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ABSTRACT Emergent cyber-attack threats against cyber-physical systems can create potentially catas-
trophic impacts. The operators must intervene at the right moment when suspected attacks occur, without
over-reliance on systems to detect the cyber-attacks. However, military operators are normally trained
to trust, rather than suspect systems. We applied suspicion theory to explore how operators detect and
respond to cyber-attacks against an unmanned ground vehicle (UGV) system in the operational context of a
human–machine team (HMT). We investigated the relationships between the operator suspicion and HMT
performance by conducting human-in-the-loop experiments on eight mission scenarios with 32 air-force
officers. The experiment yielded a significant, negative relationship between operator suspicion and HMT
performance (quantified both in terms of the desirability of decision response and the time to respond).
Notably, operator suspicion increased with the combined effects of cyber-attacks and a sentinel alert but
not with the alert alone. This finding was particularly meaningful for ‘‘false-negative’’ scenarios, in which
no sentinel alert was sent despite cyber-attacks having occurred. Although the operators did not receive
an alert, the operators grew more suspicious, seeking more information; it took longer for the operators to
respond, and their decision responses were highly divergent (17.2% came with less-desirable responses, and
21.9% were considered instances of over-reliance). In contrast, in ‘‘false-positive’’ scenarios, 95.3% of the
operator responses were highly desirable. This experiment has implications for the role of a sentinel alert in
engineering trustworthy HMT systems so that the operators can quickly transition through state-suspicion
to the most desirable decision.

INDEX TERMS Suspicion, trust, human machine team, cyber security, human-in-the-loop simulation,
unmanned ground vehicle control.

I. INTRODUCTION
A considerable effort is ongoing to prevent, detect and
mitigate cyber-attacks on the Department of Defense net-
works and information technology (IT) systems; in contrast,
the effort to address these concerns in cyber-physical sys-
tem (CPS), such as unmanned vehicle systems, pales in com-
parison. These systems represent an intrinsic vulnerability
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and allow adversaries to attempt cyber-attacks with the mali-
cious intention of undermining military assets. As an exam-
ple, Iranian cyber capabilities were believed to have forced
down the Central Intelligence Agency operated RQ-170
Sentinel drone while operating near the Iranian border
in 2011 [1], causing concern over the potential compromise
of highly sensitive surveillance capabilities. This incident
sparked much research directed towards the hardware and
software security of unmanned vehicle systems [2], [3].
However, research addressing the human dimensions of
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cyber-attack detection and response in the mission operation
context remains sparse and represents an emergent area of
research needed to fully address cyber-attacks against CPS.

Our research took an operator-centric approach towards
exploring the human dimensions of cyber-attack detection
and responses through a scenario-based, human-in-the-loop
experiment with Air Force personnel as operators of an
unmanned vehicle system in a military context. In prior work,
we took a systems-oriented approach to the problem by con-
sidering the interaction of a Human-Machine Team (HMT)
[4], [5] responding to cyber-attacks and defining a framework
of performance measurement [6].

In this work, HMT is defined as a team of an operator
and Sentinel, an automated cyber-attack detection aid. For
machine design, the operators’ biases associated with sus-
picion in their responses to cyber-attacks shed light on the
development of an adaptive sentinel. For human operators,
the findings on the relationship between HMT performance
and level of suspicion have implications for the selection,
evaluation and training of appropriate personnel.

II. BACKGROUND
A challenge in designing for high-performance HMT is a
lack of theory to help understand how humans interact with
machines in work contexts. A recent paradigm in human-
machine automation considers autonomy as a variable, rather
than a fixed parameter, which can be distributed between
human and artificial agents to achieve an optimal perfor-
mance at work [7]. An ultimate vision for human-machine
teamwork is to ‘‘race with machines’’ [8], not against ones,
by continuously redefining human roles under new work
processes. The promise of complementary engagement of
human and machine abilities for enhanced performance has
seen some positive examples [9], [10]. Yet, it is difficult to
fully accomplish this vision without knowing the constraints
of the human, the machine, and the environment [11].

