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ABSTRACT To get a better fused performance in the multi-focus image fusion based on a transform domain,
a new multi-focus image algorithm combined with the adaptive dual-channel spiking cortical model (SCM)
in non-subsampled shearlet (NSST) domain and the difference images is proposed in this paper. First, a basic
fused image is constructed in the NSST domain by registering the source image and adaptive dual channel
SCM (dual-channel SCM). Next, the focus areas of the sources input images based on the difference images
between the basic fused image and the sources images are detected. In the end, the final fused image
generated in this paper is realized by combining the focal regions. Because of the global coupling of the
dual-SCM, the synchronization characteristics of the pulse, and the multi-resolution and direction of
the NSST, the proposed algorithm can preserve the information of the source’s image well and present a
clear image more in line with the human visual effects. In summary, the image fusion algorithm that we have
designed is superior to the most advanced algorithms.

INDEX TERMS Difference images, multi-focus image fusion, non-subsampled shearlet, spiking cortical
model.

I. INTRODUCTION
Image fusion technology mainly produces images that are
more clearly and easily recognized by combining informa-
tion of multiple images of the same object [1]. Because the
original input images are limited in the focal length of the
camera, they cannot reflect the panoramic scene. Therefore,
compared with any single source image, the fused images
are more used in machine learning and visual perception [2].
In general, multi-focus image fusion has three strate-
gies: pixel-level information feature fusion, feature-level
information feature fusion, and decision-level information

The associate editor coordinating the review of this manuscript and
approving it for publication was Jeon Gwanggil.

feature fusion [3]. Pixel-level information feature image
fusion methods are mainly divided into two different types:
spatial domain algorithms and transform domain algorithms.
Algorithms based on spatial domain include principal com-
ponent analysis [4], [5], the algorithms based on guided
filtering [6], image fusion algorithms based on similar fea-
tures and human perception [7] and others. The fusion algo-
rithms based on transform domain are primarily studied in the
multi-resolution geometric analysis (MGA) tool domain and
they can be divided into local energy function (for instance,
wavelet-based image fusion algorithms in [8], ripplet-based
image fusion algorithms in [9], contourlet-based image fusion
algorithms in [10], shearlet-based image fusion algorithms
in [11], image fusion algorithms based on trained dictionaries

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

56367

https://orcid.org/0000-0002-3856-0375
https://orcid.org/0000-0001-7520-8226


S. Liu et al.: Multi-Focus Image Fusion Based on Adaptive Dual-Channel SCM in NSST Domain

in [12] and [13], image fusion in discrete cosine transform
domain in [14]) and artificial neural network (ANN) (such as
contourlet with PCNN [15], shearlet (ST) with PCNN [16],
contourlet with SCM [17]).

MGA tools have a good application in image fusion
(for instance discrete wavelet transform (DWT), non-
subsampled contourlet transform (NSCT), ST and others).
In recent years, with simple calculation and image
representation sparsely, contourlet transform has gained
high value and achieved good results in image fusion
methods [10], [15], [17]. However, contourlet transform is
sensitive to shift-translation [18]. NSCT, constructed by non-
subsampled directional filter and non-subsampled Laplacian
transform, can overcome this drawback and NSCT-based
image fusion method can achieve satisfied fusion result, but
the computation intensive hinders its applications on real-
time system. Compared with NSCT, ST [19], [20], with a
rigorous mathematical framework and smaller support range
of shear filter, is able to decrease the computation [21]. But
ST also lacks shift-invariance, which will lead some artifacts
on fusion processing. Later, in order to make better image
fusion to make up for the deficiencies of NSCT and ST,
scholars have proposed NSST [21], [22]. Compared to other
MGA tools, NSST has better sparse representation ability
with shift-invariance and less computation. In summary,
image fusion based on NSST can achieve better fused
performance.

However, because of nonlinear operations in the transform
domain, fusion methods based on MGA tools also cause
pixel distortion [7]. And fusion methods based on spatial
domain or ANN with linear fusion technique can reduce
pixel distortion [22]. PCNN is a simplified model which is
suitable for implementing the synchronous pulse excitation
characteristics. The excellent characteristics of PCNN make
it widely used in a variety of image processing methods,
such as image fusion processing, image denoising processing
and image segmentation processing. However, the calcula-
tion intensity has a great influence on the implementation
of PCNN-based image fusion processing [17], [22]. Image
fusionmethods based on traditional PCNN usually need com-
plex calculations with lots of iterations. And multiple param-
eters should be to tune in the PCNN-based image fusion [23].
The dual-channel PCNN simplifies complex calculations on
the basis of a single-channel PCNN, but there are still a lot
of iterations and parameter adjustments. The simplified pulse
coupled neural network (S-PCNN) [24], [25] is a simplified
PCNN model by removing the external coupling and
exponential decay characteristics of PCNN. Based on the
single-channel S-PCNN, the dual-channel S-PCNN can
simultaneously process the input pair of source images to pro-
duce results, further saving computation time. An intersecting
critical model (ICM)was designedwithmoremodels (such as
Hodgkin-huxley, FitHugh-Nagumo, and Eckhorn) [26]. The
ICM has only two coupled oscillators, which can effectively
reduce the calculation time and have higher real-time perfor-
mance. ICM can better access real biological neurons, and

