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ABSTRACT Energy consumption predictions for residential buildings play an important role in the energy
management and control system, as the supply and demand of energy experience dynamic and seasonal
changes. In this paper, monthly electricity consumption ratings are precisely classified based on open data
in an entire region, which includes over 16 000 residential buildings. First, data mining techniques are used
to discover and summarize the electricity usage patterns hidden in the data. Second, the particle swarm
optimization-K-means algorithm is applied to the clustering analysis, and the level of electricity usage is
divided by the cluster centers. Finally, an efficient classification model using a support vector machine as
the basic optimization framework is proposed, and its feasibility is verified. The results illustrate that the
accuracy and F-measure of the new model reach 96.8% and 97.4%, respectively, which vastly exceed those
of conventional methods. To the best of our knowledge, the research on predicting the electricity consumption
ratings of residential buildings in an entire region has not been publicly released. The method proposed in
this paper would assist the power sector in grasping the dynamic behavior of residential electricity for supply
and demand management strategies and provide a decision-making reference for the rational allocation of
the power supply, which will be valuable in improving the overall power grid quality.

INDEX TERMS Residential buildings, energy consumption prediction, clustering analysis, support vector
machine.

I. INTRODUCTION
As a result of the desire to improve living standards and
residential comfort, the energy consumption of residential
buildings accounts for the second largest proportion of the
entire increase in energy consumption [1]–[4]. Energy man-
agement and control on the supply-side conduct comprehen-
sive analyses based on electricity usage, weather forecasts
and the characteristics of the heating and cooling systems
used in the buildings to determine the optimal operation and
control scheme. In addition, the demand-side management
aims to guide the users’ electricity usage in a scientific and
reasonable way by adjusting the user loads or users’ behav-
ior of electricity consumption through economic subsidies,
compulsory legal means or publicity means [5]–[7]. Due to
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the impact of dynamic real-time changes on both supply
and demand sides, it is particularly important to classify
and predict the energy consumption of residential buildings
from historical data to provide a sufficient decision-making
basis for planning power transmission configuration patterns
that meet regional characteristics. The energy consumption
prediction is of decisive importance for the improvement of
the power grid quality and the rational allocation of the power
supply, which contributes to the enhancement of life quality
and the optimization of energy usage. Thus, there are efforts
in related works by researchers around the world that are
geared towards improving energy consumption predictions.

Research on data mining in intelligent data analysis
technology has been a popular area of interest in recent
years [8]–[11]. The analysis of building energy consump-
tion based on data mining has been widely regarded by
experts and scholars [12], [13]. At present, the prediction
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method of building energy consumption mainly focuses on
the use of linear regression algorithms [14], decision tree
algorithms [15], neural network (NN) algorithms [16], [17]
and support vector machines (SVMs) [18], [19] to gener-
alize the mapping relationships between the input features
and output predictions. In the residential sector, the research
reported by Biswas et al. [20] showed that the daily energy
consumption prediction of the designed house fit better with
NN models than with linear regression analyses due to the
ability to perform nonlinear analyses. Farzana et al. [21] con-
ducted a study to predict the future yearly residential energy
demand in urban areas of Chongqing, a city in China and
found that an ANN model forecast more acceptably than
grey models and regression models, with 97.14% R2 value
according to regression statistics. The test in [22] indicated
that the SVM modeling method could predict the annual
energy consumption of 59 residential buildings in China with
higher accuracy than that produced by back propagation (BP)
neural networks, as the SVMmethod overcame the local best
and curse of dimensionality that exists in neural networks and
traditional machine learning algorithms. Recently, Son and
Kim [23] provided a precise model based on support vec-
tor regression (SVR) and fuzzy-rough feature selection with
particle swarm optimization (PSO) algorithms for monthly
forecast of residential electricity demand using historical
data in South Korea, and the mean absolute percent-age
error (MAPE) of this model is 2.13 which is smaller than
other models.

