the model could
be further improved. To evaluate the model performance with
different number of network layers, the CNN model with
five different network layers was tested. As the convolutional
layer and the pooling layer are the most key layers that
influence the accuracy of CNNs, the CNN model is mainly
distinct in the number of the combination of the convolutional
and pooling layers, i.e. the parameter k depicted in Figure 2.
In the study, k is set as 0, 1, 2, 3, and 4, respectively.

In other words, we can check the performance of the CNN
model with 5, 7, 9, 11, and 13 network layers through the
experiment.

FIGURE 8. Model performance with different number of network layers.

Figure 8 shows the performance comparisons of the CNN
model over the test set. It is a little counterintuitive that with
the increase of the number of network layers, the average
MAPEs of the model does not decrease as expected, espe-
cially for TI9, TI10, TI19 and TI20. One possible explanation
is that the model with 5 layers is already able to capture the
potential patterns in the training set, whereas the increase of
the network layer number increases the model complexity,
resulting to overfitting to some degree. It should be noted
that the performance of a CNN model is closely associ-
ated with various settings of CNNs. Therefore, the model
performance may be improved by using some advanced
parameter adjustment strategies. However, this is beyond the
scope of this paper. Considering the 5-layer CNN model
can already achieve satisfactory performance with the least
training cost, the number of layers is fixed as 5 in the later
experiments.
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FIGURE 9. Model performance with different size of training set.

3) INFLUENCE OF DIFFERENT SIZE OF TRAINING SET
Another factor to affect the model performance is the size of
training set. With this in mind, we tested the CNNmodel with
different training sets, which are distinct in the number of
training data samples. The comparison results are illustrated
in Figure 9. It is observed that the model performs well when
the time intervals are TI3 and TI4. Meanwhile, for the other
four time intervals, the model performances have been gradu-
ally improved with the increase of the size of the training set.
More specifically, when the number of the training samples is
less than 700, the model cannot achieve satisfactory results.
However, when the sample number raises to 900, the average
MAPE begins to be lower than 10%. In addition, it is worth
noting that the model performance associated with TI9 is
better than that of TI10, TI19 and TI20 when the sample
number is below 700, whereas it achieves the worst accuracy
eventually. A potential reason is that more traffic congestion
could occur in TI9, making the model harder to give accurate
estimations because of the complicated dynamic mapping
relationship between the O-D flows and the link flows. As the
comparison results show, with the increase of the size of
the training set, the model performance is further improved.
In view of this, the size of the training set is set as 1000 in the
later experiments.

E. DODE RESULTS ANALYSIS
Collecting ground-truth O-D flow data is a quite challenging
task in reality. Therefore, a traffic simulation model based
on Q-PARAMICS was built as the testbed to validate the
DODE performance of the proposed framework. The model
has been fully calibrated and tested in [21]. In this sense,
the link flows and turning movement flows collected from
the installed traffic sensors are treated as the observed link
flows and turning movement flows, while the O-D flows
obtained from the simulation model are treated as the true
O-D flows.

1) CONVERGENCE ANALYSIS OF GA
The parameters of the GA for offline O-D pattern extraction
were set as: population size N = 800, crossover probability

µ = 0.9, mutation probability λ = 0.09, and maximum
number of iterations I = 10000. The parameters of the GA
for real-time dynamic O-D estimation were set as the same as
the offline version.

To go through the evolution process of the GA for real-
time O-D estimation, the maximum fitness and average fit-
ness in each GA iteration of the real-time O-D estimation
algorithm were both recorded, as depicted in Figure 10. From
the two subfigures, we can see that the two types of fitness
curves have similar convergence trends, which both asymp-
totically converge to the corresponding peak value, meaning
the generated solutions in each iteration evolve toward the
optimal solution. Besides, the curves associated with TI3 and
TI4 converge earlier than that of the other four time intervals.
This reflects the fact that it is more challenging to estimate
dynamic O-D flows under congested traffic conditions, as
mentioned earlier. Note that the search process in effect can
be terminated at about the 6500th iteration for all of the six
time intervals.

The two GA-based models mentioned above were imple-
mented using theMATLABprogramming language, and their
running times were recorded using a computer equipped
with a 3.2 GHz 2-core CPU and a 16 GB RAM. The
estimation (assignment) time of the trained CNN model is
0.0096 seconds per sample, significantly faster than that of
the simulation-based model which needs about 8.3 seconds
for each assignment. This is due to the fact that the CNN
model was trained in an offlinemanner and used to implement
an online traffic assignment is instantaneous.

To go further in evaluating the computational efficiency of
the DODE process, the DODE computation times regarding
the six typical time intervals mentioned earlier were recorded
as 202, 197, 736, 741, 711, and 706 seconds, respectively.
Note that the time of the DODE process for each time interval
was computed as the elapsed time duringwhich themaximum
fitness was reached. It can be observed that the computa-
tion time of all DODE models are less than 15 minutes,
meaning they can be perfectly applied to real-time traffic
management.