In military operations, mission complexity is outpac-
ing the ability to manage disruptions, which calls for sys-
temic approaches that span technology, human, and mission
space [12]. At a minimum, any framework that addresses this
complexity should enable the evaluation of human-machine
interactions with regard to the nature of problem and solution
sets [13], [14], under the situational constraints of mission
context. The traditional framework of Level of Automa-
tion (LOA) and its alternatives [15]–[17], are confined to
the concept of function allocation, not reflecting situational
constraints.

So far, many unmanned systems [18] have attained assur-
ance by counting on human supervision as the last resort.
Some systems attempt to augment human cognitive abilities
on particular tasks, such as spatial detection [19] and path
planning [20]. The cognitive support in HMT [4], [21], [22],
focuses on team cognition andmental workload. In particular,
human-machine collaboration for emergency management
has gained attention, with a focus on risk management and
resiliency [23], [24]. Under emergency situations, HMTs are

forced to make decisions within tight time schedules often
with incomplete information, while the new situational com-
plexity is likely to overload team cognitive resources [25].
In military unmanned systems, a failure to first-respond to
the emergency situations can result in catastrophic damages,
and there are growing concerns over the potential of cyber
threats to impede the timely responses [26].

There are methods proposed to help analyze and guide
cognitive responses of human supervisor under cyberattacks
(see [27], for instance), but they do not fully consider the
dynamic interdependence of human, machine, and situa-
tional context. The Instance-based Learning (IBL) model for
cyber situation awareness [28] predicted security analysts’
recognition of cyberattacks based on the situational attributes
and on their similarity to the past instances (to be retrieved
from memory). Another example of analyzing cyber situa-
tion awareness in [29], proposed a distribution-based simu-
lation model to identify cyber-behaviors and their cognitive
aspects based on browser log data. In a hybrid approach,
the work in [30] proposed a decision-support scheme to assist
in response selection against cyber threats by combining
qualitative expert assessment, event history, andmulti-criteria
decision analysis [31]. Although these works presented for-
mal models and methods to represent performance in cogni-
tive aspects, they focused exclusively on humans, rather than
on the dynamics of the human-machine team.

The dynamics associated with the analysis of HMT
performance can be internal (i.e., between human and
machine), or external (i.e., situation-specific relations
between the team and work-related factors). Regarding inter-
nal dynamics, the concept of ‘‘trust’’ is key to successful
emergency responses – i.e., how trust is formed, developed
and confirmed with the automated agents [32]. The literature
on operator trust abounds [33]–[36], including when the
autonomous systems are under potential cyber-attacks [37].
A wide array of factors has been identified that influence
the level of trust in human-automation interaction [38]. Not
only formation, but the confirmation of trust becomes critical
particularly when an unmanned system is under cyberattack.
To the contrary, relatively little attention has been paid to
understand the external dynamics of the HMT. Such inves-
tigations are not straightforward because it is not always
feasible to keep the situational factors transparent to the
supervisor or the machine [39]. For example, in which task-
related conditions can the HMT performance be weakened
(or strengthened)? Are there particular cognitive states of the
human supervisor that can help improve HMT performance?
What are the effective ways for the machine to support the
supervisor under cyberattacks?

This paper determined the construct of suspicion to be
particularly useful for investigating HMT performance in
response to cyberattacks. In recent work, the theory of suspi-
cion [40] defines state-suspicion as ‘‘a person’s simultaneous
state of cognitive activity, uncertainty, and perceived mal-
intent about underlying information that is being electroni-
cally generated, collated, sent, analyzed, or implemented by
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an external agent’’. This work also describes the sequen-
tial structure of state-suspicion development across three
stages.