Genetic algorithms (GA) [24] and particle swarm opti-
mization (PSO) algorithms [25] are powerful approaches for
predicting building energy consumption as well. In practice,
hybrid models combining GA and PSO with machine learn-
ingmethods are widely utilized in electricity prediction appli-
cation. Li and Su [26] used the GA-hierarchical adaptive net-
work to predict the daily air-conditioning consumption with
0.0893 coefficient of variation (CV), which outperformed the
BPNNs in terms of accuracy. Afterwards, Li et al.’s [27] team
developed an improved PSO-ANN model for building elec-
tricity consumption predictions, and the CV of this model was
0.0791. Selakov et al. [28] coupled the SVM with PSO for
predicting the short-term electricity load, and the MAPE(%)
of the hybrid method for case 1 was 6.15. The results all
showed that these hybrid models improved the performance.
In addition, massive researchers have made use of cluster-
ing methods (i.e., K-means clustering) to analyze daily and
seasonal electricity behaviors for load classification. Three
cluster methods were investigated by McLoughlin et al. [29]
in order to segment the households into clusters according to
the electricity usage pattern across the day.

Until now, research on the energy consumption of resi-
dential buildings has not been elaborated to the same extent
as that of commercial buildings due to the insufficiency of
the residential energy-use databases and the greater free-
dom of user behaviors. Moreover, most studies on residen-
tial buildings involve short-term energy consumption pre-
dictions (i.e., sub-hourly, hourly) of a certain building to

help users decrease electricity usage during the peak time
of the day to prevent blackouts or involve long-term pre-
dictions (i.e., yearly) to identify requirements for national
planning and investment [30]. However, there are relatively
fewer studies on monthly prediction for electricity energy
consumption of a large number of residential buildings for
regional electricity supply-side and demand-side manage-
ment. To our knowledge, the research on quarterly dividing
the electricity consumption of residential buildings in the
entire region into different levels on the basis of the electricity
consumption per unit area has not been publicly released.
Moreover, predicting the monthly electricity consumption
ratings according to mass data of architectural characteristics
apart from weather information and historical energy con-
sumption has not received attention. The lack of a uniform
electricity rating prediction for residential buildings within
a region can be an obstacle for the promotion of electric-
ity demand-side management and the rational allocation of
the power supply, which improves the power grid quality
and encourages general users to manage their energy usage
scientifically and reasonably. It is difficult for the power
sector to use energy simulations for predicting the energy
consumption of an entire region due to the unavailable of
some detailed data which requires large quantities of various
sensors. As such, the use of open data for modeling research
and predictions is a good choice. Therefore, the ability to use
historical data to predict electricity consumption ratings for
regional residential buildings will be valuable.

In this paper, an optimized SVM model based on a com-
bined feature engineering algorithm and a sampling algo-
rithm is introduced for the classification and prediction of
electricity usage for residential buildings. A comparative
analysis is performed to compare the classification perfor-
mance of the back propagation (BP) neural network and
gradient boosting decision tree (GBDT) with the proposed
new method. The precise classification results help control
themain supply to guarantee the stable provision of electricity
for comfortable living in the entire region, especially during
the peak power seasons: summer and winter. The main con-
tributions of this paper are listed as follows:

1) We quarterly divide the electricity consumption of resi-
dential buildings in an entire region into different levels
on the basis of the electricity consumption per unit
area of each residential building. We extract the clus-
ter centers using the improved PSO-K-means method
to determine the classification criterion of electricity
energy consumption ratings by quarterly division—not
annually—according to the different seasons.

2) We design a framework converting the problem of
predicting electricity energy consumption into that
of predicting electricity energy consumption levels,
for classifying and predicting electricity consump-
tion ratings for the next month in an entire region.
In feature engineering, apart from weather informa-
tion data (14 dimensions), electricity consumption
data (1 dimension) and natural gas consumption data
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(1 dimension), mass data of architectural characteris-
tics (14 dimensions) are used. The one-month-ahead
prediction for electricity demand-side situation and dis-
tribution of the region are obtained most accurately
than other existing studies through the method we
proposed.

The organization of this paper is as follows: The next
section (II) discusses the methodology. In section (III),
the experiment is presented with data, evaluation indices and
results analysis. Finally, we conclude the research and discuss
future work in section (IV).

II. METHODOLOGY
A. RESEARCH OUTLINE
This paper provides solutions for the energy consumption
prediction problem of residential buildings. The research
technical route is shown in Figure 1. First, it is impor-
tant to preprocess the data acquired from the databases,
which includes the characteristics of the residential build-
ings, the weather information and the energy consumption,
to remove the noise, outliers and missing values from the
data. The sensors used for building energy consumption mea-
surement systems are multi-sourced and asynchronous, and
the measurement and control system may encounter network
fluctuations or network interruption in the long-time oper-
ation process, which results in some abnormal and missing
values. After the characterization, the features of all the data
types are divided into the same standard. It is necessary
to extract the effective information from the data through

FIGURE 1. Technical route of the research.

