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ABSTRACT Driven by the good classification performance of the convolutional neural network (CNN),
this study proposes a CNN-based synthetic aperture radar (SAR) target recognition method. In this paper,
a novel data augmentation algorithm is proposed via target reconstruction based on attributed scattering
centers (ASC). The ASCs reflect the electromagnetic phenomenon of SAR targets, which can be used to
reconstruct the target’s characteristics. The sparse representation (SR) algorithm is first employed to extract
the ASCs from a single SAR image. Afterward, some of the extracted ASCs are selected to reconstruct the
target’s image. By repeating the process, many new images can be generated as available training samples.
In the classification stage, a CNN architecture is designed and trained by the augmented samples. For the
test sample, it is also reconstructed using all the extracted ASCs thus relieving the interferences caused by
the clutters or noises in the background. Finally, the reconstructed image from the test sample is classified
based on the trained CNN. The reconstructed image from the ASCs can reduce the clutters and noises
thus enhancing the image quality. More importantly, the generated new training samples could cover more
operating conditions, which may probably occur in SAR target recognition. Therefore, the trained CNN can
work more robustly in different situations. In the experiments, the moving and stationary target acquisition
and recognition (MSTAR) dataset is used to evaluate the performance of the proposed approach. This method
could classify the 10 classes of targets with an accuracy of 99.48% under the standard operating condition
(SOC). For the extended operating conditions like configuration variance, depression angle variance, noise
corruption, and partial occlusion, the proposed method also displays superior performance over some
baseline algorithms drawn from state-of-the-art literature.

INDEX TERMS Convolutional neural network (CNN), synthetic aperture radar (SAR), target recognition,
attributed scattering center (ASC), data augmentation.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) could work day and night
under different weather conditions to produce high-resolution
images of the focused area. To help interpretate a large-scene
SAR image, the Automatic Target Recognition (ATR) sys-
tem is designed, which generally consists of three steps:
detection, discrimination, and classification [1]. Target detec-
tion locates the potential Regions of Interest (ROIs) in the
large-scene SAR image thus eliminating the redundancy
caused by the background noises or clutters. These ROIs are
then processed in the target discrimination stage to reject the
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false alarms caused by natural clutters such as trees, shrubs,
and rivers. In the target classification stage, the remaining
ROIs are classified to determine their labels. As a super-
vised pattern recognition problem, the target classification
algorithm has been extensively investigated, which is called
the narrow definition of ‘‘SAR ATR’’ [2]. This study also
focuses on the target classification stage. Efforts are made
to improve the classification performance from two aspects:
feature extraction and classifier. Accordingly, the present
SAR ATR methods can be summarized as feature-oriented
and classifier-oriented ones. Different kinds of features were
sought in the previous works including those inherited from
the field of optical image processing and those specifi-
cally designed for radar images. Typical geometrical features
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like target outline [3], [4], binary target region [5]–[7], and
shadow [8], [9] were used as the basic features in SAR ATR.
The projection features could be efficiently extracted by the
manifold learning algorithms [10]–[14] like Principal Com-
ponent Analysis (PCA) [10], Non-negative Matrix Factoriza-
tion (NMF) [11], etc. Different from the optical images, SAR
images reflect the backscattering characteristics of the target,
which are sensitive to the aspect angles. Therefore, some
related features were also employed for SAR ATR such as
Attributed Scattering Centers (ASC) [15], azimuthal sensitiv-
ity image [16]. In [17]–[19], several matching strategies were
designed for two ASC sets with application to SARATR. The
classifiers provide decision engines for the extracted features
to determine the target labels. Many classifiers have been suc-
cessfully applied to SAR ATR including the Nearest Neigh-
bor (NN) [10], Adaptive Boosting (AdaBoost) [20], Support
Vector Machine (SVM) [21], [22], Sparse Representation-
based Classification (SRC) [23], [24], etc.

