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ABSTRACT The civil aviation industry is undergoing rapid development. However, the on-time rate of
airport flights and passenger service quality are not particularly satisfying. The cause of the above problems is
the contradiction between the limited operational support capability and the continuous growth of passenger
traffic volume. Therefore, the key to solving these problems is achieving situation awareness of airport
operation. Many situation awareness algorithms, typically categorized into modeling and machine learning,
have been proposed in the past years. However, existing models lack flexibility and their prediction accuracy
is unstable. Machine learning’s results cannot be timely and effective when external conditions are suddenly
changed although some related algorithms have higher accuracy because of the retraining of artificial neural
network (ANN). This paper proposes a situation awareness method based on Petri nets (PNs). This method
introduces the queuing theory and perceptual parameters into the existing PN and constructs the perceptual
PNs’ model for general service systems so that it can quickly model different scene service systems.
In combination with the ANN, this paper proposes a complete situation awareness algorithm to realize a
sustained and accurate situation awareness prediction of the service system by solving point estimations of
the macroscopic and microscopic situation in this model, which helps to address some challenges faced by
current civil aviation airports. By experimenting on-ground support in civil aviation airports and the access
of website as well as comparing the situation separately with Airport Collaborative Decision Making and
stochastic PN, the validity and accuracy of the algorithm proposed in this paper are well verified.

INDEX TERMS Artificial neural network, modeling, Petri nets, situation awareness.

I. INTRODUCTION

Air transportation is characterized by high efficiency, safety
and comfort. Also, the ongoing development of the civil
aviation industry is rapid. However, at the same time, airport
flight support capability and passenger service quality are not
particularly satisfying. Challenges are widespread in most
airports, such as information interconnection, flight operation
control capabilities, baggage handling, traffic control, and
airport security. These make it difficult for airport operation to
be long-term safe, stable, and highly efficient. The root cause
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of the above problems is the contradiction between the limited
airport capacity and the continuous growth of passenger
traffic volume. Thus, the key to solving the problem of civil
aviation airport operation is achieving situation awareness
of the airport operation by using the big data infrastructure.
Currently, for various operational problems of civil aviation
airports, scholars mainly use modeling and machine learning
methods to predict some parameters. These methods can be
viewed as situation awareness research.

In 1995, Endsley [1] proposed a new situation aware-
ness method which made use of available data to pre-
dict future events. Since then, situation awareness has been
widely applied in many areas, such as military field [2], [3],
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power system [4], [5] and network security [6], [7]. Usually,
for service systems, situation awareness can provide decision
support for decision makers to understand the operating status
of a system. At present, for common service systems, scholars
mainly use modeling and machine learning to discuss sys-
tems’ situation.

Davidrajuh and Lin [8] put forward a modified modeling
and simulation tool, named GPenSIM for discrete service
systems, which is based on Petri nets (PN). They studied
the traffic capacity of the Norwegian Harstad/Narvik Airport
and provided reasonable suggestions for the operation of this
airport based on their results. Mori [9] developed an aircraft
ground-taxiing model using cellular automata to analyze the
traffic conditions of Tokyo International Airport. This model
considered the taxiing speed and the time histories of taxiing;
also, the distribution of aircrafts on each runway and rela-
tive sliding time could be well obtained through simulation
experiment. Nagatani [10] used the nonlinear-map to study
the dynamic characteristics and control problems of aircrafts
between airports. Chen and Xie [11] used the Markov model
to make a grey prediction of airport’s energy consumption.
Although modeling methods have achieved important results
in the study of situation awareness, they also have disadvan-
tages, such as relatively low prediction accuracy, lack of flex-
ibility, difficulty in analysis, etc., when external conditions
are complicated.

Regarding the methods of machine learning,
Kim et al. [12] built a prediction model, called LSTM-RNN,
to predict aircraft delays. By applying deep LSTM-RNN
architecture to the prediction model, a reliable delay status
of a single day could be acquired. Also, the most accurate
delay states for individual flights were acquired by feeding
the delay status of a day to the individual flight delay model.
Li et al. [13] used clustering neural networks to study the
prediction of airport congestion. Wu et al. [14] employed
Bayesian network technology to study the dynamic charac-
teristics of passenger flow in the airport. Actually, methods
based on machine learning technology have relatively high
prediction accuracy. However, this kind of algorithm lacks
flexibility, and it cannot change with external conditions.
For this reason, machine learning methods cannot provide
effective decision support in urgent and extreme situations.

Based on the actual conditions of airport operations and
existing technology, we add machine learning to modeling
technology. The improved algorithm combines the advan-
tages of these two kinds of algorithms, and has good ver-
satility, compatibility and accuracy. Our main contributions
are as follows:

1) By integrating and improving several existing PN theo-
ries, introducing queuing theory and perceptual param-
eters, we constructed the Perceptual Petri nets (PPN)
model, which is meaningful for general service sys-
tems.

2) Wediscuss a solving method of the PPN model and pro-
pose the situation awareness algorithm for general ser-
vice systems based on artificial neural network (ANN).
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On the basis of the above contributions, we used the
PPN model and its algorithm to carry out situation aware-
ness experiment on ground service systems in civil avia-
tion airports and compared it with Airport Collaborative
Decision Making (A-CDM), which is widely used in reality.
The conclusion that is reached is that PPN greatly improves
the prediction precision. Compared with A-CDM, PPN
shows excellent performance advantages. The supplemen-
tary experiment on the access of website also proves our
conclusion.

The rest of the paper is organized as follows: We first
introduce the motivation of our method and the background
knowledge of our constructed model (PPN) in Section II.
Then, in Section IIlI, we illustrate the reasons why we
added queuing theory and perceptual parameters to our PPN.
Section IV and Section V separately present the establish-
ment and solution of our model, and performance evaluation
results of PPN are given in Section VI. Finally, we conclude
this work and discuss our future work in Section VIL.