feature engineering because of the high-dimensional data
characteristics of the residential buildings and weather infor-
mation; this process is followed by the feature dimensionality
reduction. Before predicting the electricity energy consump-
tion ratings of residential buildings, this paper conducts a
clustering analysis by using the PSO-K-means algorithm on
the electricity consumption data of each quarter and then
divides the electricity consumption values of each quarter
into corresponding levels according to the clustering center
points, which is a feature of the classification model. After
sampling, the classifier adopts the SVM model, as the inputs
are the characteristics of the residential buildings, weather
information, and historical energy consumption (i.e., the nat-
ural gas and electricity consumption in the previous month).
The predicted outputs are the electricity consumption ratings
for the next month.

B. COMBINED FEATURE ENGINEERING ALGORITHM
Since the feature dimension is usually high after constructing
the basic feature vector, the training process for the conven-
tional classifier is time-consuming, and the irrelevant features
that have little or no influence will affect the experimental
results. The data we used in this paper are characterized by
high-dimensional feature attributes and ample feature infor-
mation. Therefore, a single feature engineering algorithm is
not sufficiently accurate and a feature engineering algorithm
combining principal component analysis (PCA) and singu-
lar value decomposition (SVD) with random forests (RFs)
named RF-PCA-SVD is introduced in this research.

Feature selection is important in feature engineering,
which can directly determine the results of model train-
ing. Random forests (RFs) are ensemble learning algorithm
frameworks that were proposed by Brieman [31] in 2001.
In RFs, the decision tree is treated as the minimum unit, and
the nodes are randomly selected from the feature space as
the split nodes. A bagging algorithm is used to construct a
decision tree for multiple training sets. RFs are only applica-
ble to the classification problem as a global feature selection
method. RFs adopt the method of quantifying the importance
of features to select the features with the largest amount of
information.

Assuming that the proportion of k-class samples in the
current sample dataset D is pk (k = 1, 2, . . . ,m),the Gini
impurity is expressed by the following formula:

Gini(D) =
m∑
k=1

∑
k ′ 6=k

pkpk ′ = 1−
m∑
k=1

p2k (1)

For each feature, the sum of the Gini impurity in the branch
nodes formed by the feature in each tree of the RF is counted
to evaluate the feature importance. Then, the features that are
larger than the threshold are selected.

If the data after feature selection are directly used for
model training, problems occur due to the large dimension of
the data feature matrix, such as the increase in computation
time and training time. Principal component analysis (PCA)
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is an unsupervised linear transformation technique that is
prominent for dimensionality reduction. Highly correlated
features are converted to a set of linearly independent char-
acteristic vectors through orthogonal transformation and the
transformed variables are called the main components of the
original vectors [32]. In data mining, excessive characteristic
vectors can bring the curse of dimensionality. The purpose of
PCA is to find the dimension with the greatest data difference
to help reduce the cost, extract effective information and
remove noise.

The approach of PCA is summarized in a few steps:
1. Standardize the features in the dataset D =

{x1, x2, . . . , xm} prior to the PCA because it is highly
sensitive to data scaling.

2. Construct the covariance matrix XXT.
3. DecomposeXXT into the eigenvalues and eigenvectors.
4. Select d eigenvectors that correspond to the d largest

eigenvalues and sort them in a descending order, where
d is a lower dimension.

5. Construct the matrixW = (w1,w2, . . . ,wd ).
6. Obtain the matrixWTX after the dimensionality reduc-

tion for further use.
Singular value decomposition (SVD) is used to transform a

high-dimensional matrix into a low-dimensional matrix, thus
achieving feature reduction [33]. SVD removes unwanted
singular values and remodels the matrix using valid singular
values. SVD is the common solution used to resolve the
problem of extracting effective information that describes a
matrix that is not square.

Assume that the matrixM can be decomposed as follows:

M = U6vT (2)

where U and vT can be viewed as the rotation operation and
6 can be regarded as the zoom operation. The dimensionality
reduction can be attained through adjustment to the matrix6.
Although the effect of SVD can be gained by PCAdimension-
ality reduction, SVD has better stability and a wider range of
application.

C. PSO-K-MEANS CLUSTERING ANALYSIS
Prior to predicting the electricity energy consumption rat-
ings of the residential buildings, the distribution rule of the
data is analyzed with the K-means clustering algorithm. This
research divides the electricity energy consumption data into
quarters and then extracts the values of three months in each
quarter as the eigenvector. For example, the component vector
of the first quarter is {electricity energy consumption in
January, electricity energy consumption in February, electric-
ity energy consumption in March}.