Recently, the deep learning technique has drawn extensive
interests because of its powerful capability of learning dis-
criminative representations from the original data [25]–[27].
As demonstrated in previous works, deep learning meth-
ods outperformed the traditional ones significantly in the
fields like speech signal processing, face recognition, etc.
Motivated by these works, the Convolutional Neural Net-
work (CNN) was also introduced into SAR ATR [28]–[35].
The results demonstrated the superiority of CNN over some
traditional methods especially under the Standard Operat-
ing Condition (SOC), where the test samples are notably
similar with the training ones. However, the application of
CNN into SAR ATR actually has some obstacles because
the available training samples of the interested targets are
quite limited. In addition, there are many Extended Operating
Conditions (EOCs) in the real-world environment such as
noise contamination, partial occlusion, etc., which can be
hardly handled by the network trained by a few training
samples. As a remedy, some works sought transfer learn-
ing [31], [32] or data augmentation [33]–[35] algorithms to
enrich the available training samples. In [31], some SAR
scene images were used for transfer learning to address the
target classification task in the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset. Malmgren-
Hansen et al. simulated SAR target chips from the tar-
get’s CAD models via electromagnetic (EM) code, which
were then applied to transfer learning for target recogni-
tion [32]. Ding et al. augmented the SAR training samples
by generating the translated, noisy, and pose-synthesized
SAR images from the original ones [34]. According to
SAR imaging mechanism, Yue generated noisy samples
at different Signal-to-Noise Ratios (SNR), multi-resolution
representations, and partially occluded images to train
CNN [35].

This study develops a novel strategy of data augmenta-
tion for SAR images in order to train a more robust CNN
for target recognition. In contrast to optical images, SAR
images actually record the backscattering field of the target

at the high frequency region, e.g., X-band. According to the
electromagnetic theories, the high-frequency response of a
target can be modeled as the summation of several local
phenomenon called scattering centers [15]. In this sense,
the target’s characteristics can be well maintained and recon-
structed by the scattering centers. In addition, when only
a part of the scattering centers are used in the reconstruc-
tion, the reconstructed image actually embodies the partial
properties of the target, which may be caused by EOCs like
partial occlusion. First, the Sparse Representation (SR) is
used to extract the ASCs from a single SAR image [36], [37].
According to the previous works, SR was capable of esti-
mating the attributes of ASCs with high effectiveness and
efficiency compared with the traditional image-domainmeth-
ods. In addition, because of the optimization during the solu-
tion of SR, this ASC extraction algorithm was immune to
noise corruption to some extent. Afterwards, some subsets
of the extracted ASCs are used to reconstruct the target.
So, those reconstructed images describe partial properties
of the target, which could supplement the original training
samples. Finally, the augmented samples are employed to
train the designed CNN architecture in this study for target
classification. For the test sample, it is first reconstructed
using the ASCs. And the reconstructed image is classified via
the trained network. In contrast with the previous data aug-
mentation algorithms, the proposed approach in this study has
several outstanding merits. First, ASCs reflect the essential
properties of SAR images, i.e., electromagnetic scatterings.
Then, target reconstruction based on ASCs can better present
the actual deformations of the target caused by different
kinds of conditions including SOC or EOCs. Second, the
SR-based ASC extraction method can effectively relieve the
interferences of the possible noises or clutters in the original
SAR images. So, the whole classification scheme performed
on the reconstructed images could achieve higher robustness
to noise or clutter corruptions. Third, unlike the previous
data augmentation methods conducted in the image domain,
the combinations of ASCs for target reconstruction provide
richer ways of generating the available training samples.
Hence, it is promising that the proposed strategy could bet-
ter enhance the classification capability of a certain CNN
architecture.

The rest of this paper is organized as follows.
Section 2 introduce the SR-based ASC extraction and
ASC-based target reconstruction for data augmentation.
In Section 3, the basic theory of CNN is reviewed
and the proposed architecture for SAR target recogni-
tion is illustrated. Experimental investigations are con-
ducted in Section 4. Finally, Section 5 concludes the whole
manuscript.

II. DATA AUGMENTATION BASED ON ASCS
A. SR-BASED ASC EXTRACTION
The ASC model was proposed by Potter et al. to describe
the local scattering characteristics of radar targets at high
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frequency region. The target characteristics contained in a
single SAR image can be modeled as follow:

E(f , φ; θ ) =
K
å
i=1

Ei(f , φ; θi) (1)

Equation (1) assumes that the whole target’s characteristics
can be seen as a summation of several individual scattering
centers, i.e., ASCs. For each ASC, its scattering field is
related to the frequency f and aspect angle φ as calculated
in equation (2).

Ei(f , φ; qi)

= Ai · (j
f
fc
)αi × exp(

−j4π f
c

(xi × φ + yi sinφ))

×sinc(
2pf
c
Lisin(φ − φi))× exp(-2p f gisinφ) (2)

where q = {qi} = [Ai, ai, xi, yi,Li, φi,Gi](i = 1, 2,L,K )
represents the K ASCs in a single SAR image. Specifically,
each parameter in an ASC has concrete physical mean-
ings. Take the ith ASC as an example, Ai records the com-
plex amplitude, which reflects its relative intensity in all
the ASCs. (xi, yi) mark its physical positions in the image
domain; ai describes the frequency dependence, which has
some discrete values, e.g., −1, −1/2, 0, 1/2, 1. If the ith
ASC is a distributed one, then it has two parameters Li
and φi to describe the length and orientation, respectively.
Otherwise, if it is a localized ASC, gi represents its aspect
dependence.