2) DODE PERFORMANCE EVALUATION AND ANALYSIS
The accuracy of an O-D estimation model is easily impacted
by the O-D pairs with large traffic demands. Therefore,
24 O-D pairs whose average flow is greater than
50 (veh/15 min) were chosen to evaluate the performance of
the proposed real-time DODE algorithm.

Table 1 shows the relevant evaluation results. The second
column of the table represents the average flow of the selected
O-D pairs in 18 time intervals (TI3-TI20) of the study period.
The third column lists the number of intervals within which
the average flow is less than 5 (veh/15 min). The fourth
and fifth columns show the MAEs and MAPEs calculated
based on the estimated and observed O-D flows, respectively.
It is easy to see that the MAEs of all selected pairs are
no more than 7 (veh/15 min), while the MAPEs of most
of the selected O-D pairs are less than 15%, demonstrating
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FIGURE 10. Convergence evolution of the real-time dynamic O-D estimation algorithm.

TABLE 1. Evaluation results for the proposed DODE algorithm on the selected O-D pairs.

the proposed algorithm is capable of providing accurate esti-
mates. Note that the figures in the parentheses in the fourth
and fifth columns were calculated in the cases where the
flows with value of less than 5 (veh/15 min) were included.
These figures were given here because the existence of small
flows can significantly impact the values of the MAE and
MAPE measures, leading to an unreliable estimation of the
model performance. For example, for the O-D pair 19-20,
if the small flows associated with seven time intervals are

included, theMAPEwill be increased from 4.09% to 18.33%.
However, as can be seen from Figure 11(f), when the average
flow is smaller than 5 (veh/15 min), the estimates given by
the proposed algorithm are still acceptable.

To go further in inspecting the performance of the DODE
algorithm, the top eight O-D pairs in terms of the MAPE
in descending order were selected and their estimated and
observed O-D flows during the six typical time intervals were
compared, as shown in Figure 11. It is observed that themodel
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FIGURE 11. Comparisons of the estimated and observed O-D flows of the selected O-D pairs. (a) O-D pair 6-9. (b) O-D pair 8-9.
(c) O-D pair 10-23. (d) O-D pair 16-12. (e) O-D pair 19-2. (f) O-D pair 19-20. (g) O-D pair 20-17. (h) O-D pair 20-25.

achieves satisfactory performances since the estimated and
observed O-D flow curves for each selected O-D pair are
very close to each other. It is also worth noting that though
the MAPE of the O-D pair 19-20 is 18.33%, the estimated
and observed flow curves have strong consistency, even in the
cases where the observed flows are less than 5 (veh/15 min).

Comparisons between the estimated and observed flows on
all 625 O-D pairs during the six typical time intervals were
also conducted. The relevant results are shown in Figure 12.
As seen, both of the regression coefficient and the coeffi-
cient of determination associated with all of the typical time
intervals are very close to 1.0, demonstrating the proposed
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FIGURE 12. Comparisons of the estimated and observed O-D flows in typical time periods. (a) TI3
(6:30 AM ∼ 6:45 AM). (b) TI4 (6:45 AM ∼ 7:00 AM). (c) TI9 (8:00 AM ∼ 8:15 AM). (d) TI10
(8:15 AM ∼ 8:30 AM). (e) TI19 (10:30 AM ∼ 10:45 AM). (f) TI20 (10:45 AM ∼ 11:00 AM).

O-D estimation algorithm is accurate, and can be used for
practical applications.

V. CONCLUSIONS
The real-time estimation of dynamic O-D flows remains a
challenging research topic due to the significant complex-
ity in jointly solving both of the DTA and DODE prob-
lems. In this study, a learning-assigning-searching solution
framework using machine learning algorithms is presented
to estimate dynamic O-D flows in real time. A CNN model
is developed to capture the patterns that characterize the
dynamic mappings between the estimated time-varying O-D
flows and the assigned link flows. Next, an offline O-D
pattern extraction algorithm and a real-time O-D estimation
algorithm are separately developed by using the designed
GAs as the searcher and the established CNN model as
the assigner. The framework was evaluated with a realistic

network in Kunshan, China, and its effectiveness was demon-
strated by a series of experiments.

Future work could be focused on the following aspects.
First, it is worth exploring the applicability of the proposed
framework on a large-scale road network. Second, as the
developed CNN model cannot provide physical meanings of
the assignment process as done by the existing analytical
and simulation-based DTA models, some more advanced
machine learning algorithms regarding interpretation mod-
eling, e.g. Liu et al. [47], could be tailored to the proposed
framework. Third, it is interesting to explore the use of vehicle
trajectory data to establish the prior traffic data. A potential
benefit is that it can subtly avoid extensive simulation cali-
bration work. The recent study by Zhang et al. [48] regarding
how to efficiently calibrate a large-scale traffic simulator
provides another way to enhance the current work. At last
but not least, for the DTAmodeling, a mesoscopic simulation
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model is commonly preferred because of its high computa-
tional efficiency [7]. Therefore, the DTA models based on
mesoscopic simulation could be integrated into the proposed
framework in the future.
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