Il. MOTIVATION AND MODEL BACKGROUND OF PPN
Currently, some airports and air traffic management bureaus
have begun to adopt A-CDM. A-CDM [15] integrates air-
ports, air traffic management bureaus, airlines and other
related parties to achieve coordinated decision-making dur-
ing airport operations management. This system integrates
and shares all parties’ data to realize the rational allocation
of resources and improve the overall operational efficiency
to ensure that flights are on time. Therefore, it improves
the predictability of events and optimizes the utilization of
resources.

A-CDM realizes the calculation and prediction of specific
times in the flight process, but its situation awareness is still
relatively weak. Firstly, its various estimated specific times
still need to be given by professional dispatchers; hence,
it’s not effective. Secondly, the update of its forecast results
depends on the exchange of information between airlines,
airports and air traffic management bureaus. It is more like
a plan than a forecast. In addition, when external conditions
change, it is necessary to manually correct each estimated
specific time. Obviously, the accuracy is not particularly
satisfying. The above shows that the A-CDM system only
initially achieves situation awareness of operation of civil
aviation airport and cannot completely solve the operational
problems currently faced.

As mentioned above, the key to solving the problem of
civil aviation airport operation is achieving situation aware-
ness of airport operation by using big data infrastructure.
On this basis, we decided to conduct a research on situation
awareness of airport operations. Since PN have the ability
to describe the static structures and analyze the dynamic
behaviors of systems, we chose PN as the basis for our work.
Therefore, in this section, we first introduce the main idea of
basic PN. Second, the motivation of our method is presented
accordingly.
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A. PN AND ITS TRANSITION FIRING RULE

PN were first proposed in 1962 by former German scien-
tist Petri [16], and they can model and evaluate Discrete
Event Systems (DES) [17]. DES (such as manufacturing
systems or information networks) are highly parallel and
distributed, and they need to be evaluated from a quali-
tative point of view as well as from a quantitative point
of view. Since the complexity of these systems increases
due to many factors, both qualitative and quantitative anal-
yses are used more and more frequently. Proth claims that
PN are the most powerful set of tools that can support
the functional specification as well as these two types of
analysis. Because PN have the characteristics of being con-
current, asynchronous, distributed, parallel, nondeterministic
and stochastic, Murata [ 18] believes that PN are graphical and
mathematical modeling tools applicable to many systems.
As graphical tools, PN can be used as a visual-communication
aid (like block diagrams and flow charts), and tokens are
used to simulate the dynamic and concurrent activities of
systems. Besides, as mathematical tools, PN can establish
mathematical models that govern the behavior of systems
(such as state equations and algebraic equations). Regarding
our situation, PN can be used to facilitate the establishment of
general service system models, and they are easy to analyze
by relevant mathematical tools and simulation software. PN
already have many applications and researches in some fields,
such as deadlock control [19]-[21], fault diagnosis [22]-[25],
forbidden state problem [26], [27] and other modeling analy-
ses and applications [28]-[32].

A basic PN [16] is defined as follows:

Definition 1: A triad BN =(S,T,F) satisfying the following
conditions is called a prototype PN:

@SUT #0;

®SNT =9,

@F C (S xT)HU(T xS)

In the above definition, elements are called places in set S,
transitions in set T, and flow relations in set F'. Forx € SUT,
pre-set is defined as *x = {yly € SUT A (y,x) € F} and
post-set is defined as x* = {yly € SUT A (x,y) € F}.
A simple prototype PN is shown in Fig.1, in which arrows
represent the elements of the set F. This definition describes
the static structure of a system. For general service system
models, element S stands for the set of service nodes in the
system, T for the set of service processes, and F for the set
of partial ordering relation.

Definition 2: Supposing PN =(BN,M) is a prototype PN
system (M is called a marking of BN and is a mapping from
S to N71), its transition firing rules are as follows:

(a)Fort € T,Vs € §S,if s € *t — M(s) > 1; t can transit,
and M is denoted as M [t );

(b)M will transform into M’ when ¢ happens, denoted as
M [t)M’. We define M’ as follows:

M(s)—1,s €t —1t*
M)+ 1,set®—"*t
M (s), others

M’ (s) =
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There is a simple example of this transition. For the proto-
type PN in Fig.1, #; can transit when My : {so, s1} — {0, 3}.
Then, the marking of this system is M : {sg, s1} — {1, 2}.
Transition firing rule describes the state of a system and its
changes. For general service systems, M describes the distri-
bution of the service object between the various service nodes
of the system, and the transition rule describes the process of
receiving services. According to the above definition, M and
its transition rules describe the situation in a service system.

r
D

FIGURE 1. A simple prototype PN.
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B. EPN AND ITS TRANSITION FIRING RULE

Definitions 1 and 2 show that the prototype PN can fully

model general service systems. However, in order to describe

some elements more easily, such as the capacity of service

nodes and the preference of service object flowing between

nodes, we need to further extend this prototype PN. We used

function K to represent capacity and W to represent weights.
Definition 3: A 6-tuple EPN =(S,T.F ,K,W ,M) satisfying

the following conditions is called an extended PN:

@SUT #0;

®SNT =0,

C©OF CE xT)U(T x 98);

(W :F - Nt;

@K :5§—NT;

HM:S —> N+t

At the same time, EPN needs to meet the following transition

firing rules:

(g)For t € T, the condition of M [¢) is

Vse®r:M(s)= > W(s;,t)

s; €t
Vset*—°t:M(s)+W(t,s) <K (s)
Vset* Nt :M(s)+W(t,s) —W(s,t) <K(»s)

(WIf M [1)M’, Vs € S,

M(s)—W(s,t),se®—"t

M)+ W(t,s),set®—"°t

M)+ W(t,s)—W(s,t),setnNt®
M (s), others

M’ (s) =

This extended PN is on the basis of prototype PN.
We added the weighted function W, representing the relative
proportion of F, and the capacity function K, representing
the capacity of places. Due to the limitation of W and K,
the occurrence of transition depends not only on its pre-
set but also on W and K in the post-set. It would be more
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convenient to describe the preference of the flow of service
objects in service systems and the capacity of each service
node by EPN.