TheK-means clustering algorithm hasmany characteristics,
such as fast convergence and good stability [34]. However,
the clustering process is unable to determine the number
of clustering centers. This paper introduces the S_DBW
fitness value as the evaluation index to determine clustering
results. S_DBW not only considers the compactness within
the category but also refers to the problem of density between

two categories. The smaller the fitness value is, the better
the clustering effect will be, which means the intra-cluster
connection is closer and the inter-cluster separation is greater.

Let D = {Vi|i = 1, 2 . . . , c} be a partitioning of a dataset S
into c convex clusters, where vi is the center of each cluster.
The calculation formula of the average distance from the
center to a point of the cluster Stdev is shown hereafter [35]:

Stdev =
1
c

√√√√ c∑
i=1

‖δi‖ (3)

The validity index SDBW is defined in the following
equation [35]:

SDBW

=
1
c

c∑
i=1

‖δ(vi)‖ / ‖δ (S)‖

+
1

c(c− 1)

c∑
i=1

c∑
j=1
i 6=j

∑
x∈Vi∪Vj f (x, uij)

max(
∑

x∈Vi f (x, vi),
∑

x∈Vj f (x, vj))

(4)

where δ(vi) is the variance of cluster Vi, δ(S) is the variance
of a dataset, vi and vj are the centers of clusters Vi and Vj,
respectively, and uij is the middle point of the line segment
defined by the centers of Vi and Vj. If the distance d(x, u)
between center u and point x is larger than the average stan-
dard deviation of the clusters Stdev, f (x, u) = 0; otherwise,
f (x, u) = 1.
The clustering effect depends on the choice of initial clus-

tering centers. To solve this problem in the paper, an improved
particle swarm optimization (PSO) algorithm is used as the
previous step of the K-means clustering algorithm, wherein
the smallest global fitness points are selected as the initial
clustering centers instead of being randomly generated. The
improved PSO algorithm continuously searches for the global
optimal cluster centers and dynamically adjusts the weighting
factor according to the number of iterations to enhance the
global search performance [36].

Assume that there are a swarm of m particles moving in
the n-dimensional space of the problem solutions. At this
point, each particle’s own best position pbestk and global
best particle position gbest among all the particles have been
found. For each particle k , a position Xk and a flight velocity
Vk are adjusted according to the following equations [36]:

Vk (t + 1) = w(t)Vk (t)+ c1r1(pbest − Xk )

+ c2r2(gbest − Xk ) (5)

Xk (t + 1) = Xk (t)+ H0(1− t/tmax)Vk (t + 1) (6)

The linear adjustment strategy is adopted to dynamically
adjust the weight in the formula [36]:

w(t) = wmax − (wmax − wmin)t/tmax (7)

where w(t) is the inertia weight function, c1 is the cognition
weight factor, c2 is the social weight factor, r1 and r2 are two
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random numbers that are uniformly distributed in the range
of [0, 1], wmax and wmin are the initial and final inertia weight
factors, respectively, tmax is the maximum iteration number
and t is the current iteration number.
In the later iteration stages, the search speed of the opti-

mization algorithm tends to be slow, and the fitness value
tends to be stable. In other words, it is described as a pre-
cocious particle swarm problem. Accordingly, the research
introduces the threshold of fitness variance for the aim of
finishing the iteration; this formula is shown as follows [36]:

σ 2
=

1
m

m∑
i=1

[
f (xi)− favg

]2 (8)

where m is the number of particles in the swarm, f (xi) is the
fitness value of a single particle, and favg is the average fitness
of the particle swarm.

The improved PSO-K-means algorithm is adopted to con-
duct cluster analyses on the energy consumption data of resi-
dential buildings; the PSO-K-means algorithmmakes full use
of the global search ability of the improved PSO algorithm
and finds the smallest fitness values as clustering centers from
the beginning. Thus, the dependence on the initial cluster-
ing centers can be avoided. The PSO-K-means algorithm is
described in Algorithm 1.

D. SAMPLING ALGORITHM
Apart from the SVM proposed as the classification strategy,
an imbalanced data classification issue is taken into consider-
ation, which has not received adequate attention in previous
works. In this paper, undersampling and oversampling have
been carried out for the majority classes and minority classes,
respectively, such as the edit nearest neighbor (ENN) algo-
rithm [37] and synthetic minority technique (SMOTE) algo-
rithm [38]. In the actual prediction, the accuracy of minority
classes that contain important information determines the
generalization ability of the model. It will cost a lot to divide
an instance incorrectly.