Stage 1 refers to perceptual cues and indications from the
task environment that can trigger suspicious states in themind
of the operators. For example, missing information, patterns
of negative discrepancy, or other system and interface char-
acteristics can serve to provoke different levels of suspicion.
In UGV control, an operator and Sentinel collaborate in a
team for detection and response to cyber-attacks, and the Sen-
tinel alert messages, or their lack, on a control interface can
serve as stage-1 cues to initiate operator suspicion. Therefore,
this research manipulated the sentinel alert messages to stim-
ulate state suspicion. For example, the Sentinel alert message
popped up in the mission video window that read ‘‘Cyber-
attack: Throttle Control,’’ and it remained visible for thirty
seconds, see Figure 1. Not only the display of alert, but the
lack of alert when the vehicle was maneuvering abnormally
could also trigger suspicion from the interface.

FIGURE 1. A Mission Scenario on a UGV Control Interface. (a) Ego-Centric
view of the UGV with a sentinel alert, (b) numerical indicators of the UGV
control parameters, (c) Bird’s-Eye view with way-points (Circled) and the
UGV’s location and direction (dotted lines).

Stage 2 of the suspicion model identifies individual lev-
els of trust, distrust, training and other personal traits that
can affect state-level suspicion [41], [42]. Especially, an
operator’s trait-level attributes, including creativity, cognitive
demand and capacity, and propensity to trust [43], can form
an internal condition to the arousal of state-suspicion [40].
This research incorporated a set of pre-test surveys prior to the
experiment about operator self-ratings of intelligence scores,
creativity, general attitude towards complex problems, and
propensity to trust.

Finally, stage 3 refers to behavioral, cognitive and emo-
tional outcomes of becoming suspicious. In particular, the
State-Suspicion Index (SSI) [40] has been developed to quan-
tify the level of suspicion through a 20-item questionnaire that
assesses the suspicion components of uncertainty, mal-intent,
and cognitive load, as well as overall suspicion. To reflect the
operational context of UGV missions, the original SSI was
adapted to a 13-item questionnaire in collaboration with one
of those authors.

III. METHODS
This research primarily revolves around the relationship
between level of operator suspicion and human-machine
team (HMT) performance in the mission operation context of
an unmanned ground vehicle (UGV). The definition of key
variables and their measurements, and experimental process
are described in this section.

A. RESEARCH HYPOTHESES, VARIABLES, AND
MEASUREMENTS
This research primarily revolves around the relationship
between level of operator suspicion and human-machine
team (HMT) performance in the mission operation context
of an unmanned ground vehicle (UGV). To answer how
suspicion effects HMT performance in a human-in-the-loop
simulation, this research paired a UGV operator with a sen-
tinel for automated cyber-attack detection. Guided by sus-
picion theory, a set of visual cues in the sentinel alarm and
control environment was simulated for anomalous system
events under different mission scenarios. On completing each
mission scenario, HMT performance, as well as suspicion
level, was quantified. HMT performance was evaluated on
the two general criteria of speed and accuracy [44], for
the detection and selection of responses to suspected cyber-
attacks. To elaborate on the research question, the following
hypotheses were set.

- H1: Sentinel alert has significant effects on operator
suspicion.

- H2: Operator suspicion is positively related to HMT
performance.

- H3: Cyber-attack (yes/no)/Sentinel alert (alert/no alert)
combinations have significant effects on operator
suspicion.

- H4: Operator suspicion is positively related to operator
response time (i.e. response times are delayed when
operators are more suspicious).

FIGURE 2. Overview of experimental variables, relationships among
them, and methods of measurement.

Figure 2 depicts how these four hypotheses associate the
operator’s suspicion with the responses to cyber-attacks on
unmanned systems. Based on suspicion theory, operator sus-
picion is presumed to be a latent variable that has three com-
ponents, ‘‘Uncertainty’’, ‘‘Malicious Intent’’, and ‘‘Cognitive
Activity.’’ The experimental levels, either high or low, of both
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uncertainty and malicious intent were manipulated as inde-
pendent variables (IV) through each mission scenario, while
cognitive activity was measured as a dependent variable (DV)
at the end of each mission run. For the estimation of cognitive
activity, NASA-TLX [45], [46] and the related items in the
State-Suspicion Index (SSI) questionnaire were used. The
two-levels for each one of the IVs were verified based on
the responses to the corresponding items in the SSI ques-
tionnaire, which helped confirm if different mission scenarios
effectively set different levels of perceptions as intended. The
13-item SSI questionnaire determined the overall level of
suspicion (by linear combination of its components).