As shown above, EPN can better describe the structure,
status and changes of general service systems. However, for
an actual service system, the existing PN are not enough.

1) In actual service systems, service nodes often have
different service processes, such as the length of the ser-
vice time and the number of entities providing services.
Existing PN, including Time PN theories, Timed PN
and Stochastic Petri nets (SPN), cannot describe vari-
ous service processes comprehensively and effectively.
They are unable to provide enough theoretical models
and lack versatility.

2) In traditional PN, parameters are constant. However,
things in the real world are universally connected, and
the nature of actual service systems will change due
to changes in external parameters. PN with constant
parameters can only provide support for static analysis
and simulation, and it is difficult to analyze dynami-
cally and predict in real time on the basis of changes in
the external environment.

In this paper, we propose a novel perceptual PPN model,
which combines queuing theory and perceptual parameters,
to solve the problem of dynamic analysis and sustained pre-
diction. It can effectively predict situation awareness.

Ill. OUR PPN: INTRODUCING QUEUING THEORY AND
PERCEPTUAL PARAMETERS

We introduced queuing theory and perceptual parameters to
reinforce existing PN model. As discussed in the Section II,
in actual service systems, the service nodes of different
systems often have different service processes, and existing
PN theories are not sufficient to describe these processes.
To solve this problem, we introduced queuing theory. Queu-
ing theory can effectively establish models for the system
with respect to random clustering phenomenon and random
service process. In addition, in our discussion, the properties
of the existing PN tend to be steady. When the parameters
of a model do not change with external conditions, the state
space generated by the model gets larger and larger, and the
error between the estimated value of output and actual value
is more and more obvious with derivation of the model. At the
same time, the operational situation awareness of airports
also requires the correlation analysis of multi-source data.
In view of the lack of dynamic characteristics in the existing
PN theories, we propose the concept of perceptual parame-
ters. We will describe the queuing theory and the perceptual
parameters separately.

A. QUEUING MODELS

The queuing theory was created by a Danish mathematician
Erlang [33]. It was developed for computing and optimizing
the efficiency of any system that achieves its objectives by
consuming multiple resources optimally [34]. In our situ-
ation, it can describe a variety of service processes of a
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general service system. At present, the application of queu-
ing theory is extensive. Load balancing [35], urban traffic
[36], [37] and resource utilization [38] all involve queuing
theory. A queuing model is generally expressed as a 6-tuple:
X/Y/Z/A/B/C. In the above formula, X is the time interval
at which customers arrive at the system; Y is the distribution
of service time; Z is the number of service stations; A is the
system capacity limit; B is the number of customer sources;
and C is the service rule.

In civil aviation airport support systems, we can estab-
lish suitable queuing models during these three processes.
Regarding the process in which aircrafts are queued for
takeoff, the time aircrafts arrive at airports obeys negative
index distribution and is expressed by M. Combined with the
actual situation of airports, this process can be described as
a queuing theory model M /0/Z /A/oo/FCFS. With respect
to the process of aircrafts receiving services, the customer
arrival time distribution and capacity depend on the guarantee
process and the service process of the upper queuing process.
Therefore, X and B in the model are recorded as the deter-
mined value D. Since the data set of airport service time is
large enough, a normal distribution can be used to estimate
the time to accept the service, and the normal distribution
is denoted as N. Thus, this process can be described as a
queuing theory model D/N /Z /A/D/FCFS. Moreover, there
are two situations for the process of aircrafts leaving the
service nodes. One is the process of aircrafts receiving other
different services after the previous service is completed, and
itis related to the weight of the flow relations in PN. The other
is the process of aircrafts taking off from the airport, and it can
be described as D/0/oco/o0/D/FCFS after analysis. Adding
the queuing theory can effectively respond to the operation
of the system.

B. PERCEPTUAL PARAMETERS

Perceptual parameters reflect the changes in the external
conditions. For instance, for the ground support business of
the aircrafts, the factors affecting the support time are mainly
the date (whether it is a holiday), weather conditions and
aircraft types. We define perceptual parameter set as SA, and
each parameter in this set is denoted as sa. Also, sa is the
mapping of the external environment E to a parameter in
the model. When we deduced the model, we re-measured
the parameters of the current system’s state and external
conditions after every other time interval and recalculated the
parameter values of the model by using SA.

The problem of situation awareness in general service
systems is to find out the future trend of the distribution of
the service object and the congestion of the service node in
the current condition. In order to make the results to be in
real time and to be understood easily by decision-makers,
our algorithm will output point estimations in the end. What
we should do in the case of SM (1p) , E is to find the point
estimations of SM (¢;). SM denotes the situation of the service
objects waiting to accept service in various nodes; #( is the
current time, and ¢; is a moment of future. E is a set of values
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of external conditions that could impact system. Point estima-
tions of situation depend directly on perceptual parameters.
The specific usage and significance will be given in Section V.
With the rapid development of deep learning technology
in recent years, ANN has excellent performance in most
fields, such as game playing system [39], computer graphics
[40], [41] and natural language processing [42], [43]. In this
paper, we use ANN to solve perceptual parameters.

Specifically, the macroscopic situation awareness algo-
rithm of a general service system is shown as Algorithm 1.
What differentiates microscopic and macroscopic situation
awareness algorithms is that their initial state and output
values are different.