For a single SAR image chip containing only one target,
the number of the available ASCs is notably less than that of
the discretized parameters. In other words, the parameters to
be estimated for a single image is sparse from the perspec-
tive of the model-parameter domain. In this sense, the ASC
extraction problem can be transformed to a SR task [36], [37].
At first, equation (1) is reformulated as a concise matrix
multiplication in equation (3).

s = D(q)′s+ n (3)

where s is generated by vectorizing the 2D measurement
E(f , φ; q), which is obtained by transforming the original
SAR image to the frequency domain. D(q) represents the
redundant dictionary for SR and its each column corre-
sponds to measurement originated from one element in the
attribute space. In other words, some attributes of the seven
parameters drawn from the discrete parameter domain are
input into equation (1) and the resulted scattering data is
vectorized as a column in D(q). s is a vector recording
the complex amplitudes. And n denotes the noise term,
which is experientially modeled as a zero-mean Gaussian
process.

Based on aforementioned analysis, the SR-based ASC
extraction algorithm is formulated as follow:

ŝ = argmins ‖s‖0 , s.t.
∥∥s− D(q)′s∥∥2 $e (4)

Algorithm 1 SR-Based ASC Extraction
Input: The vectorized measurement s, noise level e, and
dictionary D(q).
Initialization: Initialize the ASC set as q̂ = Æ, residual
r = s, and iteration number t = 1.
1. while ‖r‖22 > e do
2. Calculate the correlation between the residual and each
column in the dictionary: C(q) = DH (q)′r with (g)H

denoting the conjugate transpose.
3. Obtain the estimated parameters according to the maxi-
mum correlation from Step 1 and update the parameter set:
q̂t = argmin

q
C(q), q̂ = q̂

⋃
q̂t .

4. Obtain the estimations of the amplitudes: ŝ = D†(q)′s,
with (g)† denoting the Moore-Penrose pseudo-inverse.
D(q̂) is the dictionary generated by q̂.
5. Update the residual: r = s− D(q̂)′ŝ.
6. t = t + 1
Output:The estimated ASC set q̂.

In equation (4), e = ‖n‖2 is an estimate of the noise
level, which is adopted as the threshold of the reconstruc-
tion error. The l0-norm optimization problem in equation (4)
is nondeterministic polynomial time hard. As an alterna-
tive, the greedy algorithms, e.g., Orthogonal Matching Pur-
suit (OMP), can be used to obtain the approaching solutions.
In this study, the SR-based ASC extraction algorithm is uti-
lized with OMP as the solver illustrated in Algorithm 1.

Fig. 1 illustrates the SR-based ASC extraction algorithm
with a single MSTAR image using all the extracted ASCs.
The ‘‘star’’ symbols in Fig. 1(a) mark the locations of the
extracted ASCs in the original image, which jointly recon-
struct the target as Fig. 1(b). It shows that the reconstructed
image well maintain the properties of the target in the original
one, such as the geometrical sizes and intensity distribution.
In the meantime, the massive noises or clutters in the back-
ground around the target can also be effectively reduced so
the target characteristics can be clearly observed. As a further
verification, some noisy SAR images are simulated to test the
robustness of SR-based ASC extraction algorithm as shown
in Fig. 2. For the simulated noisy SAR images at the SNRs
of 0 dB and −5 dB, their ASC sets can still be extracted
with relatively high precision thus reconstructing the original
targets well. In comparison with the results in Fig. 1(b),
the reconstructed targets in Fig. 2 still keep high precision
regarding to the target characteristics and the noises can still
be reduced to a large extent.

B. DATA AUGMENTATION
A data augmentation approach is designed based on the
ASCs. For a single SAR image from the original training
set, its ASCs are extracted using SR-based algorithm to
reconstruct the target’s images at different levels. At each
level, a subset of all the extracted ASCs are employed
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FIGURE 1. Illustration of SR-based ASC extraction. (a) A single MSTAR SAR image marked with the positions of the extracted
ASCs; (b) reconstructed image using all the extracted ASCs.