The performance measures of response time and score
were recorded while the mission videos dynamically played
back anomalous system events, including cyber-attacks and
sentinel alert messages. The time to respond to such events
was recorded using an interactive polling software (Turn-
ingPoint, TurningTechnologies, Ltd.) during the experiment,
and the performance score was determined post-experiment
based on rubrics. Each mission scenario has its own unique
score rubric defined by subject matter experts. The operator’s
response selections from a given set of decision trees were
logged in the software and were then evaluated against the
rubric. Furthermore, the four-way combinations of cyber-
attacks (attacks vs. no attacks) and sentinel alert messages
(alert vs. no alert) enabled us to analyze operator suspicion
under different circumstances.

B. EXPERIMENTAL PROCEDURES, DESIGN, AND SETTING
The human-in-the-loop experiments were designed and con-
ducted in three phases. In phase 1, we obtained consent
from thirty-two military operators (IRB: FWR20160115H)
and collected personal information, including demographic
and personality-related questionnaires. Phase 2 familiarized
participants with the experimental tasks through instruction
and demonstrations, so that an acceptable level of fluencywas
ensured in the operational context. In phase 3, participants
were presented, in a random order, a series of eight mission
scenarios, each with a pair of mission briefing and mission
videos. Once the mission briefing was done, the participant
responded to events on the mission videos that occurred
during each mission scenario while response selection and
response times were recorded simultaneously. On completion
of each mission scenario, participants’ perceptions of uncer-
tainty, malicious intent, and cognitive workload during the
mission were obtained via the NASA TLX and SSI question-
naires.

To the operator, a mission scenario was characterized by
the combination of mission briefings, illustrated in Figure 3,
and mission videos. The mission briefings described mis-
sion type, mission context, and descriptive profiles for the
operation of the unmanned ground vehicle system (UGVS).
The mission type was either training or operational missions
for transport and re-supply. The mission context was set in
the U.S. or Middle Eastern locations, with the corresponding
estimated frequencies of cyber-attacks in the past. For the

FIGURE 3. Illustration of a mission briefing (part).

machine-side, a mission profile configured the UGV behav-
iors: when a profile was deployed, the UGVS autonomously
ran it and generated mission views for playback to use in
the simulation experiments. Overall, both verbal and visual
elements of mission scenarios were constructed to indirectly
manipulate the operator’s state-suspicion by forming the two
independent variables (IVs), ‘‘uncertainty’’ and ‘‘malicious
intent’’, into a two-level full-factorial design.

After being oriented to the mission briefing, the
participants were tasked to record the UGV speed every
thirty seconds while monitoring the mission video as well
as instrument readouts for anomalous events from the UGV
mission. On detecting anomalous events, the participants
were instructed to select the most appropriate response from
a decision tree that was provided as a guide to standardize
the range of possible operator responses (see Table 1). These
tasks were closely aligned with typical unmanned vehicle
system operator tasks. At the conclusion of each mission
scenario, the operator completed two questionnaires: (i) the
NASA TLX questionnaire which quantifies the operator’s
self-assessment of cognitive workload on six dimensions,
with each dimension rated on a 0-100 scale, and (ii) the
13-item SSI questionnaire which was developed specifically
for this research and evaluated (on a 7-point Likert scale)
the operator’s perception of uncertainty, malicious intent,
cognitive activation, and overall suspicion. The 13 items
measuring suspicion were then aggregated to form an over-
all quantitative measure of operator suspicion. Cronbach’s
alpha [47] for the 13 items was .88, indicating acceptable
internal consistency of the measure. Participants were thirty-
two Air Force officers from the Air Force Institute of Tech-
nology (AFIT), with each experiment taking 2- 2 1/2 hours
to complete. Since many current operations associated with
unmanned vehicle missions occur in an office environment,
the experimental took place in such a space.