Algorithm 1 The Iteration Part of Our Algorithm

for general service system do

Model it with PPN;

Use history model parameters of system as tags,

a number of external conditions which have
significant influence on the system as input, to train
ANN which is solving perceptual parameters;

repeat
Collect current system states and external

conditions;
Use ANN to obtain values of perceptual
parameters in the current system model;
Use formulas ((1-16) mentioned in Section V) to
calculate point estimations of macroscopic and
microscopic situation as results;
if (Congestion has occurred) then
Use simulation to obtain system’s situation
values;
end
until Historical data accumulates to a certain
amount, train this ANN again;

end

IV. PPN MODEL ESTABLISHMENT
In this section, we introduce PPN model in details. Our
proposed model is defined as follows:

Definition 4:
A 8-tuple SAPN =(SS,MS.ST .MT ,F,W,M) satisfying the
following conditions is called a PPN:

(2)SS UMS = S;
(b)ST UMT = T;
©)SUT # ;
DSNT = 0;

(et e ST : E — Q;
®0:X,Y,Z,A,B,C),
@F C (S xT)U(T x8);
M)W : (MT x 8S) — w(E);
(10 <w(E) eR" <1,

> W (mt; x ss;) = 1,
ssjemt?

GM :S — RT
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In the above definition, (a), (b), (c) and (d) describe the
place and the transition. Based on the analysis of Section II
and Section III, in order to describe nodes’ service process
more clearly and make a good combination with queuing
theory, we made some improvements compared with the
traditional PN theory. We classified the places into two cate-
gories: One is called service place in set SS, which contains
service objects waiting to be serviced. The other is movement
place in set MS, which contains service objects that already
have received service and are preparing to go to other nodes.
In PPN, tokens are expressed as service objects in SS and
MS. Similarly, transitions are classified into two categories:
One is called service transition in set ST, which describes
the service process of nodes specifically. The other is called
movement transition in set MT , and service objects in it have
already finished receiving services and are preparing to leave
the nodes. By introducing the queuing theory, (e) and (f)
describe the transition, which is a mapping from the external
environment E to the queuing model O : (X,Y,Z,A, B, C).
(g), (h) and (i) describe the flow relations of net and there is a
weight W during MT transiting to SS. w(weight) is a mapping
from E to real numbers (0 to 1), and the sum of the weights
of the same MT is 1. (j) extends the marking range from pos-
itive natural number to positive real number, which is more
convenient to describe some intermediate states converging
according to probability when transiting. Parameters Q and W
in the system both relate to perceptual parameters.

Definition 5: Under external conditions (E), the transition
firing rules of PPN are as follows:

(a)For t € ST, the condition of transition M [t) is:

Vse®t : M (s) >0
Vset® :M(s)+min(M (°t),Z (t)) < max (A (E, S*))
(b)For t € MT, the condition of transition M [t) is:
Vse®:M(s) >0

(c)For the time spent t in the transition process:
T=max (tx;+71y;) (txi~X(E, t;), tyi~Y(E, ;) ,t; € s*)
(d)Fort € ST, Vs € S,if M [1)M":

M (s) —min (M (s),Z (t)),s € °t
M (s) +min (M (°t),Z (1)) ,s €t*
M (s) , others

M’ (s) =

(e)Fort € MT,Vs € S,if M [t)M':

0,s et
M)+ > M)W (E,s,s;),s €t®
s;€®t

M (s) , others

M’ (s) =

As shown in (a) and (b), two types of transition rules are
defined. Place MS of PPN is described by queuing model
parameter A. If transition (a) cannot happen, it indicates that
the service node has become congested. (c) explains that
transition is the maximum value of the sum of the arrival time
and service time in each service queue of post-set, and it is
not done in an instant. The arrival time and service time obey
the distribution of X (E, t) and Y (E, t). (d) and (e) describe
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the state of the system after the occurrence of two types of
transitions. It should be noted that the physical meaning of
weighted function is the probability that a service object that
has finished receiving service goes to another node. Also,
the physical meaning of marking is the value of the number
of service objects in each node that converges by probability.

We modeled every service node i in the system by
using PPN, including place ss, ms and transition st;, mt.
Among them, st is the mapping of E to queuing
model M /0/Z/A/oo/FCES; ms is a fixed queuing model
D/0/oco/D/D/FCFS. Modeling a single service node using
PPN is shown in Fig.2.

I

&l

FIGURE 2. Single service node model.

Fig.3 describes a general service model with three service
nodes; each node has a transition st. In Fig.3, the service
object moves to node 2 and node 3 at the probability of wy >
and wq 3 respectively after receiving service in node 1. wy »
and wj 3 are functions related to the external condition £ and
the sum of wy 2 and wy 3 is 1.

A S — Stp —Msp—mt,
[T / N

IR N N4
(ss1 f,:—E’—{mSl}—»mtl W B

"IN(583 — St3 —Msg—mts

FIGURE 3. Service process model with three service nodes 1, 2 and 3.
Each node has a transition st.

In order to describe the life-and-death process of service
objects in the system, we abstracted the environment outside
the system as a special service node O that has only one
place and one transition. Service objects in the system enter
from external node 0 and eventually return to it. The system
shown in Fig.3 is expanded as Fig.4. Particularly, transition
to is a mapping of E to queuing model D/N /Z /A/D/FCFS.
It should be noted that service node O can also be as a
connector between two sub-models; then the place of the
whole sub-model is so and the transition is a combination of
all internal transitions.

In PPN, each service node describes the concurrent rela-
tionship and the link between service nodes describes the
serial relationship in the process. Therefore, this PPN can be
used to quickly model various general service systems.

Some conclusions can be reached from the above dis-
cussions. For each service object, our model can describe
the whole process, including entering, leaving and receiving
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FIGURE 4. General service system model.

various services under the external environment E. Thus,
we can obtain the estimations of time at which the object
arrives at each node and accepts each service. The predic-
tion and estimation of a single service object can be viewed
as a perception of the microscopic situation of the service
system. The point estimations for situation awareness will be
discussed in details in the following section.

For the whole system, the model can be used to calculate
the convergent value of the system state M according to
the probability under certain external condition E. This can
reflect the trend of systems. We can infer which nodes in the
system are more congested and which nodes have abnormal
traffic. This information can provide decision supports about
the state of systems for decision makers. Therefore, it can be
seen as a prediction of macroscopic situation of the service
system.