FIGURE 2. SR-based ASC extraction for noisy SAR images. (a) Noisy image at 0 dB; (b) reconstructed image at 0 dB; (c) noisy
image at −5dB; (d) reconstructed image at −5 dB.

to reconstruct the target. The parameters of these selected
ASCs are inputted into the ASC model in equation (2) and

their scattering fields are summed up to obtain the target’s
image. With more choices of subsets, there will be several
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reconstructed images from the original one. By repeating the
procedure for each training sample, muchmore images can be
generated.

In fact, there are too many available subsets from the
original ASC set. However, some of them are not effective
because the reconstructed images are with very low ener-
gies compared with the one reconstructed by all the ASCs.
Therefore, a threshold is set for the energy of the recon-
structed image thus significantly reducing the unnecessary
reconstructions from those ineffective subsets. Equation (5)
defines the energy factor.

fG =

P
å
j=1

∣∣AG(j)∣∣2
K
å
i=1
|Ai|2

(5)

where the numerator and denominator represent the ener-
gies of the selected subset and original ASC set, respec-
tively; the function G(j) finds the index in the original
ASC set, which is corresponding to the jth ASC in the
selected subset. Hence, fG is a positive number in the
range of [0], [1]. The detailed procedure of constructing
one reconstructed image from a single SAR image is illus-
trated in Algorithm 2. By repeating the process, more recon-
structed images can be generated. Specifically, in this study,
the energy threshold is set to be T = 0.5, assuming that
a reconstructed image with lower than half of the original
energy make little contributions to the following network
training.

Fig. 3 presents some reconstructed images using different
subsets of ASCs extracted from the original image shown
in Fig. 1 (a). In sequence, the energy factors of these recon-
structed images in the subfigures are 0.92, 0.81, 0.75, 0.65,
0.58, and 0.53, respectively. In contrast to the reconstructed
image using all the ASCs shown in Fig. 1(b), the results using
the subsets reflect the partial characteristics of the targets.
Although some ASCs are not considered, the reconstructed
images are still available training sources for the following
classifier. On one hand, they still reflect the characteristics of
the original target so they can help exploit the discriminative

Algorithm 2 Data Augmentation

Input: Extracted ASC set q̂ =
[
q̂1 q̂2 L q̂K

]
form a single

SAR image; energy threshold T .
1. Randomly select a subset from the original ASC set as
q̂G =

[
q̂G(1) q̂G (2) L q̂G(P)

]
2. Calculate the energy factor of q̂G as according to
equation (5).
3. If fG < T , repeat from Step 1; else go to Step 4.
4. Calculate the scattering field of each ASC in the selected
ASC set and sum up all the scattering field.
5. Conduct the imaging process on the summed scattering
field from Step 4 to obtain the reconstruct target.
Output: The reconstructed image Ir .

features. On the other hand, the EOCs in the practical applica-
tionsmay severely deform the original image, leading into the
missing or changing of someASCs. As a tradeoff between the
amount of the training samples and computational load, this
study generates 10 reconstructed images from each original
training samples, whose energy factors are set to be 1.0
(i.e., using all the extracted ASCs), 0.95, 0.9, 0.85, 0.8, 0.75,
0.7, 0.65, 0.6, and 0.55, respectively. The augmented training
samples will be used to train the designed CNN architecture
for SAR ATR.

III. TRAINING CNN FOR TARGET RECOGNITION
A. CNN ARCHITECTURE
In the previous works, CNN has achieved great success in the
field of SAR ATR [28]–[35]. A rich set of CNN architectures
were developed with very good performance. In this study,
a simple CNN architecture is designed as Fig. 4, which
comprises of four convolution layers, two pooling layers, and
a softmax classifier. Table 1 displays the detailed layout of
the network including the sizes of each layer and its outputs.
With only four convolution layers, it is actually a simple
network, which can be trained with high efficiency. As the
main objective of this study, we intend to investigate the effec-
tiveness of data augmentation based on ASCs. Therefore,
this simple CNN can effectively reflect the performance of
the designed data augmentation algorithm. A brief review of
different types of layers are given as follows.

1) CONVOLUTION LAYER
Convolution operation is the core of the whole CNN architec-
ture, which is capable of learning different types of features.
In a convolution layer, its inputs (denoted as O(l−1)

m (m =
1,L,M )) are connected to all the outputs (denoted asO(l)

n (n =
1,L,N )). For convenience, O(l−1)

m (x, y) and O(l)
n (x, y) are

used to represent the pixels in the mth input feature map and
nth output feature map, respectively. Then, the convolution
operation is performed to compute the output feature maps
according to the input ones as equation (6).