IV. RESULTS
The experiment yielded significant outcomes on the relation-
ship between operator suspicion and HMT performance. The
overall level of suspicion derived from the 13-item SSI ques-
tionnaire had a significant (p < 0.001) Pearson-correlation
with the response score (ρ = −0.251), as well as with the
response time (ρ = 0.379). As was expected with the sus-
picion theory, the subgroups of the SSI questionnaire items
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that correspond to perception of uncertainty, malicious intent,
and cognitive activation also showed a strong, significant
correlation with overall suspicion (p < 0.001). Correlations
were estimated to be ρ = 0.803, ρ = 0.905, and ρ = 0.828,
respectively. In addition, there were predictable relationships
among the HMT performance metrics. The response score
was negatively correlated with response time (ρ = −0.225),
as well as with the standard deviation of its own score
(ρ = −0.354), implying that less-desirable decision respon-
ses tend to accompany slow and inconsistent responses.

Contrary to H1, which proposed Sentinel alerts are related
to operator suspicion, the result of the one-way ANOVA was
not significant (F1, 254 = 0.688, p = 0.408); hence Sentinel
alerts alone did not create operator suspicion. The variabil-
ity within each group of the sentinel alert being activated
versus not activated, outweighed that of the between-group
(MSEWithin−group = 1.009, MSEBetween−group = 0.694).
It contrasts, for the factor of cyber-attack (or not), a second
one-way ANOVA showed a significantly different level of
suspicion (F1, 254 = 18.393, p < 0.001); i.e., a higher
level of suspicion was observed when attacks occurred. These
results that Sentinel alerts are not an independent factor of
suspicion despite their visual saliency on a display, while
cyber-attacks did significantly arouse suspicion, imply a
complicated cognitive structure of judgment based on uncer-
tainty of perceptual information [48], [49]. Of particular
statistical concern with this uncertainty, is a shared-variance
structure of an individual operator’s suspicion, which might
be determined by combined effects of the Sentinel alert and
cyber-attack scenarios.

To resolve these combined effects, a Hierarchical Linear
Model (HLM) was applied. The HLM is capable of account-
ing for the shared variance structure in a nested data with
hierarchical levels of variables, by using a complex form of
Ordinary Least Squares (OLS) regressions [50]. This HLM
method can effectively compensate for the known risks [51];
a risk of ignoring the between-scenario effects on suspicion
(as was seen in the first one-way ANOVA of the previous
paragraph), as well as ignoring the individual propensity
to trust the Sentinel alert (as seen in the second one-way
ANOVA of the previous paragraph).

In general, the final outcome of HLM takes on a form of
simple regression, where a dependent variable Yij is predicted
by using an ith-level variable Xij that is nested within a higher-
level variable, j.

Yij = β0j + β1jXij + εij (1)

In HLM, this low-level model (1) further incorporates the
higher-levelmodels of equations (2) and (3) below, for each of
the coefficients, β0j and β1j, in terms of the interim variable
Qj of the jth-level variable, and the random effects, U0j and
U1j, that are adjusted for Qj. The statistical significance of
β1j can be tested to determine if the combined levels i and j
influence the dependent variable Yij.

β0j = γ00 + γ01Qj + U0j (2)
β1j = γ

10
+ γ11Qj + U1j (3)

Finally, the overall model in (4) incorporates both the
ith-level and the jth-level predictors Xij and Qj, respectively,
by combining (2) and (3) into (1).

Yij=γ00+γ10Xij+γ01Qj+γ11QjXij + U1jXij+U0j+εij (4)

In order to apply HLM, the dependent variables as summa-
rized in Figure 2 for state-suspicion, HMT performance, and
cognitive workload, respectively, were structured for each
combination of the level-i of Sentinel alert (i = 0 if no alert;
i = 1 if an alert messagewas shown on a display) and the level
j of cyber-attacks (j = 0 if no attacks; j = 1 if any attacks
occurred in an experimental scenario). Table 1 summarizes
the mean and the standard deviation for each combination of
the nested levels. Such orthogonal dichotomies of True/False
(of cyber-attacks) and Positive/Negative (of sentinel alarm)
on a 2-by-2 contingency table allows us to further analyze the
experimental results around the classic framework of signal
detection theory [52].