better preserve the basic characteristics of neural networks.
In order to have higher practical value in the application,
a two-channel ICM is proposed, which has two stimuli to
process a pair of source images at the same time, which
makes the model more computationally efficient. However,
the above model also requires more parameter adjustments in
the image fusion processing. So, scholars have put forward
many improved and simplified PCNN models to improve
the performance of image fusion, and SCM is one of them
with lower computation. SCM can be used in image fusion
due to two features: one is that SCM, accords with Weber-
Fechnerlaw, is tardy to high intensity stimulation but heavily
sensitive to low intensity; the other is the time matrix of the
SCM which can be regarded as be the perception of human
subjective stimulus intensity [27]. SCM is highly utilized in
image fusion, for instance, in [17] and [28], image fusion
methods base on SCM and CT is proposed. And an effective
medical image fusion based on rolling guidance filter and
SCM is proposed in [29]. Though the above fusion algorithms
have obtained good results, one SCM model has only one
stimulus, in which case the entire image fusion process cannot
be processed, so image fusion process usually needs mul-
tiple SCMs. Therefore, the application of standard SCM in
image fusion has been structurally limited to a certain extent.
Furthermore, in almost all fusion methods, synaptic linking
weight of SCM is const. So, the synaptic linking weight
cannot lead to the best image fusion performance [28].

Because the SCM model is a single channel, it is not pos-
sible to process a pair of source images directly. Inspired by
the literature [30], we changed the original SCM model to a
dual-channel SCMmodel, which ismore conducive to images
fusion. Compared to dual-channel PCNN, dual-channel
S-PCNN and dual-channel ICM, it has fewer parameter set-
tings and can effectively handle low-efficiency and compu-
tationally complex problems, resulting in the fused image
that is more human-like. By combining the link strengths,
the corresponding pixel gradients in the image are calculated
throughout the model, and the iteration time is adaptively
determined by the time matrix. As all we know, it is the first
time that dual-channel SCM model is proposed and applied
to image fusion. And both source images are simultaneously
input into the same SCM conveniently. More importantly,
this set of parameters can automatically achieve the excellent
performance of the fusion during the running of the algo-
rithm, which also helps to suppress image distortion in image
fusion based on shearlet domain. If you want to process many
images at the same time, you can cascade to produce the final
result.

Taking into account the characteristics of MGA tools
and dual-SCM, we can intuitively draw the following con-
clusions. Firstly, NSST has great advantages over other
MGA tools and it is also widely used in the image process-
ing. Secondly, adaptive dual-SCM can effectively suppress
the image distortion caused on MGA fusion method. As a
result, we harbor advantages of NSST as well as dual-SCM
and then designed a multi-focus image fusion method by
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combining these two methods. The method designed in this
paper can obtain better image visual effects, because it
can more effectively pick up the details of focused region
in the source images. However, the fired map of ANNs
(PCNN or SCM) may be discontinuous [23]. Inspired by the
method in [31], we refined the based fused image by using
the salient features of the difference images between the basic
fused image and the original input images.

As we all know, the fused algorithms based on deep
learning has achieved good experimental results recently.
In [32], image segmentation-based multi-focus image fusion
through multi-scale convolutional neural network (MSCNN)
is proposed, which is a novel image segmentation-based
multi-focus image fusion algorithm. MSCNN achieves seg-
mentation through a multi-scale convolutional neural net-
work, which performs a multi-scale analysis on each input
image to derive the respective feature maps. Afterward,
the fused map is post-processed using initial segmenta-
tion, morphological operation, and watershed to obtain the
segmentation map and decision map, which can achieve
an optimum fusion performance in light of both qualita-
tive and quantitative evaluations. Liu et al. [33] propose
multi-focus image fusion with a deep convolutional neural
network (CNN). CNN for image fusion in this algorithm is
trained for images of different degrees of clarity for the image
fusion process. From the trained CNN, the focused map can
be obtained directly. Tang et al. [34] propose pixel convolu-
tional neural network for multi-focus image fusion(P-CNN).
P-CNN can identify the focus and defocus pixels in the image
according to the neighborhood information. The distinction
for pixels is based on a set of training images in a public
image database. Guo et al. [35] propose fully convolutional
network-based multi-focus image fusion (FCNN) based on
the method in [33]. The pooling layer of the CNN model in
the [33] is replaced by a convolutional layer, and a newmodel
is generated for multi-focus image fusion. Then, through the
backward propagation residual, the parameters of each layer
of the CNN are updated layer by layer. In these deep learning
algorithms, the original images are processed by different
models, and a good visual effect is obtained, but the training
of CNN is time consuming. In these models, a large number
of data sets need to be trained, and the convolutional layer as
feature extraction is time consuming in the running process.
It is proposed in [36] that the current fusion method based on
deep learning has challenges in network architecture design
and network training dataset generation. And the image fused
algorithm designed in this paper is more efficient and does
not require training data sets. NSST can divide images into
more detailed information features of different frequencies
and directions. The dual-channel SCM can process the source
images at the same time, which simplifying the calculation
process and enabling better application and engineering.

The structure of the article is divided into the following
sections. In the second section, we introduce the basic knowl-
edge of NSST structure. In the third section, we give the con-
struction of SCM and its improvement. In the fourth section,

FIGURE 1. The tiling of the frequency plane formed by the ST.

we introduce the workflow of the novel fusion algorithm by
using dual-SCM in NSST domain with difference images.
In the fifth section, we give the comparison experimental
results between the proposed algorithm and other represen-
tative fusion algorithms. Finally, we draw some conclusions
in the last section.

II. NON-SBUSAMPLED SHEARLET TRANSFORM
ST is a newmulti-scale geometric analysis algorithm by using
the construction of composite wavelets. And it overcomes the
disadvantages of contourlet and curvelet transform [18], [20].
In the case, n = 2, the shearlet functions are generated by
affine transform as following [17], [19]:

�AB (ψ) =

{
ψj,l,k (x) = |detA|j/2 ψ

(
BlAjx− k

)
: j, l ∈ Z , k ∈ Z2

}
, (1)

where ψ ∈ L2(R2),A,B are 2 × 2 invertible matrices
and |detB| = 1. The dilations Aj are telescopic transform
matrices, while the matrices Bl are related to geometric
transform of the preservative region, such as rotations and

shear [19]–[21]. Normally A = A0 =

(
4 0
0 2

)
represents

the anisotropic dilation matrix, and B = B0 =

(
1 1
0 1

)
represents shear matrix in formula (1). Then, the NSST
decomposition is constructed as shown in FIGURE 1.