O(l)
n (x, y) = f (

M
å

m=1

F−1
å

p,q=0
k (l)nm(p, q)O

(l−1)
m

×(x − p, y− q)+ b(l)n ) (6)

where k (l)nm(p, q) is the convolution kernel, which connects the
input and output feature maps; f (g) represents the nonlinear
activation function and b(l)n denotes the bias.

2) ACTIVATION FUNCTION
In practical applications, the relationship between the inputs
and outputs is often nonlinear. To enhance the capabil-
ity of nonlinear representations, the nonlinear activation
functions are implemented in the convolution layers. Some
traditional activation functions are the hyperbolic tangent
function f (x) = tanh(x) or sigmoid function f (x) = 1/(1 +
exp(−x)) [38]. Recently, the rectified linear unit (ReLU) [39]
is validated to be highly effective for training deep
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FIGURE 3. SR-based ASC extraction for noisy SAR images. (a) Noisy image at 0 dB; (b) reconstructed image at 0 dB; (c) noisy image at
−5dB; (d) reconstructed image at −5 dB.

FIGURE 4. The designed CNN architecture in this study.

networks, which could significantly reduce the training time
while enhancing the robustness to nonlinear classification
problems. The ReLU function has a simple formulation as
follow:

f (x) = max(0, x) (7)

Owing to its merits, this study uses it as the nonlinear
activation functions in our designed CNN architecture.

3) POOLING LAYER
To improve the computational efficiency and robustness of
learned features, a pooling layer is often placed after a con-
volution layer. Although the pooling operating throws away
some information in the original feature maps, it can make
the trained network robust to shifts or distortions to some
extent [40]. There are several pooling operations usually
used in current CNN architectures like average pooling and
maximum pooling. In this study, we use the max pooling in
both pooling layers in Fig. 4, which operates as follow:

O(l+1)
m (x, y) = max

1<i<h,1<j<r
(O(l)

m (x + i, y+ j)) (8)

The max pooling operation in equation (8) works in a
window with sizes of h′w and the maximum pixel intensity
in the preset window is adopted as the result.

4) SOFTMAX
To enable the network to classify multiple classes, the soft-
max nonlinearity [41] is often placed at the output layer
to produce a K -dimensional weighted vector, whose ele-
ments correspond to the posterior probabilities of K different
classes, i.e., pi = P(y = i|x), i = 1, 2,L,K . The softmax
function is obtained as equation (9).

p(i) =
exp(qTi x)

åKj=1exp(q
T
j x)

(9)

where qTj x denotes the jth element in the output vector.
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FIGURE 5. General process of target recognition.

When there are Ncls labeled training samples, the loss
function is defined as:

Lcls(qTj ) = −
1
Ncls

Ncls
å
i=1

logP(p∗i |pi; q
T
j ) (10)

In equation (10), p∗i represents the actual label of the
ith sample and pi denotes the predicted one. By adjusting
the parameter qTj , the loss function is minimized to obtain
a better classifier to correctly classify the test sample with a
high probability.

To train the designed CNN architecture, the Tensor-
Flow [42] platform is employed, running on a NVIDIA GTX
Titan-X graphic processing unit (GPU). And the augmented
training set generated in Section 2 are inputted as available
samples.

B. TARGET RECOGNITION
The designed CNN architecture is trained by the augmented
training samples generated in Section 2 with application to
target recognition. Fig. 5 shows the general procedure of the
target recognition method, which could be summarized as
Algorithm 3. The original training samples are first recon-
structed based on the ASCs to augment the available training
images. For the test image, it is first reconstructed using the
extracted ASCs and the reconstructed image is input into
the network to determine its target label. Compared with the
previous CNN-based methods, the proposed one is assumed
to have some advantages, which can be analyzed from two
aspects. First, the target reconstruction based on ASCs can
be seen as a process of image enhancement. As observed
in Fig. 1 and Fig. 2, the reconstructed images can effectively
relieve the influences caused by the background clutters or
noises. In the proposed method, the reconstructed images
are used for training and classification so it is promising
that the enhanced images tend to achieve better results. Sec-
ond, much more training samples are available via the data

Algorithm 3 Target Recognition
Input: Test sample y; training samples from C classes:
D = [X1 X2 L XC ]
1. Generate the multiple reconstructed images from each
of the training samples using the method in Section 2.2;
2. Construct the augmented training set via collaborating
the reconstructed images of all the training samples;
3. Train the designed CNN architecture in Fig. 4 using the
augmented training samples;
4. Extract the ASCs from y to reconstruct the target’s
image;
5. Input the reconstructed image from y to determine its
label.
Output: The target label of y.

augmentation algorithm used in this study. Different from
traditional data augmentation strategies, the essential char-
acteristics of SAR images, i.e., electromagnetic scattering,
are adopted as the basis. So, it is predictable that generated
images via the proposed approach can better keep the real
conditions of the targets under both SOC and EOCs. There-
fore, the trained network could obtain better classification
ability.