ENN undersampling looks for adjacent samples around a
specific dataset of majority classes and deletes the samples
from the original dataset to reduce the imbalance ratio if most
of them are different from their own categories, which may
have an impact on later experiments. The ENN algorithm is
described in Algorithm 2.
SMOTE oversampling is used to balance samples by ran-

domly inserting new samples between data points of minority
classes. To some extent, SMOTE can avoid overfitting of the
classifier and improve the classification ability and prediction
accuracy.

In this research, the sampling algorithm integrates ENN
with SMOTE to balance the datasets, which are divided
into different electricity energy consumption levels. The data
in the majority classes are undersampled (a few points are
deleted), and the data in the minority classes are oversampled
(new data points are added) to improve the prediction results

Algorithm 1 PSO-K-Means Algorithm
Input: clustering dataset (residential electricity consump-
tion) S = {x1, x2, . . . , xw}, number of clustering centers c,
size of particle swarm m, maximum iteration number tmax
Output: cluster partition D = {V1,V2, . . . ,Vc}
Process:
1. Iterate over S, find the maximum and minimum of each
dimension as the position range [xmin, xmax], wherein the
velocity range is [−xmax, xmax].
Randomly select c initialization centers from S, and then

repeat and generate m particle swarms.
Calculate the fitness SDBW of each of the particles

using (4).
Initialize pbestk and gbest.

2. for (number of iterations < tmax) do
for (k = 1, 2, . . . ,m) do
Update the velocity and position of the particles

according to (5) and (6) and control the velocity and posi-
tion in the range.

Dynamically adjust the weight according to (7).
end for
for (data point = 1, 2, . . . ,w) do
Divide each data point into the nearest cluster using

the Euclidean distance.
Compute the fitness value SDBW using (4).
If SDBW < the individual extreme value, then update

pbestk and gbest.
end for
Compute the group fitness variance using (8)
If σ 2 > threshold, return 3.

end for
3. Get the best number of clustering centers c and gbest.
Execute the K-means algorithm.
4. Select pc particles as the initial cluster centers with the
minimum SDBW from the PSO algorithm results.
5. for (data point = 1, 2, . . . ,w) do

Divide each data point into the nearest cluster using
the Euclidean distance.
end for
for (clusters = 1, 2, . . . , c) do

Update the average value of each cluster and mark the
center points.
end for
If the center points are not changed, then return the

cluster partition D = {V1,V2, . . . ,Vc}.

of the subsequent SVM classifier. The SMOTE algorithm is
described in Algorithm 3.

E. SVM METHOD
SVM is a theoretical machine learning classification tech-
nique that is widely applied in binary classification andmulti-
classification [39]–[41]. Owing to the advantages of SVMs
in solving non-linear problems, they can be used to predict
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Algorithm 2 The ENN Algorithm
Input: original dataset T, number of adjacent samples K
Output: dataset TENN after oversampling
Process:
1. i = 0, TENN = T.
2. while (i < number of samples) do

Compare the categories ofK adjacent samples around
xi in dataset T and the category of xi, and, if they are
different, then delete xi.
end while

Algorithm 3 The SMOTE Algorithm
Input: dataset TENN, number of adjacent samples K ,

oversampling ratio n
Output: dataset TSMOTE after undersampling
Process:
1. i = 0
2. while (i < number of samples) do

Find K adjacent samples near xi, choose n samples xij
for j = 1, 2, . . . , n.

Compound the new minority class samples yj accord-
ing to the equation: yj = xi + (xi − xij)rand(0, 1).
end while

3. Add yj into the dataset TSMOTE.

residential energy consumption and high accuracy can be
achieved in the medium-term and short-term prediction [42].
The SVM method has a simple training process that requires
few inputs; however, the low calculation efficiency of SVMs
obstructs their use in largescale building energy analyses [42].
Recently, immense efforts have been paid to shorten the
calculation time of SVMs by optimizing their structure and by
developing hybrid models that are combined with clustering
algorithms [43], [44].