From FIGURE 2, we can know that the shearlet
function ψ̂j,l,k is supported on a pair of trapezoids of approx-
imate size 22j × 2j. And the slope of the trapezoids is l2−j.
If f ∈ L2

(
R2
)
, the continuous ST can be represented as the

following.

SHψ =
〈
f , ψj,l,k

〉
, (2)

where j ≥ 0, l = −2j, 2j − 1, k ∈ Z2.

NSST [20], [22] is realized through different scales and
directions. First of all, the image is decomposed by Non-
subsampled pyramids (NSP). It can be concluded by scale
decomposition that NSP can generate k high frequency sub-
band coefficients and one low frequency sub-band coeffi-
cients after k-th scale decomposition. In the second part,
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FIGURE 2. The frequency support of ST.

FIGURE 3. SCM structure of model.

the shear filter is applied to achieve multi-direction transfor-
mation. The standard shear filter is effectuated in a pseudo-
polarized grid through translating the window function,
whereas NSSTmaps the filter to Cartesian coordinate system.
This approach avoids the down-sampling operation and thus
satisfying the translation invariance [20].

III. ADAPTIVE DUAL-CHANNEL SPIKING CORTICAL
MODEL
In this section, we first briefly review the original SCM,
and then propose a new adaptive dual-SCM model that can
directly give the fusion result. Compared with SCM, the link-
ing input of adaptive dual-SCM model is improved, and
the parameter values can be adaptively selected, e.g. linking
strength and iteration amount.

A. SPIKING CORTICAL MODEL
Jin et al. [24] proposed the SCM model based on
Eckhorn’s model, which is consistent with visual charac-
teristic. Indeed, many effective fusion methods working for
different kinds of images are proposed [17], [23], [28], [29].
From FIGURE 3, we can see that, each neuron comprises
three components in the SCM: receptive field, modulation
field, and pulse generator.

As can be seen from FIGURE 3, the he indexes i and
j indicate the locations of the pixel of image. k and
l represent the locations of their adjacent pixels respectively,
and n represents the time of the current repeated feedback
process. We can compute the receiving and linking field and
modulating product as following.

Uij (n) = fUij (n− 1)+ Sij
∑
kl

WijklYkl (n− 1)+ Sij, (3)

where Uij(n) represents the internal activity and f represents
the attenuation coefficient factor of Uij(n). Sij represents the
external stimulus of this model.Wijkl represents the weight of

FIGURE 4. The dual-channel SCM model.

synaptic linking in this model, and Ykl(n − 1) represents the
former output pulse of this model.

The firing events in SCM model are determined by the
pulse generator in formula (4). And the output pulse Yij can
be calculated by internal activity and dynamic threshold as
following.

Yij(n) =

{
1 if 1/(1+ exp(Uij(n)− Eij(n))) > 0.5
0 otherwise,

(4)

The pulse threshold range for each neuron is determined
by the following.

Eij (n) = gEij (n− 1)+ hYij (n− 1) , (5)

where g represents the attenuation coefficient and h repre-
sents the threshold magnitude coefficient.

When image processing is performed, the pixels of the
original input image in the SCM rational model are closely
related to the number of neurons, and they correspond to each
other. Thismakes the imagemore convenient, reasonable, and
easy to implement during the fusion process.

B. DUAL-CHANNEL SPIKING CORTICAL MODEL
Undoubtedly, there requires more than one SCM model
for image fusion based on SCM, which makes the method
complex and time-consuming. Obviously, only one stimulus
for each neuron is an obstacle for multiple-image fusion
based on SCM. To overcome these defects of single-channel
SCM for image fusion, inspired by these characteristics in
the dual PCNN model in [29], we propose a new SCM
model—dual-channel SCMmodel. And compared to the dual
PCNN model, the dual S-PCNN model and the dual
ICM model, where the dual channel SCM has fewer param-
eters, this makes the calculation process easier. The model
presented in this paper is shown in FIGURE 4.

Each dual-channel SCM contains three components:
receptive field, the information fusion structure of the image
and the pulse generator part. Surrounding neuron stimulus
and external stimulus as two kinds of inputs are obtained in
the receptive area. The fused image is stored in information
fusion part, while the pulse generator part launches output
pulses. In dual-SCM, we simultaneously input both stimuli
into the model, and then we can get the fused image of the
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TABLE 1. Runtime of different dual-channel models.

dual-SCM output. And we can describe the mathematical
equations of dual-SCM as follows.

Uij(n) = fUij(n− 1)

+ max


S1ij

(∑
kl

WijklYkl(n−1)+1

)
,

S2ij

(∑
kl

WijklYkl(n−1)+1

)

, (6)

Eij (n) = gEij (n− 1)+ hYij (n− 1) , (7)

Yij(n) =

{
1 if 1/(1+ exp(Uij(n)− Eij(n))) > 0.5
0 otherwise,

(8)

where Uij(n) represents the internal activity. And the deci-
sion map of the fused image can be determined by Uij(n).
S1ij and S

2
ij represent the external stimulus of the two input

sources images accordingly. The rest parameters in dual-
channel SCM have the same meaning to the parameters
in SCM.