TABLE 1. Descriptive statistics for cyber-attack/ sentinel alert
combinations (mean± SD).

Since cyber-attacks are by nature malicious events
and require consideration of multiple solutions for the
observed behavior, H2 hypothesized that operator suspicion is
positively related with HMT performance, suggesting a sus-
picious operator would score better on the tasks. This hypoth-
esis was the opposite of the experimental results. The linear
coefficient of the HLM analysis was significant when mod-
eled after (1) (β10 = −5.63, p < 0.001), and the direction
of the relationship was negative, meaning increased operator
suspicion had a significantly negative relationship to HMT
performance as depicted in Figure 5.

Additionally, H4 proposed operator suspicion is positively
related to operator task response time, which meant higher
suspicion is associated with a longer task response time. The
linear coefficient of the HLM analysis supported H4; i.e.,
the relationship is statistically significant and in a positive
direction (β10 = 6.95, p < 0.001). This linear relationship
is depicted in Figure 4.

Finally, the four cyber-attack and Sentinel alert combina-
tions were tested in the experiment and analyzed by using the
HLM as summarized in Table 2. The two combinations with-
out cyber-attacks, both (b) True Negative (TN) and (c) False
Positive (FP), had a significant (p < 0.05) negative impact
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FIGURE 4. Time as a function of operator suspicion.

FIGURE 5. Performance score as a function of operator suspicion.

TABLE 2. Combined effects on operator suspicion.

on operator suspicion, meaning that operator suspicion was
lowered on both cases. In contrast, the two combinations
containing cyber-attacks, (a) True Positive (TP) and (d) False
Negative (FN), had a significantly (p < 0.05) positive impact
on operator suspicion by increasing operator suspicion. These
results are consistent with the finding for H1 that Sentinel
alerts alone do not always create suspicion.

The combined effects of Table 2 warrant further discus-
sion. Table 3 presents a frequency analysis of HMT actions
for each combination (a)-(d) in terms of the four dependent
variables: operator decision selections, suspicion, HMT per-
formance score evaluated in terms of the desirability of the
decision response to a given mission scenario, and response
time. As previously noted, all operators in the experiment
responded to suspicious events by referring to a pre-defined
tree of decision responses, and the frequencies associated
with those response options are summarized in the first
section of Table 3. The HMT actions in the combinations
of (a) True Positive (TP) and (b) True Negative (TN) are
predictable based on the findings of other hypotheses and
will not require further discussion. The more interesting
behaviors are from situations (c) False Positive (FP) that
represent scenarios in which no cyber-attacks occurred, but

TABLE 3. Frequency analysis of cyber-attack/sentinel alert combinations.

the Sentinel sent an alert to the operator anyway, and (d) False
Negative (FN) that represent scenarios in which cyber-attacks
occurred, but the Sentinel failed to send an alert.

In FP scenarios, 71.8% of responses (i.e., 46 out of 64)
were judged desirable for the mission context by subject
matter experts: when the operators received the Sentinel alert,
most of them collected information available from the system
to tell if a cyber-attack was in effect and decided to over-ride
the Sentinel alert by continuing the mission without taking
additional action. This quick search-and-override decision
resulted in a relatively higher HMT performance, and faster
response times compared with other combinations as sum-
marized in Table 3. Furthermore, there were no ‘‘call for
backup’’ or ‘‘abort’’ actions, which may have come with high
cost in mission operation. Overall, these responses in False
Positive (FP) scenarios are generally desirable.