When the data are linearly separable, the SVM solves the
optimization problem as follows:

min
1
2
‖w‖2

s.t. yi(wTx + b) ≥ 1, i = 1, 2, . . . , n
(9)

In SVM theory, the Lagrangian multiplier is usually intro-
duced to the objective function, and the latter is easily solved
in its dual formulation. The Lagrangian function is formed as
follows:

L(w, b,α) =
1
2
‖w‖2 −

n∑
i=1

αi

(
yi
(
wTxi + b

)
− 1

)
(10)

where w and b are acquired by the calculation of α, ||w|| is
the Euclidean norm, and αi (i = 1, 2, . . . , n) is the

Lagrange multiplier. The dual problem is defined as follows:
max L(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xTi xj)

s.t.
n∑
i=1

αiyi = 0, αi ≥ 0

(11)

Then the dual problem is transformed into the minimax
problem of the objective function:

max
α

min
w,b

L(w, b,α) (12)

The solution of the classification hyperplane is shown in
the following formula:

w∗ =
n∑
i=1

α∗i xiyi

b∗ = −
1
2
w∗(xr + xs)

(13)

where α∗i is the optimal Lagrange multiplier and xr and xs are
any pair of support vectors in two categories.

To separate the nonlinear data on the plane that is
not separable, the SVM completes the calculation in
the low-dimensional space, maps the input space to
the high-dimensional feature space through a nonlinear
change ϕ(x), and finally constructs the optimal separation
hyperplane. The dot product in (10) is represented by the
kernel function ϕ(xi)Tϕ(xj) that is defined as K (xi, xj). In this
paper, the Gaussian kernel shown in the following equation is
used:

K (xi, xj) = exp(−

∥∥xi − xj∥∥2
2σ 2 ) (14)

In this research, the prediction of the residential energy
consumption ratings is a multi-classification task, and a
multi-classification task can be split into several binary clas-
sification tasks. The split strategy takes the form of OvR
(One-vs.-Rest). We can train one classifier per class using
OvR, where the particular class is regarded as the positive
class and all the other samples are considered as the negative
class. In the test n classifiers are used and the class label with
the highest confidence is assigned to the particular sample.

III. EXPERIMENT
A. DATA AND EVALUATION INDICES
In this paper, the proposed method is tested using data
information that consists of the characteristics of residential
buildings and the monthly energy consumption of electricity
and natural gas; these data come from the website of Open
Energy Information (Open EI) for cities in the USA [45].
The experiment is implemented by Python on a Windows 10
operating system with an Intel Core i7 2.7 GHZ processor
and 16GB of RAM; the software platform is PyCharm and
Anaconda. The original data package contains six Microsoft
Excel files, wherein two of the files are the characteristics of
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TABLE 1. The dataset for the characteristics of the residential buildings
and weather information.

these residential buildings, which are named 1_ResCharac-
teristics_DataJam and 2_Headers_DataJam; the headers are
listed in Table 1. In addition, the monthly and annual electric-
ity and gas usage of these residential buildings are included in
the data package. Monthly weather information is collected
according to the zip code of these residential buildings at the
National Weather Service website [46], and the headers are
listed in Table 1.

The prediction performance is measured by considering
three frequently used evaluation indices: accuracy, precision
and recall. In addition, the F-measure is used to evaluate the
prediction performance of the classification algorithmmodel.
A larger F-measure indicates a better prediction performance,
and vice versa [47].

Accuracy measures the proportion of the samples that are
predicted correctly. The accuracy is defined as follows [47]:

accuracy =
TP+ TN

TP+ FN + FP+ TN
(15)

where TP is true positive, FN is false negative, FP is false
positive and TN is true negative.

Precision represents the proportion of the positive samples
that are predicted correctly. The mathematical formula for
precision is shown as follows [47]:

precision =
TP

TP+ FP
(16)

Recall is the proportion of the positive samples that are
predicted as positive. The recall is defined as follows [47]:

recall =
TP

TP+ FN
(17)

The F-measure determines the harmonic average of preci-
sion and recall, which makes the evaluation standard more
robust by combining two indices. The F-measure is defined
as follows [47]:

F − measure =
2× precision× recall
precision+ recall

(18)

B. CATEGORIZATION OF THE ELECTRICITY ENERGY
CONSUMPTION IN RESIDENTIAL BUILDINGS
When the fitness value is at the minimum value, the cluster-
ing results with different colors of each quarter are shown
in Figure 2. The clustering centers are calculated according
to the best fitness value, as shown in Table 2, and the cate-
gory of the monthly electricity energy consumption of each
residential building is divided. For example, the residential
buildings which the electricity energy consumption per unit
area in the first quarter below 0.287 kWh/m2 are divided into
level 1.