The most striking feature of dual-SCM is that two original
images can be are simultaneously input into this model to
obtain the desired image. From the output of dual-SCM,
we can get the fused image directly. So, the fused processing
can be finished conveniently and quickly. Dual-SCM can
also have the characteristics of global coupling and pulse
synchronization just like SCM, and make full use of local
image information, which is more conducive to image fusion.

To show the advantages of the dual-channel SCM model,
we compare it to dual-channel PCNN, dual-channel S-PCNN,
and dual-channel ICM in the fused effect. In the experimental,
we set the iteration time to 200, and the fusion strategy ismax-
imining the absolute value of the fire time. In FIGURE 5 and
TABLE 1, we present experimental results and computational
efficiencies for different dual-channel models. It can be seen
that the dual-channel SCM can better distinguish the focused
and unfocused regions of the image in the decision map, and
has higher computational efficiency.

C. ADAPTIVE PARAMETERS SETTING IN DUAL-SCM
In dual-SCM, the number of parameters that need to be set is
only five in total, including f ,Wijkl , g, h and n. Among them,
f , g and h are constants that can be easy to be determined.
In our paper, these parameters are the same to [29], that is,
f can be assigned by the value 0.7, and g can be assigned
by the value 0.8, and h can be assigned by the value 20.

FIGURE 5. The performance of different dual-channel models. (a) left
focu source image, (b) right source image, and (c)-(f) are decision maps
for a two-channel PCNN, dua-channel S-PCNN, dual-channel ICM, and
dual-channel SCM. (g)-(j) are dual channel PCNN, dual channel S-PCNN,
dual channel ICM and dual channel SCM fusion results.

The parameters Wijkl and n are important for image fusion.
So, we use the sum-modified-Laplacian (SML) of the images
to adaptively obtain the synaptic linking weight Wijkl . And
the iteration value n can be de determined adaptively by time
matrix of the images.

In our opinion, the synaptic linking weight should be
related to the clarity of source images. An adaptive synaptic
linking weight is defined by using SML of the source images.
That is,

Wij = max {SML (I1 (i, j)) , SML (I2 (i, j))} , (9)
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FIGURE 6. The fired time map, the largest value is 18.

In a general case, we assume that I1 and I2 are the source
images in image fusion and external stimulus Sij also can be
represented by SML of the source images. That is,

Sij = SML (I (i, j)) , (10)

SML reflects can properly reflect the focusing character-
istics and clarity of the image to some extent [14]. In order
to obtain a fused image with better visual characteristics
and richer and more prominent details, we use SML as
the synaptic linking weight of dual-SCM. The SML at the
pixel (i, j) can be calculated as following:

SML (I (i, j)) =
∑

(x,y)∈ω(i,j)

[ML (I (x, y))]2, (11)

where ω(i,j) denotes a rectangular window with sizes 3×3
which is centered on pixel (i, j). For ∀ (x, y) ∈ ω(i,j), we have
the follow definition,

ML (I (x, y))

= |2I (x, y)− I (x − step, y)− I (x + step, y)|

+ |2I (x, y)− I (x, y− step)−I (x, y+step)|, (12)

where step represents an alterable distance between pixels.
Here, we select variable step with a value of 1.

Generally speaking, in image processing, the iteration
number n in SCM is hard to determine. Most scholars deter-
mine n through experiments or experience. Zhan et al. [27]
and Liu et al. [29] selected the iteration number n of SCM
with a value of 40. As we all know, if n is too large,
the processing time will be too long, and if the value
of n is too small, SCM will not take taken full advantages
of to get optimal image processing effect, which means the
synchronous impulse characteristics of SCM are not well
applied to the image fusion process. Being inspired by [30],
the iteration number can be fixed by the time matrix T . Then,
T is represented by the following formula:

Tij (n) =

{
n, if Yij(n) = 1
Tij (n− 1) , otherwise,

(13)

where Tij (n) denotes first firing time of each neuron.
FIGURE 6 show the fired time map by equation (13).

In the source image, the pixels with similar image intensity
values tend to have the same or similar firing time, so the

dual-SCM can get time information of each neuron as well as
retain space information. These advantages of dual-SCM are
obviously very helpful to image fusion. From the definition
of T , we can conclude that, Tij (n) is assigned to n if the
neuron fires for the first time at the time of n, while Tij (n) is
assigned to zero when the neuron has never fired. In Adaptive
dual-SCM, the iteration will stop when each element value
of T is nonzero, which means all neurons have been fired
adaptively.

IV. IMAGE FUSION BASED ON DUAL-SCM IN NSST
DOMAIN
Since NSST has the properties of multi-scale decomposition
and shift invariant, we use NSST to decompose the source
images in the proposed image fused algorithm. Whether
for low-frequency or high-frequency coefficients of NSST,
SML of NSST coefficients is a better regional energy func-
tion representation on the image edge details [9], so better
image fusion effect can be archived by dual-SCM motivated
by SML, as shown in FIGURE 7 (The image fusion frame-
work according to SCM is the same to fused method in [37],
and the fused method named SML-SCM just replace the
inputs and synaptic linking weight by using SML in source
images. In FIGURE 7, we provide two sets of original images.
The first group ismedical images of CT andMRI, and the sec-
ond group is clock images of left focus and right focus. It is
clear to see in image zooming). The final fused image needs
to be further refined to complement the fused image based
on the difference image, giving it more prominent detail and
better visual effects.

The image fusion algorithm (NSST-SCM) proposed in
this paper is specifically explained below. In a general case,
we assume that I1 and I2 are two sources images whose focus
is different.