V. PPN MODEL SOLVING
The PPN can be formalized as follows:

M = [SM|\MM]"
SM = [M (ss1), M (ss2) , M (ss3), -+ M (ssp)]"
MM = [M (ms1), M (ms3) , M (ms3), --- M (msy)]" (1)

The vector set M contains perceptual petri elements. The
sub-vector MM contains markings of ms (movement place).
The sub-vector SM contains markings of ss (service place),
which is the value needed to be estimated.

Specifically, situation awareness of general service sys-
tems can be expressed as follows: find the point estimations
of SM(#;) in the case that SM (tp) and E are known. Among
them, f¢ is the current time; #; is a certain moment in the
future; E is a set of values of external conditions. In partic-
ular, the microscopic situation awareness can be expressed
as follows: find the point estimations of node #; in the case
that SM(#p) and E are known when transiting to a different
SM'(t1). Here SM (t9) = [1,0, 0, ...0]".

We will discuss how to solve the PPN, i.e., how to find
the point estimations in details in this section. Before this,
the method using ANN for solving perceptual parameters of
PPN will be presented. Firstly, we used ANN technology
to obtain the perceptual parameters W and Q. Fig.5 is a
schematic diagram of a neural network for obtaining per-
ceptual parameters. As shown in this figure, the input layer
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Kernel space extraction network Perceptual parameter fitting network

FIGURE 5. Use ANN to obtain perceptual parameters.

contains various external conditions, which are quantified and
normalized. The output layer contains parameters of PPN
and mainly includes parameter A, which is shown as nega-
tive exponential distribution in queue Ty, parameters pnando,
which are shown as normal distribution in service queue ST,
and W (weight) of the network. Because of the feature of
many parameters and hidden layers, the ANN can be opti-
mized in a specific calculation. For example, we used the data
that is fitted with ARIMA (Autoregressive Integrated Moving
Average Model) instead of the original data to eliminate some
factors that may have a bad influence on ANN. Moreover,
the parameters in the network are pre-trained layer by layer to
obtain better initial parameter values [44], which helps to get
the optimal values. The ReLU(Rectified Linear Unit) is also
used to optimize the ANN and speed up the training [45].

We used history environment data about airports as input,
history perceptual parameters obtained through statistics of
history data as tags, to train the neural network shown
in Fig.5. Then we can obtain a model that can be used to find
new perceptual parameters. This model can be used as a black
box in our algorithm.

A. MACROSCOPIC SITUATION SOLVING

Next, we solved the macroscopic situation parameters.
According to our Definition 5, the transition in SM depends
on the speed of service in service queuing and the number of
objects waiting for service regardless of system congestion
(the number of objects waiting for service is greater than the
capacity of the service nodes, or some services cannot be in
place as planned). When the external conditions were certain,
we inferred the process of service objects entering the service
node from outside:

SM o+ A1 = SM to-+Q 00, s0, ADx[wo,1, wo,2 -+ o]
= SM o+ Q 0, so, AD)X Tjy, )

At is the time interval. T;, is the form of the matrix of
the weight element W, which describes the probability that
service objects enter each node of the system from outside.
It is a perceptual parameter that changes with external envi-
ronment. # is the number of nodes in PPN. Q is the function
of obtaining the service number of queue nodes. Specifically,
0 (00, 50, At, E) represents the number of transition objects
in place sy with infinite number of service objects in Af. How
can we obtain the point estimation of Q?

25444

Based on the discussion above, the queue from the external
environment to the system is model M /0/Z/A/oo/FCFS.
The number of arrivals is consistent with the Poisson distri-
bution, and the mathematical expectation is taken as the point
estimation:

0 (00, 50, ALE) =Y kp (k) =Zkﬁe_)‘ =% (3
0 0 '

Among them, A is also a perceptual parameter that changes
with environment.

W1 W12 - Win
W21 W22 - W2p
SM @ty + AH = SM to) + MM (p)x
Wn,1 Wn,2 *°° Wnon
= SM o)) + MM to)x T, “4)

For MT, we only considered the transition process of objects
between service nodes, shown as (4). T,, is the form of
the matrix of the weight element W, which is a perceptual
parameter that changes with the external environment.

According to the rules of transition, the service object
must leave place mm to transit after receiving service, then
MM (ty + At) only depends on the number of services com-
pleted in Az:

MM (ty + At) = Q (SM (1), ST, At) 5)

On the basis of the discussion above, the service process
in the service node is queuing model D/N /Z/A/D/FCFS.
We took the mathematical expectation of Q (SM (ty) , ST, At)
as its point estimation. For node i:

O6m; o), st;, At, E)

SM(o)

=)k
k=0

-1
SM(o) At—nz st; 1

e

t‘ —
exp (_(g’z—p“)z) dst,dst,_1- - -dsty (6)

o2

o, i are perceptual parameters. Let s#; denote the time of
the i-th service and k denote the number of times the queue
completes the service. In actual calculation, we can get the
following formula after stipulating the integral step:

O6m;y, st;, At, E)

SMio)

=Y kp®
k=0

n—1

At /
At At 1 /72 Sti

SMep A7 AU A S

Y Y % 1‘[(27102)%@<_%)

k=0 st1'=0 stp'=0 sti’=0
(N
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At controls the step length of integration accuracy.

1
(2mo?)” R exp (_(Sti - M)2/202 is the density function of
normal distribution, and its value can be obtained quickly
by checking the normal distribution table written into the
memory beforehand. It is worth noting that when sm; (#g) is
lager, the mathematical expectation of Q (SM (#g) , ST, At)
is too difficult to calculate. Usually, it can be simplified.
We took p as the point estimation of each service time, and
the estimation of the number of objects receiving service is
expressed as 1/ 1 per unit time. The expression is as follows:

0O (sm; (to) , st;, At, E) = max (sm (t0) , %) (8)

When the post-set of place ss contains more than one
transition, the service speed is limited by the slowest service
process, i.e., the number of transitions of service objects in
ss is equal to the number of transitions with the minimum
number of services. The expression is as follows:

OG6m;(0), ssi, At, E=min Q(sm(o), st;, At, E), stj € ss} (9)

In fact, SM (t9 + At) contains four parts, which are the
value of SM (tp), the value of new entering outside the sys-
tem, the value moved from other nodes and the value of
transition.