TABLE 2. The cluster centers of electricity energy consumption per unit
area in each quarter.

TABLE 3. The statistical number of clusters in each quarter.

Afterwards, the number of residential buildings in different
levels of each quarter is counted, as shown in Table 3. The first
quarter can be divided into five categories from high to low
electricity consumption, whereas the other three quarters can
be divided into four categories. The statistical results indicate
that a class imbalance problem exists and that an imbalance
in the distribution of training data will affect the accuracy of
the results.

C. UNDERSAMPLING AND OVERSAMPLING
The categorization of the electricity energy consumption of
residential buildings is solved by using the clustering algo-
rithm, but, according to the above content, a class imbal-
ance problem emerged. In this paper, the undersampling and
oversampling method are combined to address the imbalance
problem of the electricity energy consumption data, and the
SMOTE-ENN algorithm is used to sample the imbalanced
class. The comparison diagrams between the original one and
sampling one of the four quarters are shown in Figure 3.
To facilitate the display of the post-sampling points, both
the original data and the post-sampling data which consist
of 14 architectural variables, 14 weather variables and 2 his-
torical energy variables (natural gas consumption values and
electricity consumption ratings in the previous month) are
reduced to three dimensions by PCA (the coordinate axis has
no physical meaning).
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FIGURE 2. Clustering results of each quarter. Different colors represent different clusters. The x, y and z
coordinates represent electricity energy consumption per unit area (the units are given in kWh/m2) of three
months in each quarter. (a) Clustergram of the first quarter; (b) clustergram of the second quarter;
(c) clustergram of the third quarter; and (d) clustergram of the fourth quarter.

D. RESULTS AND COMPARISON
The data of Gainesville in Alachua County, Florida in the
USA are selected according to the zip codes in the origi-
nal data set from the website of Open Energy Information
(Open EI). Within this region, there are 16560 residential
buildings used for prediction in the second, third and fourth
quarter; however, there are 11003 residential buildings used
for prediction in the first quarter due to the missing values.
For predicting the monthly electricity energy consumption
ratings, 80% of the processed data set is used for training
and 20% is used for test. GBDT, BP and SVM are trained
and tested individually with the data to compare their clas-
sification performances. The experiment for each model is
repeated 20 times, and the average performances and the least
performances of accuracy, precision, recall and F-measure are
used for comparison. The results in Table 4 illustrate which
model performs most efficiently when predicting the electric-
ity energy consumption for residential buildings. As shown
in Table 4, the SVM exhibits slightly better performance
in almost all evaluation indices compared with GBDT and
BP. Moreover, the mean standard deviation of four evalu-
ation indices is around 0.012 using GBDT and BP model,
0.0066 using SVM model and 0.0047 using SMOTE-ENN
+ SVM model. It is indicated that SVM is better than the

other models to predict the electricity consumption ratings of
regional residential buildings. As shown in Table 5, the SVM
method consumes the longer CPU runtime than GBDP and
BP method, that is, the algorithm complexity is high, but
it performs the best indicated in Table 4. The reason for
the high complexity is to map the low-dimensional data to
higher-dimensional data through the function of the kernel
function which is invisible in the feature space. Experiences
have shown that the higher dimension and the greater algo-
rithm complexitymean that it ismore difficult for the training,
and it takes more time to consume CPU resources. In the pre-
diction for monthly electricity consumption ratings, we want
the prediction accuracy to be as high as possible, so the CPU
runtime is sacrificed.

As there are an unequal number of each level in the clas-
sification of electricity energy consumption for residential
buildings, the problem of imbalance classification arises.
The SMOTE-ENN sampling algorithm greatly improves the
accuracy of the classification, and the evaluation indices of
the SVM method with SMOTE-ENN are much higher than
those without the sampling algorithm, which indicates that
the imbalanced data have an impact on the experimental
results. For instance, in the condition of the least accurate
predictions among 20 times, the mean percentages of the
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TABLE 4. Classification performance comparison of the GBDT, BP, SVM and SMOTE-ENN + SVM models. The evaluation indices are: accuracy, precision,
recall and F-measure.