Firstly, we can get the decomposition coefficientsC l,θ
I1
(i, j)

and C l,θ
I2
(i, j) of image I1 and I2 by NSST. And l denotes the

scale in the NSST decomposition, while θ denotes direction
of decomposition in the l-th scale in the coefficients of NSST.
And if l is zero,C l,θ

I1
(i, j) andC l,θ

I2
(i, j) denote low frequency

coefficients of image I1 and I2, otherwise they denote high
frequency coefficients.

Secondly, SML of coefficients of NSST is computed by
equation (11). SML l,θI1 denotes SML of C l,θ

I1
(i, j) and SML l,θI2

denotes SML of C l,θ
I2
(i, j). We normalize the SML of the

NSST coefficients and take them as the stimuli for the
inputs of dual-SCM, respectively. Running the equation (6-8)
and (13), the dual-SCM can be finished when each element
value of the time matrix is not zero. And we can get
U I1
ij (n)= fUij (n−1)+SML

l,θ
I1

(∑
kl

WijklYkl (n−1)+ 1

)

U I2
ij (n)= fUij (n−1)+SML

l,θ
I2

(∑
kl

WijklYkl (n−1)+1

)
,

(14)
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FIGURE 7. The performance of SML in SCM. (a) CT source image, b) MRI
source image, c) left focu source image, d) right focus source image,
(e, g) the SCM based fused images, (f,h) the SML-SCM based fused image.

where U I1
ij (n) and U

I2
ij (n) represent the internal situation of

the neuron of source images, respectively. Then, the fused
NSST coefficients C l,θ

F (i, j) are derived from

C l,θ
F (i, j) =

{
C l,θ
I1

(i, j) if Uij (N ) = U I1
ij (N )

C l,θ
I2

(i, j) if Uij (N ) = U I2
ij (N ) ,

(15)

where N is the sum of each fire times.
Though inverseNSST,we can get the basic fused imageFb.

Generally speaking, the pixels of Fb are pixels whose focus
are the clearer ones in I1 and I2. So the signs of difference
of Fb and I1 or I2 can tell us whether the fused image has
image distortion or holes (see details in [31]). In this paper,

DiffFI1 (i, j) and DiffFI2 (i, j) represent difference images by
Fb minus I1 and I2, that is,{

DiffFI1 (i, j) = Fb (i, j)− I1 (i, j)
DiffFI2 (i, j) = Fb (i, j)− I2 (i, j) ,

(16)

It is evident that the regions with no evident gradient in
the difference images correspond to the focused regions in
the source images [31]. The obvious characteristics of the
focused regions can be seen from the gradient characteristics
of the differential images to some extent. Same as in [31],
the level of activation in the original images can be measured
by the gradient feature in the difference images. The energy
of the gradient (EOG) of each pixel can well reflect the
focus level of the fused image. And the higher the gradient
energy is, the higher the focus level is. On the other hand,
EOG can detect the edge information of the image and reduce
the image duplication effectively. In our paper, we also use
EOG to evaluate the focus levels of the fused image, and the
EOG of each pixel can be calculated as follows [31]:

EOG (i, j) =
∑ 1

2 (M−1)

m=− 1
2 (M−1)

∑ 1
2 (M−1)

n=− 1
2 (M−1)

×

((
I i+m

)2
+

(
I j+n

)2)
, (17)

where

{
I i+m = I (i+ m+ 1, j)− I (i+ m, j)
I j+n = I (i, j+ n+ 1)− I (i, j+ n) .

As we all know, average filter can suppress blocking arti-
facts in the image, while median filter can remove the isolated
points in the image. In our paper, different to using morpho-
logical filtering in [31], we use average filtering and median
filtering to refine EOG of difference images. What’s more,
this refined technology based on average filtering andmedian
filtering is more efficient than sliding window technique and
morphological filtering. The difference images can be refined
as follows.

EOGI1,refined (i, j)

= Median
(
Average

(
EOGI1 (i, j) ,M1

)
,M2

)
, (18)

EOGI2,refined (i, j)

= Median
(
Average

(
EOGI2 (i, j) ,M1

)
,M2

)
(19)

where EOGI1 (i, j) = EOG
(
DiffFI1 (i, j)

)
and EOGI2 (i, j) =

EOG
(
DiffFI2 (i, j)

)
, Average(•) represents the average filter

function, andMedian(•) represents themedian filter function,
M1×M1 is the window size of average filter, whileM2×M2
is the window size of median filter. In our algorithm, through
experimental verification, M is set to 3, M1 is set to 5 and
M2 is set to 7.

As the above shown, our fusion strategy map is determined
based on the EOG of the difference image pixels. When the
EOG of the different difference images pixels have a small
value, it indicates that the difference between the fused image
and the original images are small, that is, the pixel of the
original images has a better focus level and serves as the
pixel value of the final fused image. The selected pixel is
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FIGURE 8. Flow chart of NSST-SCM based image algorithm.

FIGURE 9. Different images to fuse.

from the pixel value of the source images I1 or I2, and the
value from the source image A or B is regarded as 0 or 1
in the decision maps, respectively. Combining with differ-
ent images, the final fused result is shown in the following
formula:

F(i, j) =

{
I1(i, j)if EOGI1,refined (i, j) < EOGI2,refined (i, j)
I2(i, j)if EOGI1,refined (i, j) ≥ EOGI2,refined (i, j),

(20)

In summary, the flow chart of the method we designed is
given in FIGURE 8. First, a set of multi-focus images I1 and
I2 are input, which are respectively decomposed by NSST to
generate sub-band coefficients of different frequencies and
directions. The decomposed coefficients are then processed
by SML as synaptic connection weights for the dual-channel
SCM inputs. The decomposed coefficients are processed
by the dual-channel SCM to generate fusion coefficients of
different frequencies and directions, and finally the inverse

NSST transform is used to generate the initial fused image.
In order to improve the fusion effect of the basic fused image,
we further refined the decision map by the difference images
between the basic fused image and source images.