IV. EXPERIMENTS
A. MSTAR DATASET AND BASELINE ALGORITHMS
FOR COMPARISON
Since the release of the public version of the MSTAR pro-
gram, theMSTARdataset has long been themost popular data
source for validating SAR ATR methods. Collected by the
X-band sensors, SAR images in the dataset have resolutions
of 0.3 m × 0.3 m. There are ten available targets in the
dataset, whose optical images together with exemplar SAR
images are shown in Fig. 6. For each target, its SAR images
covers the full aspect angles from 0 deg to 360 deg. All the
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FIGURE 6. Optical and SAR images of the ten targets. (a) BMP2. (b) BTR70. (c) T72. (d) T62. (e) BRDM2. (f) BTR60. (g) ZSU23/4. (h) D7.
(i) ZIL131. (j) 2S1.

targets are imaged at the depression angle of 15 deg and
17 deg. And some have extra depression angles like 30 deg
and 45 deg. In addition, some targets have several different
configurations, which are modified from the standard ones
by adjusting some local structures.

Drawn from current literatures, some baseline SAR ATR
algorithms are compared in the following experiments. Their
detailed descriptions are given as follows.
â SVM: SVM is adopted as the basic classifier as Zhao and

Principe [21]. However, rather than using the raw image
intensities, PCA is employed to extract feature vectors
of 80 dimensions for training and testing.

â SRC: this method uses SRC as the basic classifier as
Thiagarajan et al. [23]. Random projection is utilized
to reduce the original SAR images as 1024-dimension
vectors during the classification.

â ASC Matching: ASCs are used as the basic features
for SAR target recognition as Ding et al. 18]. A one-
to-one correspondence is built between two ASC sets
from the test sample and template one, respectively.
Afterwards, a similarity measure is designed for target
recognition.

â A-ConvNets: the all-convolutional networks designed
by Chen et al. [28], which is widely used as a reference
for the CNN-based SAR ATR methods. The raw image

intensities are used to train the network as well as for
testing.

All these methods are performed on the same platform
for fair comparison. In the following parts of this section,
detailed experiments are conducted under different operating
conditions, which are originally contained in the dataset or
simulated. Both the proposed approach and baseline algo-
rithms are tested to fully investigate the performance of the
proposed method.

B. EXPERIMENTAL SETTINGS
At first, some typical experimental settings are designed for
different operating conditions. As a preliminary validation,
SOC is an essential test in almost all the relevant researches.
Table 2 presents the training and test sets of the ten targets
under SOC, which are from 17 deg and 15 deg depression
angles, respectively. For each target, its training and test
samples are from the same configurations. Especially, for
BMP2 and T72, which containing several different configura-
tions [41], only the standard ones are used (i.e., Sn_9563 and
Sn_132, respectively). The training and test samples for the
first EOC (EOC-1) is set as Table 3, including four differ-
ent targets, i.e., BMP2, BDRM2, BTR70, and T72. Among
them, there are some configuration differences between the
training and test samples of BMP2 and T72. Fig. 7 shows
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FIGURE 7. Optical and SAR images of four different configurations from T72. (a) Optical images (b) SAR images.

FIGURE 8. SAR images of 2S1 at different depression angles. (a) 17 deg; (b) 30 deg; (c) 45 deg.

the optical and SAR images of four different configurations
from T72. It can be observed from the optical images that dif-
ferent configurations have some structural variations, leading
into the local variations in the corresponding SAR images.
The standard configurations of BMP2 and T72 at 17 deg
depression angle are used for training but the test samples
are from different configurations collected at both 15 deg
and 17 deg depression angles. BDRM2 and BTR70 are only
included in the training set as the confuser targets, which
further aggravates the difficulty of correct target recogni-
tion. The second EOC (EOC-2) investigates the influences of
depression angle variance using three different targets [42],
i.e., 2S1, BRDM2, and ZSU23/4 as displayed in Table 4.
Their training samples are from 17 deg depression angle
while the test ones are from 30 deg and 45 deg, respec-
tively. Fig. 8 compares three 2S1 SAR images from differ-
ent depression angles. As shown, notable differences can
be seen between two images with large depression angle
differences.