FIGURE 3. Comparison diagrams of the sampling algorithm. The left diagram in the same row is the original one, and the right diagram is the sampling
one after processing by the algorithm. To facilitate the display of the post-sampling points, both the original data and the post-sampling data are
reduced to three dimensions by PCA (the coordinate axis has no physical meaning). The colors of points in Figure 3 represent three kinds of electricity
usage level for demonstration purposes: green color represents level 1, yellow color represents level 2 and purple represents level 3.
(a) and (b) Sampling comparison in the first quarter; (c) and (d) sampling comparison in the second quarter; (e) and (f) sampling comparison in the third
quarter; and (g) and (h) sampling comparison in the fourth quarter.

wrong predicted cases of three months in the same quarter
are shown in Figure 4. The horizontal axis is the differ-
ence between the predicted and actual levels for electricity
energy consumption forecast using SMOTE-ENN + SVM
method, that is, 1,2, 3, 4 in the first quarter and 1, 2, 3 in

the other three quarters. From the histograms, we can see
the vast majority of the wrong predictions are one level
different from the actual levels. In summary, the average
accuracy, precision, recall and F-measure of the new model
are up to 96.8%, 98.2%, 96.7% and 97.4%, respectively.
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TABLE 5. The comparison of CPU runtime for GBDT, BP, SVM and
SMOTE-ENN + SVM models. The unit is given in second (s).

FIGURE 4. The percentages of the wrong predicted cases of four quarters
in the condition of the least accurate predictions among 20 times. The
horizontal axis is the difference between the predicted and actual levels
for electricity energy consumption forecast using SMOTE-ENN + SVM
method.

The comparison results demonstrate that the optimized SVM
model based on the SMOTE-ENN improves the classification
performance by an average of 24.1% in terms of accuracy,
26.03% in terms of precision, 24.01% in terms of recall and
25.35% in terms of F-measure.

For the one-month-ahead forecast of residential elec-
tricity demand, one relevant research was done by
Son and Kim [23]. They constructed 5 social variables,
14 weather variables and monthly electricity consumption for
the proposed model based on SVR and fuzzy-rough feature
selection with PSO algorithms. They predicted the monthly
electricity energy consumption for the overall South Korea;
however, in our study, we predict the monthly electricity
energy consumption ratings for each residential building in
a city of Florida, USA utilizing the architectural features
instead of social variables. As such, we can predict the
regional electricity usage distribution of residential build-
ings monthly, then assist the power sector in providing a
decision-making reference for the rational allocation of the
power supply. Since the performance in [23] was mainly
evaluated by mean absolute percent-age error (MAPE) and
root mean squared error (RMSE) which compared the
deviation between the predicted value and actual value,
the model in [23] couldn’t be compared directly with our
work.

IV. CONCLUSION AND FURURE WORK
This research provides an optimized SVM model with an
accuracy that was increased by using the SMOTE-ENN sam-
pling algorithm to solve the problem of imbalance classifica-
tion, affording a better understanding of the quarterly elec-
tricity energy consumption for residential buildings. First,
a combined RF-PCA-SVD feature engineering algorithm is
used due to the sparse high-dimensional characteristics of
the data. Second, the electricity energy consumption data are
analyzed quarterly by the improved PSO-K-means cluster-
ing algorithm. Finally, by adopting an SVM and comparing
its classification performance with that of the conventional
approaches, i.e., GBDT and BP, this paper demonstrates the
superiority of SVMs with the sampling algorithm in the
monthly prediction of electricity consumption ratings for res-
idential buildings. These findings supply reference opinions
for the monthly decision to rationally allocate the power
supply in an entire region at macro level. Besides, it can help
improve power grid quality to guarantee the stable provision
of electricity for comfortable living, especially during the
peak power seasons: summer and winter.

The fields of intelligent buildings and smart cities are cur-
rently working on promoting the applications of sensor net-
works to optimize energy utilization. However, medium-term
(i.e., monthly) or even long-term (i.e., yearly) residential
energy consumption prediction require a relatively larger
amount of data that are stably and sufficiently metered
with sensors. Besides, uncertainties in the medium-term and
long-term prediction is more remarkable than in short-term
prediction since many changes may occur in the supply and
demand sides over a long period of time. Despite the above
challenges, medium-term and long-term energy consumption
prediction models are essential. Applying the new model in
intelligent control systems can make for accurate regional
power configuration construction, and guide changes in res-
idential user behaviors for demand-side management, which
can ultimately improve the quality of life.

For future work, we are planning to improve the sampling
algorithm for imbalance classification and introduce deep
learningmethods to the research on the classification and pre-
diction of electricity usage in residential buildings. This will
help increase the accuracy and efficiency. Moreover, we will
study the electricity energy scheduling strategy according to
the prediction for electricity energy consumption ratings of
residential buildings based on an entire region.
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