V. EXPERIMENTAL RESULTS
A. COMPARISON OF DIFFERENT ALGORITHMS
IN GRAY IMAGES
We first introduce several objective criteria to measure the
performance of fusion algorithms, such as: objective crite-
ria based on human perceptual inspiration quality indicators
(QC ) [40], image similarity based measures (QY ) [41], phase
congruency-based fusion metric (QPC ) [41], nonlinear corre-
lation information entropy (QNE ) [41], structural similarity-
based fusion metric (QW ) [41], edge information similarity
measurement (QAB/F ) [15], pixel level image fusion index
(QPL) [41]. These indicators are used to represent the image
fusion quality of different algorithms from different image
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FIGURE 10. The fused performance of group a. (a-l) are the results of fusion images based on GFF, CST-GF, NSCT-PCNN, NSCT-SCM, NMF-DF, DCT,
DSIFT, BF, CNN SSDI, P-CNN and NSST-SCM. And (a1,a2),(b1,b2),(c1,c2),(d1,d2),(e1,e2),(f1,f2),(g1,g2), (h1,h2),(i1,i2),(j1,j2,k1,k2),(l1,l2) are difference
images (fused image minus figure (a) and (f)).

structure information. Normally, the larger the value of these
seven objective evaluations is, the better the image fusion
performance has. At the same time, we give the running
time of different algorithms to compare the computational
efficiency.

In order to evaluate the algorithm designed in this paper,
we give the experimental results of different algorithms for
comparison, as shown in FIGURE 9-14. FIGURE 9 give
five pairs of images as the sources images to be tested all
the fused algorithms. FIGURE9 (a) and (f) as group a are
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FIGURE 11. The fused performance of group b. (a-j) are the results of fusion images based on GFF, CST-GF, NSCT-PCNN, NSCT-SCM,
NMF-DFDCT,DSIFT,BF,CNN, SSDI, P-CNN and NSST-SCM. And (a1,a2),(b1,b2),(c1,c2),(d1,d2),(e1,e2),(f1,f2),(g1,g2),(h1,h2),(i1,i2),
(j1,j2),(k1,k2),(l1,l2) are difference images (fused image minus figure 9 (b) and (g)).

clock images which includes different focus areas on the
left and right. Group b contains FIGURE 9 (b) and (g), and
they are book images with different focus. Group c contains
FIGURE 9 (c) and (h), and they are disk images with dif-
ferent focus. Group d contains FIGURE 9 (d) and (i), and

they are lab images with different focus. Group e contains
FIGURE9 (e) and (j), and they are pepsi imageswith different
focus.

Comparison studies are performed in the experiments by
using the following algorithms. (1) Image fusion process-
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FIGURE 12. The fused performance of group c. (a-j) are the results of fusion images based on GFF, CST-GF, NSCT-PCNN, NSCT-SCM, NMF-DF,
DCT,DSIFT,BF,CNN,SSDI, P-CNN and NSST-SCM. And (a1,a2),(b1,b2),(c1,c2),(d1,d2),(e1,e2),(f1,f2),(g1,g2), (h1,h2),(i1,i2),(j1,j2),(k1,k2),(l1,l2) are
difference images (fused image minus figure (c) and (h)).

ing with guided filtering proposed in [7] (GFF). (2) Image
fusion by using guided filtering in complex-shearlet domain
proposed in [38] (CST-GF). (3) Image fusion algorithm by
using spatial frequency-motivated PCNN in NSCT domain
proposed in [15] (NSCT-PCNN). (4) Multi-focus image

fusion by using SCM in NSCT domain proposed in [17]
(NSCT-SCM). (5) Multi-focus image fusion algorithm by
using non-negative matrix factorization and refined by dif-
ference images proposed in [31] (NMF-DF). (6) Multi-focus
image fusion in DCT domain using variance and energy
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FIGURE 13. The fused performance of group d. (a-m) are the results of fusion images using GFF, CST-GF, NSCT-PCNN, NSCT-SCM, NMF-DF,
DCT,DSIFT,BF,CNN,SSDI,P-CNN and NSST-SCM. And (a1,a2),(b1,b2),(c1,c2),(d1,d2),(e1,e2),(f1,f2),(g1,g2),(h1,h2),(i1,i2),(j1,j2), (k1,k2),(l1,l2) are
difference images (fused image minus figure 9 (d) and (i)).

of Laplacian and correlation coefficient for visual sensor
networks in [42] (DCT). (7) Multi-focus image fusion with
dense SIFT in [43] (DSIFT). (8) Boundary finding based
multi-focus image fusion through multi-scale morphological
focus-measure in [44] (BF). (9) Multi-focus image fusion

with a deep convolutional neural network in [33] (CNN).
(10) High quality multi-focus image fusion using self-
similarity and depth information in [7] (SSDI). (11) Pixel
convolutional neural network for multi-focus image fusion
in [34] (P-CNN). To be fair, the parameters of the comparison
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FIGURE 14. The fused performance of group e. (a-j) are the results of fusion images using GFF, CST-GF, NSCT-PCNN, NSCT-SCM, NMF-DF,
DCT,DSIFT,BF,CNN,SSDI, P-CNN and NSST-CM. And (a1,a2),(b1,b2),(c1,c2),(d1,d2),(e1,e2),(f1,f2),(g1,g2),(h1,h2),(i1,i2),(j1,j2), (k1,k2),(l1,l2 are
difference images (fused image minus figure 9 (e) and (j)).

algorithms are selected based on the paper reported by the
authors to obtain the best fusion results. The decomposition
level of NSST is 2, with 2, 32 directions. In addition,
the fused algorithms are realized and assessed by using
MATLAB codes on Intel Core2 2.6 GHz machines which has
a 4 GB RAM.