When At is small enough, most of the service objects can
be considered to have only completed a single transition,
i.e., the above four parts can be considered as serial occur-
rences. We have the following expression:

SM @ty + A¥)
= SM @o+ Q o, mty, At, E)XTiy
+ QB8M (o), ST, At, E)xT,, — QSM @y, ST, At, E)
= SM @o+Qo, mty, At, E)xTjy
+OG6M (o), ST, At, EYxTn — D) (10)

In the above expression, / is the unit matrix. Taking the
corresponding point estimation of function Q (oo, sg, At, E)
and Q (SM (ty) , ST, At), we can obtain the point estimation
of the macroscopic situation of the system. When At is
far greater than the time of various transitions, we need to
get At’, which is smaller, and use formula (10) to calculate
SM (to + Af ) By iterating the above calculation At/ At
times, we can find the point estimation.

Particularly, when congestion occurs, the following for-
mula will be calculated:

3t; € ST, sm (1)) > a (t;) (11)

Formula (11) is used to express congestion, whose physical
meaning is that when the time is ¢#;, the number of markings
stored in place sm is larger than the capacity of the queue.
When the macroscopic situation estimation of the system
satisfies formula (11), managers need to deal with the con-
gestion nodes timely and recalculate with our model before
the moment of congestion.
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An example is given to better illustrate our algorithm.
Suppose we model the service system shown in Fig.4 by PPN.
When 19 = 0, SM(typ) = [0, 1,2]. We assume that the
perceptual parameters have been calculated by the trained
ANN: Ao = 3, 1 = 2 = u3 = 2;681 = 8 =83 = 1
w1 = wo2 =w12 =13 =05 w0 =w3o = 1. Then,
the macroscopic situation when ¢y = 1 is:

SM (1)
=10, 1,217 + O(so, mty, At, E) x [0.5,0.5,0]"
0 05 05
+OSM(t9), ST, At,Eyx (|0 0 0 | —=1)
0 0 0

(12)

The point estimation of Q(so, mty, At, E) calculated
using Formula (3) is 3. The point estimation of
O(SM (ty), ST, At, E) calculated by Formula (8) is [0, 1, 17.
Add these two estimations into Formula (12):

SM (1)
=10,1,2]" +3 x [0.5,0.5,0]" +10, 1, 11"
0 05 05 1 0 0
x([0 0 o|=]0 1 oph=q15151]"
0 0 0 0 0 1

13)

Thus this result represents the value of the distribution
converging in probability of the service object when ¢t = 11,
i.e., the point estimations of the macroscopic situation are
obtained.

B. MICROSCOPIC SITUATION SOLVING
Solving microscopic situation parameters is similar to the
macroscopic situation parameters. In the case of no conges-
tion, PPN can easily provide the mathematical expectation of
the time at which a specific object receives each service. That
is the point estimation of the service time of each node. Based
on these estimations, it is easy to find the point estimations of
specific time nodes in the process of transition.

Take the PPN model of Fig.4 as an example. The point
estimation of leaving the system of a service object that just
entered can be inferred as follows:

TimeSMstart [T )SMend)
= wo,1w1,2Time(st1 )+ Time ([st2)))
+wo, 1w, 3Time(st1) )+ Time(st3)))
+wo 2 Time(st2)) + tstare (14)

In the above formula, ty,, is the time of entering the
system, Time ([st;) is a function to solve the time at which
the transition st; occurs; SMg.+ = [1,0,0, - ~-0]T is the
state of a service node just entering the system; and SM,,,y =
[0,0,0,-- -O]T is the state of a service node just leaving
the system. Take the mathematical expectation of Time ([st;)
as perceptual parameter p; to obtain the point estimation
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of Time (SMtqrs [T )SMpng ). The expression is shown as fol-
lows:

Time (SMtart [T)SMepg ) = wo,1W1,2 (1 + w2)
+wo,1w1,3 (L1 + ©3)
+wo,2 (m2) + tsare (15)

The above analysis is based on the case of no congestion.
When the point estimation of the macroscopic situation sat-
isfies formula (11), the system’s ability to support a single
service object has almost been lost, and it is meaningless to
analyze the microscopic situation.

Similarly, to better illustrate our algorithm, one example is
given below. Let’s continue with the previous one. Assuming
that there is a node that enters the system at # = 0, then the
time point of the node leaving is as follows:

Time(SMstart [T > SMena)
= wo,1w1,2(Time([st; >)
+ Time([st2 >)) + wo,1w1 3(Time([st1 >)
+ Time([st3 >)) + wo 2(Time([st2 >))
=0.5x0.5x(242)+0.5x0.5x(24+24+0.5%x24+0=3
(16)

Thus, the point estimations of the microscopic situation are
obtained.

VI. EXPERIMENTAL RESULTS

A. SITUATION AWARENESS IN CIVIL AVIATION AIRPORTS
To verify the validity of our method, we specifically discussed
the microscopic situation awareness of ground supports in
civil aviation airports in this section. We used the data set
of Hefei Xinqgiao International Airport in 2016 to evaluate
our method and compare it with A-CDM, which is the most
advanced airport operation management system used to solve
a series of problems, such as route congestion and flight
delays that affect the efficiency of flight operations.