Because of the limited operating conditions in the origi-
nal MSTAR dataset, this study further simulates two extra
EOCs for experimental evaluation. The third EOC (EOC-
3) is simulated by adding Gaussian noises [43] into the test
samples in Table 2. Different levels of noises are added

TABLE 1. Layout of the designed CNN architecture.

to generate noisy samples at different SNRs. Fig. 9 shows
some exemplar noisy images at different SNRs. Afterwards,
the noisy samples are classified based on the original train-
ing samples in Table 1. The situation of partial occlusion
is simulated as the fourth EOC (EOC-4). Some portions of
the target region are removed from each test sample accord-
ing to the occlusion model in [44] as shown in Fig. 10.
Here, the original image to be processed is the same as
Fig. 9(a) and the occlusion occurs from different directions.
Then, the occluded images are classified for performance
evaluation.

VOLUME 7, 2019 25467



J. Lv, Y. Liu: Data Augmentation Based on Attributed Scattering Centers to Train Robust CNN for SAR ATR

TABLE 2. Experimental setting for SOC.

TABLE 3. Experimental setting for EOC-1.

C. RESULTS AND ANALYSIS
1) SOC
The experiment is first undertaken under SOC based on the
training and test samples in Table 2. The detailed recognition
results of the proposed approach are displayed as the confu-
sion matrix in Fig. 11, which is a widely used way to illustrate
the classification accuracy. The x and y labels in it mark the
actual and predicted labels, respectively. And the elements
on the diagonal denote the recognition rates of different
classes. As observed, each target can be correctly classified
with a recognition rate over 98.5%. Accordingly, the overall
recognition rate of all the ten targets is 99.48%. The notably
high recognition rate of the proposed method validates its
excellent performance under SOC. Table 5 further com-
pares the recognition rates of different methods under SOC.
Through quantitative tests, the overall recognition rates of
SVM, SRC, ASC Matching, and A-ConvNets are calcu-
lated to be 96.54%, 96.38%, 97.12%, and 99.08%, respec-
tively, which is lower than the one achieved by the proposed
method. Compared with SVM, SRC, and ASC Match-
ing, the CNN-based methods including the proposal and
A-ConvNets achieve much better performance owing to the
superior classification ability of deep learning techniques.
With a higher recognition rate than A-ConvNets, the pro-
posed approach enhances the classification performance of
the designed CNN architecture because of the augmented
training samples. In comparison with ASCMatching method,
this study makes full use of the ASCs to reconstruct different
kinds of conditions, which may occur on the target. The
final results demonstrate that the proposed method is much
superior over the traditional ways of using ASCs for target
recognition, e.g., one-to-one ASC matching.

2) EOC-1
The recognition problems under EOCs begin from
EOC-1 according to the experimental setting in Table 3.
Table 6 exhibits the classification results of different

TABLE 4. Experimental setting forEOC-2.

configurations in the test samples of BMP2 and T72.
Although some of them are misclassified to be BRDM2 or
BTR70, the recognition rate of each configuration still
reaches over 97%. And the overall recognition rate is aver-
aged to be 98.80%. The performance of different methods is
compared in Table 7, which reflects the superiority of the pro-
posed approach under configuration variances.With regard to
the different configurations from the same class, they have
some local variations caused by structural modifications,
which can be related to the ASCs to a large extent. Hence,
via the target reconstruction based on ASCs, some generated
images actually describe the target’s characteristics with
configuration variance. So, the designed CNN trained by the
augmented training samples could better handle this situation.
Compared with A-ConvNets, the higher recognition rate of
the proposed method under EOC-1 also benefits from the
augmentation of training samples.

3) EOC-2
Based on the experimental setting in Table 4, the pro-
posed approach is tested under depression angle variances.
The classification results of the three targets at 30 deg
and 45 deg depression angles are shown in Table 8. The
overall recognition rates at the two depression angles are
98.61% and 74.48%, respectively. The recognition perfor-
mance degrades severely at 45 deg depression angle because
the large depression angle difference significantly changes
the appearances of the target in contrast to the reference
samples at 17 deg as shown in Fig. 9. As a result, the trained
CNN lose some precision when classifying the test samples
at 45 deg depression angle. Fig. 12 lists the overall recogni-
tion rates of the proposed method and baseline algorithms
at the two depression angles. The performance of the base-
line algorithms shares similar trend with the proposal at the
two depression angles. In comparison, the proposed method
defeats the baseline algorithms at both depression angles,
which validates its better robustness to depression angle
variance. With regard to images from different depression
angles, their differences can also be explained by the ASCs.
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FIGURE 9. Simulated noisy images at different SNR. (a) original image (b)10dB (c) 5dB (d) 0dB (e) −5dB (f) −10dB.