The methods above are respectively employed to fuse five
group test images in FIGURE 9. FIGURE 10-14 show fused
images and the difference images between sources images
and fused image by using each fused algorithm.

As shown in the results of FIGURE 10 (a)-(l), it is easy to
find that blocking effect and unexpected image degradation
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TABLE 2. Ealuation indexes of different fusion algorithms in figure 10.

TABLE 3. Ealuation indexes of different fusion algorithms in figure 11.

TABLE 4. Ealuation indexes of different fusion algorithms in figure 12.

exist in FIGURE 10 (a), (b), (c) and (e). There are spots in
the difference images of FIGURE 10 (f) and (k), and the
information of the source images is not sufficiently extracted.

The boundary content of the image is not well extracted in
the FIGURE 10 (g-j). The fused image generated through
our method has less artificial texture, more detail of source
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TABLE 5. Ealuation indexes of different fusion algorithms in figure 13.

TABLE 6. Ealuation indexes of different fusion algorithms in figure 14.

images and better space continuity. Comparison of the differ-
ence images to get that our fused algorithm has the best fused
image clarity and spatial continuity and the least artificial
textures.

At the same time, we also use different evaluation indi-
cators to show the performance of different algorithms. The
highest value of each evaluation indicator is marked bold.
We can draw from TABLE 2 that the proposed algorithm
has the best performance in QC , QY , QNE , QW and QPL .
And the proposed algorithm has the best performance in
QPC and QAB/F except for SSID. That is contributed to
SSID use depth information and non-local information of
image.

Although compared to GFF and DCT, our algorithm has
no advantage in terms of computational efficiency. In the
overall evaluation index, our algorithm is effective and has
good performance.

As we can see, in FIGURE 11 (a)-(l), our method has
the best visual effect in all fusion methods. Comparison of
the different images also reflects that our method has the

best fused image clarity and spatial continuity, and the least
artificial textures.

Besides the subjective visual appearance, TABLE 3 shows
that the proposed algorithm has the best performance in QC ,
QY , QNE , QW , QAB/F and QPL , especially the QPL criterion,
which means our algorithm has absolute priority in image
processing to suppress artificial textures and preserve the
details of original images. Though, the proposed algorithm
has the smaller value in QPC than SSDI and P-CNN, it has
higher value in QPC than others.
FIGURE 12 shows fused images by using twelve fused

algorithms tested on group c. The same result as indicated
in FIGURE 11, our algorithm is more advanced than others.
The difference images in FIGURE 12. (c1-d2) have many
artifacts, which show that NSCT-PCNN and NSCT-SCM
cannot preserve all the details of source images.
FIGURES 12 (b2) and (e2) show that the decision maps
of CST-GF and NMF-DF have isolated point and artifacts.
FIGURE 12 (a2) shows that GFF lead into block effect
in fusion image. FIGURE 12 (f1-i2) does not distinguish
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FIGURE 15. Different images from Lytro multi-focus dataset to fuse.

between focused and unfocused regions well at the boundary.
It shows that the DCT, DFIFT, BF and CNN algorithms
cannot make good use of the feature information of the
images. FIGURE 12 (j1-k2) have a block effect near the
boundary of the timepiece. It shows that SSDI and P-CNN
have poor spatial continuity. And the algorithm designed in
this paper can obtain more information of the original images
while suppress block effect, artifacts and other useless image
information much more effective.

Besides the subjective visual appearance, TABLE 4 shows
that the proposed algorithm has the best performance in all
of seven objective indicators, especially the QNE criterion
and QPC criterion, which means our algorithm has abso-
lute priority in image processing to preserve the details of
original images and our algorithm also has better spatial
continuity.

FIGURE 13 shows fused images by using twelve fused
algorithms tested on group d. We can draw from the fusion
results in FIGURE 13 that our algorithm performs better
than other algorithms. Obviously, from FIGURE 13 (a2-d2),
fusion images by GFF, CST-GF, NSCT-PCNN, and
NSCT-SCM all lost much useful information of source
images. FIGURE 13 (e1-i1) and (k1, k2) have artifacts
in the texture portion of the bottom right corner of the
clock. It shows that the NMF-DF, DCT, DFIFT, BF, CNN
and P-CNN algorithms are not perfect in the fusion of
detail features. There are significant discontinuities in
FIGURE 13 (j1-j2). Compare FIGURE 13 (k) with
FIGURE 13 (l), our algorithm has been performed better than

NMF-DF in visual appearance. NSST-SCM can retain the
texture information of source images and reduce artifacts
much more effective.

From the TABLE 5, we can see that our algorithm
has the best performance in QY , QPC , QNE , QW , QAB/F
and QPL , which means our algorithm has absolute prior-
ity in image processing to suppress artificial textures and
preserve the details of original images. Though, the pro-
posed algorithm has the smaller value in QC than DCT and
NSCT-SCM, it has higher value in QC than others. So, our
algorithm can be considered as a robust multi-focus image
fusion algorithm.

FIGURE 14 shows fused images by using twelve
fused algorithms tested on group e. Obviously, from
FIGURE 14 (a1-f1), fusion images by GFF, CST-GF,
NMF-DF and DCT lost much useful information of source
images. However, from FIGURE 14 (a2-f2), fusion images by
NSCT-PCNN and NSCT-SCM lost much useful information
of source images. As seen from FIGURE 14 (g, h, i, and k),
the boundary portion of the fused images is too smooth.
However, there is a noticeable artificial texture in
FIGURE 14 (j). So, our algorithm NSST-SCM has
been performed better than other methods in visual
appearance.