In civil aviation airport operation control system,
the ground support system of the aircraft is the most impor-
tant. Several key time nodes in the ground support service
are specified in the existing A-CDM system. For example,
the Target Off Block Time (TOBT) is provided to the air
traffic control as the basis for aircrafts to take off; the Cal-
culated Off Block Time (COBT) predicted by the TOBT is
the latest completion time of the ground support that needs to
be guaranteed; the Target Take Off Time (TTOT) determines
the time of flights’ launch, push back and take off. Through
these key time nodes, the flight guarantee process can be
planned, targeted, and controlled, and this is able to improve
the operation efficiency of the airport.

However, as mentioned earlier, the determination of special
time nodes in the A-CDM is more of a plan than a prediction.
Firstly, the determination of each target time (such as TOBT,
TTOT) requires the three-way negotiation among airports,
airlines, and air traffic control instead of an automatic pre-
diction. Secondly, each calculated time (such as COBT) is
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only obtained by adding or subtracting the corresponding
relaxation time on the basis of the target time, which is
not accurate enough. Moreover, a large-scale air traffic flow
management system has not been established in many places,
and the A-CDM systems in each region can only rely on
themselves, which further reduces the accuracy of airport
predictions for various time nodes.

Therefore, the prediction of special time nodes in flight
support has important practical significance, but it has not
been well realized in the current system. Based on the theory
proposed in this paper, the airport’s ground support system
can be easily abstracted as a general service system model,
and the problems of special time nodes can be abstracted into
the microscopic situation awareness problem of the system.
Several key specific time nodes that are related to the ground
support system are shown in Tablel. In this table, the time
between two associated nodes is the time when aircrafts
receive support services. For example, it takes aircrafts the
time between node 1269 and 508 to receive catering services.
According to the discussion above, each support service in
the ground support can be abstracted as an element in the
service transition set ST . Support services that can be carried
out at the same time have the same service place ss and the
same movement place ms. Based on the modeling method
discussed above, we can get the PPN model as shown in Fig.6.
However, st1 7 and st3 » are almost not recorded in the actual
data set of Hefei Xingiao International Airport, so they are
not considered in this experiment. By the way, st1.1 does not
belong to support service, so it is not considered either.

TABLE 1. Definition of specific time nodes.

Node Number Node Name
507 cleaning completed
508 catering completed
509 refueling completed
514 loading baggage completed
518 removing chocks
1200 check-in completed
1201 boarding
1202 boarding completed
1247 check-in
1267 calculated off block time (COBT)
1269 catering
1274 cleaning
1275 loading baggage
1279 refueling

For the ground support time ¢ of the aircrafts, when the
system is operating normally, the situation point estimation
mentioned above is as follows:

t=max(py.1, f1.2)+pu2+max(3.1, 3.2, 3.3, 143.4)+ L4
(17

The perceptual parameters above in order are the math-
ematical expectation of the time taken by the check-in,
fueling, boarding bridge completed, passenger registration,
cargo loading, catering, cleaning, and chocks removing.
Considering the actual situation with no congestion,
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FIGURE 6. Airport ground support model(st; ;: check-in; st; ,: refueling; st,: before boarding;st; ;: boarding;
st3 : loading baggage; st; 3: catering; st; 4: cleaning; st;: before removing chocks).

the ground support time ¢, which is from the end of the check-
in to the chocks removing, is as follows (If congestion occurs,
use simulation based on specific business rules of the airport
to obtain results):

' = po + max(pu3q, w33, 134) + pa. (18)

After modeling, we need to train ANN to solve perceptual
parameters. We have concluded that time (during holidays
and weekends, more time may be spent on check-in and
loading baggage than usual), weather and the type of airplane
have a significant influence on the support time. Therefore,
we used these three external conditions as input parameters
of ANN, and these data are evenly normalized to 0 to 1.
The output of ANN is the perceptual parameters of the PPN.
Specifically, the difference between the end time and the start
time of each service is the time spent, and we can further
calculate the average time and variance of each service.

In the training of this ANN, we randomly selected 10%
of the data as a test set to verify the training effect
and repeat it many times. One training result is shown
in Table2. Among them, the average accuracy is calculated as
(1 — MAE/MAST) x 100%(MAE: mean absolute error;
MAST: mean actual support time).

TABLE 2. Training Results of Perception Parameter(u,: preparing time of
boarding bridge; 13 ;: boarding time; 15 3: catering time; x5 4: cleaning
time; p4: time before removing chocks).

Perception Parameter | MAE(min) | MAST(min) | Average Accuracy
©o 2.24998 18.8108 88.039%
3.1 3.22633 19.6966 83.620%
©3.3 2.52471 15.1924 83.382%
3.4 2.96283 16.4037 81.938%
L4 3.22769 17.1842 81.217%

In our experiment of specific time nodes’ prediction,
we used our formulas for the airport ground support time for
each flight in December 2016 and compared the results with
A-CDM. The results are shown in Table3, Fig.7 and Fig.8.
Fig.7 shows the support rate of A-CDM, and Fig.8 shows
the support rate of PPN. In this regard, ‘““fail to support”
means that the actual support time is longer than the predicted

VOLUME 7, 2019

TABLE 3. Predicted Results of Support Time.

PPN | A-CDM | Actual Value
55.692 | 48.742 58.866
13.407 | 17.890 0
77.23% | 69.61% 100%

Average Support Time(min)
Average Predicted Error(min)
Average Accuracy

3%

-

FIGURE 7. Support rate of A-CDM.

S

FIGURE 8. Support rate of PPN.

m fail to support

®merror <1 min

completely support

m fail to support

®merror <1 min

completely support

time; ‘“completely support” means that the actual time is
within the range of the predicted time, and “error” means
that the difference between the actual time and predicted time
is within 1 min. Actually, if the flight fails to remove chocks
within the specified time, it will greatly miss the resources,
such as the route allocated in advance, resulting in the flight
delay.
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The experimental results show that the ground support
time given by PPN point estimation algorithm is more accu-
rate than that of A-CDM, and the average accuracy rate
is improved by 7.62%. Since the A-CDM system does not
consider the influence of external conditions, the predicted
time it gives is much lower than the actual time. In contrast,
the predicted time calculated by our method is closer to the
actual value. In other words, the aircraft can remove chocks
during the specified time, thereby increasing the on-time rate
of the flight. We believe that if the planning and management
of the aircraft support business is carried out according to
the point estimated value given by PPN, the accuracy of
the predicted time of various ground support will be greatly
improved. Our method can provide effective decision support
for civil aviation airport managers, and greatly increase the
efficiency of existing system.