In contrast, the HMT actions in False Negative (FN) sce-
narios were considerably less desirable to the mission con-
text. Regardless of the fact that the operators did not receive
a Sentinel alert to prompt information search, they grewmore
suspiciouswhen cyber-attacks occurred, and it took longer for
them to respond, yielding lower HMT performance scores.
Of 64 responses, 38 chose to develop their own solutions,
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2 called for backup, and 14 even allowed the Sentinel to act,
which can be considered instances of over-reliance on the
Sentinel although it did not detect the attack [53]. Another
issue that emerged in this operational context is the frequency
of missed detections. The operators completely missed the
cyber-attack 7 times (the responses with codes 0 or 1). Over-
all, the HMT behaviors around the FN scenarios were poten-
tially more damaging to mission outcomes.

V. DISCUSSIONS AND CONCLUSION
Sentinel Alert, Suspicion, and Information-Seeking Behavior

The analysis of recent cyberattacks on cyber-physical
infrastructures reveals that adversaries promptly adapt their
attack strategies to mitigation actions [54]. This makes early
detection and recognition of incoming cyberattacks even
more critical to effective mitigation. So far, much research
has focused on engineering cyberattack detection aids [55],
while not necessarily considering their cognitive effects
on the human or human-machine collaboration in mission
contexts.

The finding that Sentinel alerts did not necessarily arouse
operator suspicion (i.e., rejection of H1) has implications for
vigilant human-machine integration. Perhaps, rather than the
Sentinel alert, visual cues of unexpected system behaviors in
mission environment are more likely to determine suspicion.

In fact, our finding could be related to the perceived risk
that might have been triggered by a Sentinel alert. In the
decision science literature [56]–[58], a positive correlation
of perceived risk and information-seeking behavior is widely
observed in decision under uncertainty. For instance, when a
consumer has to choose a service that does not allow feature-
by-feature comparison, information-seeking behavior is a
common strategy to reduce perceived risk. In particular, infor-
mation search triggered by perceived risk is more likely to
be thorough if decision-makers have less knowledge about
their choice and its consequences [59], leading to increased
search time. The operators not knowing the true system states
on cyberattacks, Sentinel alert could have triggered perceived
risk, which then initiated wider information search to resolve
suspicion.

In this regard, operator suspicion is a state of sus-
pended or postponed decision-making, and it significantly
lengthened mission time as observed both in (a) TP and
(d) FN of Table 1. This strong linear relationship of suspicion
and time is depicted in Figure 4. The negative correlation
of suspicion and performance score also suggests it is wider
information-seeking behavior, rather than more elaborated
response selection, which actually lengthened the mission
time. If the increased mission times were due to more effort
investigated into response selection, the operator would have
obtained a better score.

Yet, one cannot rule out the possibility that the scenar-
ios which evoked suspicion were inherently more difficult
to respond to, and thus increased mission time. Besides,
causal relations among alert, state-suspicion and information-
seeking behavior are not fully established. The current results

do not allow us to conclude how state-suspicion is aroused,
modulated, and resolved in the context of HMT collaboration.

VI. CONCLUSION
The novel application of suspicion theory to UGV opera-
tions in a military context demonstrated the potential of that
theory – particularly in relation to understanding the oper-
ation of a human-machine (sentinel) team. We suggest that
operator suspicion needs to be managed in order for a HMT
to achieve the best results in regard to detection of cyber-
attacks, and subsequent responses, when unmanned vehicle
systems incur those cyber-attacks. This research provides an
understanding of suspicion effects on HMT performance and
offers insights about moving quickly (or not) from a position
of state-suspicion to making a decision.

A Sentinel alert on cyber-attack symbolizes the roles that
automation can play in responding to cyberattacks, and sheds
lights on how HMT design can help exploit operator suspi-
cion. As systems developers consider the balance of false-
positive and false-negative errors in the design of cyber-attack
detection aids, the results of this experiment suggest erring
on the side of false positives as more desirable. In addi-
tion, the Sentinel design that was used in the experiment
did not provide operators with any indication of the need
for a more or less immediate response to the attack that
was detected. Providing such information could potentially
help operators in managing the undesirable delays that were
experienced during the experiments. Satisfying such a need
could be difficult as it places requirements on the Sentinel
to develop more detailed assessments of the attacks that it
detects and may also require access to additional data sources
that would serve this purpose.
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