Besides the subjective visual appearance, TABLE 3 shows
that the proposed algorithm has the best performance
in QC , QNE , QW , QAB/F and QPL . And, the proposed
algorithm just has slight smaller value in QY and QPC
than the highest one. Although the proposed algorithm
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FIGURE 16. Fused results of ten pairs of source images using different methods. From left to right are the fused results of GFF, NMF-DF, NSCT-SC,
DCT,DSIFT,BF,CNN,SSDI,P-CNN and NSST-CM.

is not the most efficient fused method, the experiment
results show that our method also is competitive whether
it is in terms of subjectively and objectively in fusion
quality.

B. COMPARISON OF DIFFERENT ALGORITHMS
IN COLOR IMAGES
In FIGURE 15, we give another ten pairs of multi-
focus images from Lytro multi-focus dataset [45] to verify
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TABLE 7. Ealuation indexes of different fusion algorithms in figure 16.1-5.

the algorithm. The comparison algorithms are GFF,
NMF-DF, NSCT-SCM, DCT, DSIFT, BF, CNN, SSDI,
P-CNN andNSST-SCM. The fusion results of themulti-focus
images of different algorithms are shown in FIGURE 16.

FIGURE 16 shows fused images by using ten fused
algorithms tested on FIGURE 15. The last line images in
FIGURE 16 of the different scenes are the fusion result
of our algorithm. From the fusion results, we can find
that our fusion algorithm still has strong competitiveness.
GFF performs the fusion of the source images by filtering the
weight map obtained. Therefore, this method may produce
artifacts. As shown in FIGURE 16.1 (a), there is a noticeable

artificial texture at the starting position. The text on the ‘‘soda
bottle’’ in FIGURE 16.5 (a) has artifacts. The fusion result
obtained by the NMF-DF and NSCT-SCM algorithms has a
block effect. The ‘‘face’’ portion of FIGURE 16.8 (b) and the
‘‘high-rise’’ area of FIGURE 16.10 (c) have blurred artifact.
In the DCT method, the fusion weight map is obtained by
the scale transformation coefficient, and there is an area
of erroneous selection. Defocus areas exist in the boundary
regions as shown in FIGURES 16.9 (d) and 16.7 (d). In the
process of determining the focus area, the DSIFT algorithm
may have unregistered images, which will seriously affect
the quality of the fused image. In FIGURE 16.4 (e), the
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TABLE 8. Ealuation indexes of different fusion algorithms in figure 16.6-10.

‘‘arm’’ section has a blurring effect that affects the visual
effect. At the same time, artifacts appear on the edge of the
images. In the process of generating the weight map, the
BF algorithm only generates weight distribution in the bound-
ary part. This causes the distinction between focus and non-
focus to appear as a texture. Artifacts appear in the frame
portion of FIGURE 16.1 (f). There are also obvious human
factors in FIGURE 16.9 (f). In the CNN and P-CNN meth-
ods, the blocking effect is reduced by training the clas-
sification labels to distinguish different degrees of focus.
In FIGURES 16.10 (g) and (i), defocus appears near
the ‘‘high building’’. In the vicinity of the ‘‘nose’’ in
FIGURES 16.7 (g), a defocused block appears. In the

SSDI method, the information features of the source images
cannot be fully extracted, and the fused image has poor visual
effect. As in FIGURES 16.3 (h) and 16.5 (h), the visual effect
of the fusion results is blurred.

It can be seen from the data obtained from the objective
evaluation indicators of TABLE 7 and TABLE 8 that the
proposed algorithm is better than others among most of the
seven objective evaluation indicators.

C. ALGORITHM DECISION MAP
In order to prove the efficiencies of the proposed algorithm,
we compare the decisionmaps of different algorithms. By this
way, people can see the edges and contour features of the
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FIGURE 17. The decision map obtained by GFF, NMF-DF, NSCT-SC, DCT, DSIFT,BF,CNN,SSDI,
P-CNN and NSST-CM.

image more clearly. We use five pairs of source images as
comparisons, from top to bottom are the decision maps of
different algorithms, the last line is the fused images, and
the final result is shown in FIGURE 17. In the process of

generating the decision maps, regards the value from the
source image A or B in the decision graph as 0 or 1. As can
be seen from the decision diagram, the model we designed
can effectively segment most pixels. Therefore, the model

56386 VOLUME 7, 2019



S. Liu et al.: Multi-Focus Image Fusion Based on Adaptive Dual-Channel SCM in NSST Domain

we designed is effective. The last line in the figure is the
fused images produced by the algorithm decision graph in
this paper.

The experimental results show that the proposed algo-
rithm can improve the accuracy of the fused image, keep the
details and texture of the source image with less artificial
texture features, and also has better computational efficiency.
Furthermore, this algorithm is easy to implement and has
achieved high efficiency in the field of image fusion.

VI. CONCLUSIONS
This paper designs a new image fusion algorithm which is
based on dual-SCM in NSST domain and difference images
between the basic fused image and source images. Through
the dual-SCM in the NSST domain, the basic fused image is
produced. Then, we use EOG of difference images to refine
the basic fused image by combining average filter andmedian
filter. The proposed algorithm in this paper can produce
clearer images, better visual effects and extract the detailed
features of images more effectively. Compared with the cur-
rent popular deep learning processing algorithm, the training
time of the data set is effectively reduced, and the proposed
algorithm does not need to train, which can simple the task of
image fusion. The experimental results show that our method
is superior to most of advanced image processing algorithms
and is a satisfactory image fusion algorithm in the application
field.
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