TABLE 5. Overall recognition rates of different methods under SOC.

TABLE 6. Recognition results under EOC-1.

TABLE 7. Overall recognition rates of different methods under EOC-1.

So, the reconstructed images by some subsets of the extracted
ASCs can effectively reveal the influences caused by depres-
sion angle variances. Therefore, the augmented training sam-
ples can enhance the classification ability under EOC-2.

4) EOC-3
To investigate the noise robustness of the proposed approach,
the simulated noisy images are classified. The overall recog-
nition rates of the proposed method at different SNRs
are plotted in Fig. 13 together with those of the baseline

algorithms. The proposed method achieves the highest recog-
nition rates at different noise levels, verifying its supe-
rior robustness under EOC-3. It is also evident that the
ASC Matching method performs much better than other
baseline algorithms especially at lower SNRs than 0 dB.
As discussed in Section 2, the ASCs extracted by SR-based
method could keep relatively robust under noise corrup-
tion. Therefore, the ASC matching can still be smoothly
conducted although under noise corruption. In the pro-
posed approach, both the training and test samples are
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FIGURE 10. Simulated occluded images at 30% occlusion level from different directions. (a) direction 1; (b) direction 2;
(c) direction 3; (d) direction 4.

TABLE 8. Recognition results under EOC-2.

reconstructed using the extracted ASCs so the influences
of noise corruption can be greatly relieved. In addition, the
augmented training samples could also improve the clas-
sification ability as for the noisy samples. With regard to
SVM, SRC, and A-ConvNets, the noisy test samples at low
SNRs have remarkable differences with the training ones.
As a result, their performance degrades notably under noise
corruption.

5) EOC-4
Based on the occluded SAR images, the proposed method
and baseline algorithms are tested under different levels of

partial occlusions, whose results are simultaneously plotted
in Fig. 14. The overall recognition rate of the proposed
method tops at each occlusion level. So, the proposed method
keeps the most robust under EOC-4 compared with the
baseline algorithms. Similar to EOC-3, the ASC Match-
ing method generally outperforms other baseline algorithms
under EOC-4. ASCs are local descriptors so they can be
used to exploit the stable parts, which are not occluded in
the test samples. Therefore, the similarity measure defined
based on the one-to-one correspondence between two ASC
sets could keep its robustness under partial occlusion.
In the proposed method, the ASC-based target reconstruction
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FIGURE 11. Confusion matrix of the proposed method under SOC.

FIGURE 12. Comparison with baseline algorithms under EOC-2.

FIGURE 13. Comparison with baseline algorithms under EOC-3.

effectively generates SAR images with some missing ASCs.
To some extent, they simulate the partially occluded samples.

FIGURE 14. Comparison with baseline algorithms under EOC-4.

Therefore, the CNN architecture trained by the augmented
training samples could better cope with EOC-4.

V. CONCLUSION
Adata augmentationmethod is proposed in this study through
target reconstruction based on ASCs. Then, the augmented
training samples are utilized to train a CNN for SAR target
recognition. The ASC-based target reconstruction is capable
of reducing the clutters and noises from the background in
SAR images. So, the reconstructed image could better covey
the pure target’s characteristics. In this sense, the image
quality is enhanced. By reconstructing the target’s image
using a subset of the extracted ASCs, the generated image
represents the partial properties of the target. The repeti-
tions of different subsets produce a large volume of avail-
able SAR images for training, which cover more operating
conditions. Therefore, the trained CNN based on the aug-
mented training samples could better handle both SOC and
various EOCs occurred in practice. Extensive experiments
are undertaken on the MSTAR dataset to draw several main
conclusions as follows. First, the proposed method inherits
the high effectiveness under SOC with an overall recognition
rate of 99.48%. Compared with the baseline algorithms, the
proposed method achieves the best performance under SOC.
Second, for different recognition tasks under EOCs, the pro-
posed approach performs better than the baseline algorithms.
On one hand, the image enhancement via ASC-based tar-
get reconstruction improves the robustness of the proposed
method to the nuisance conditions like noise corruption.
On the other hand, the augmented training set covers more
operating conditions in SAR ATR such as configuration vari-
ance and partial occlusion. Therefore, the trained CNN by
the augmented samples could better handle these nuisance
conditions.

In fact, this paper provides an open framework for train-
ing CNNs using the augmented training set via ASC-based
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target reconstruction. So, more suitable networks can also be
applied to the augmented training samples to further exploit
their potentials in SAR ATR in the future.
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