B. SITUATION AWARENESS IN ACCESS OF WEBSITE

The above experiment proves that PPN theory and its algo-
rithm have good performance on the microscopic situation
awareness problems. To better verify the effectiveness of
our method for macroscopic problems and its applicability
among general service systems, we further experimented on
the access of website. We evaluated our method and com-
pared it with SPN. SPN is a time PN model with negative
exponential transition time and is the closest one to our PPN.
We used a set of scientific research data to discuss situation
awareness of website traffic. The web browsing data used in
this experiment was shared by Laurence Berkeley National
Laboratory and comes from the Kennedy Space Center web-
site in July and August 1995 [46]. This data set contains a
total of 3461612 requests, and the time accuracy is 1s.

Same as the first experimental step, we abstracted the
related services in web browsing as a general service system
and modeled it using PPN. To be specific, each visitor is a ser-
vice object; each part of the website is the service node of the
system, and the response of various requests to the web is the
service. We took visitors, bounce rate and exit rate as items
that the macroscopic situation needs to perceive. In addition,
we regarded residence time on web page, residence time on
site and conversion rate as items that the microscopic situa-
tion needs to perceive. According to the frequency of visits
and reasonable estimates, we divided the site into three parts:
home page (contains welcome page and various navigations
to other pages), launching page (page about space launching
information, reports and history) and all remaining pages
(such as technical reports, software downloads and financial
information). The traffic in these three regions accounts for
approximately 20%, 65% and 15%. Based on the modeling
method discussed above, we obtained the PPN model as
shown in Fig.9.

From the statistics of website traffic, we concluded that
missions of space shuttle, hurricanes and dates have a signif-
icant influence on access behavior. Therefore, we used these
three external conditions as input parameters of the neural
network. In addition, the statistical results of the training set,
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FIGURE 9. PPN model of website.

namely historical perceptual parameters including the trans-
fer matrix parameters and queuing nodes parameters, are
evenly normalized to O to 1, which can be used as tags of
the neural network. In the macroscopic situation awareness,
we predicted the website traffic and the number of individual
visitors to each part in the last week of the data set. In this
experiment, we stipulate that the prediction time step size is
one hour, and we will update the quantity of access objects
in each part every hour. Besides, the perceptual parameters
will be updated every hour based on the training model. The
experimental results are as follows:

It can be seen in Fig.10, Fig.11, Table4 and Table5 that the
prediction results of the SPN show obvious hysteresis with-
out updating parameters of the model. In contrast, the PPN
model estimates the perceptual parameters in the next hour
in advance using neural network; thus, the final prediction
results do not appear to be delayed in time as the SPN. Obvi-
ously, the prediction accuracy of PPN is significantly higher.
It should be noted that the improvement in the accuracy of
PPN in the home page is relatively not obvious, because the
traffic of service objects in this page is small, which is not

FIGURE 10. Prediction of home page.
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FIGURE 11. Prediction of launching page.

TABLE 4. Prediction errors of residence time (MSE: Mean Square Error;
MAE: Mean Absolute Error; RMSE: Root Mean Square Error).

Model MSE MAE RMSE
PPN 85.8844 7.1703 9.2674
SPN 257.7302 10.3382 16.0540

TABLE 5. Prediction errors of launching page (MSE: mean square error;
MAE: mean absolute error; RMSE: root mean square error).

Model MSE MAE RMSE
PPN 255.3232 11.6154 15.9788
SPN 777.4369 21.2364 27.8826

well suited to our discussion. Conversely, in areas with large
traffic flows, such as the launching page, the PPN shows
excellent performance advantages than the SPN.

PPN can also perceive the microscopic situation of the
website. We calculated the average time of each visitor’s
residence time per hour in the last week of the data set, and
predicted it using PPN and SPN. The experimental results
are shown in Fig.12 and Table6. Even though the randomness
of the access behavior of individual visitors is too strong to
analyze the special time nodes, the effects are not as obvious
as the first experiment, PPN still achieves better results than
SPN. The point estimations of PPN can reflect the trend of
residence time, which is expressed as a relatively smooth
prediction curve. In fact, the point estimations of PPN are
similar to the envelope of real value in which the window

FIGURE 12. Prediction of residence time.
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TABLE 6. Prediction errors of residence time (MSE: mean square error;
MAE: mean absolute error; RMSE: root mean square error).

Model MSE MAE RMSE
PPN 222.5069 14.9167 149167
SPN 1797.1 30.6016 42.3924

size is 6 hours. For the SPN model, since it does not update
parameters such as transition time, its point estimations for
residence time can only be constants, and they do not have
a more practical meaning. The second supplementary exper-
iment proves that our method has good generality. At the
same time, experimental results verify that our PPN and
algorithm have excellent performance both in macroscopic
and microscopic situation awareness.

VII. CONCLUSION

Based on the big data operating environment of an airport,
we proposed a situation awareness method for airports. The
model constructed in this paper can comprehensively reflect
the general service system to describe the service process
of airports. This model introduces queuing theory and per-
ceptual parameters on the basis of PN to describe service
process and responds to external conditions better. Combined
with ANN, we propose PPN to analyze and solve the situa-
tion awareness of general service systems. The experiment
results verify that the model and its situation estimation
algorithm have better performance than A-CDM. In addition,
the experiment on the access of website also proves that our
model has good generality and flexibility, so it can give more
accurate predictions for service system and provide support
for decision makers. PPN can only easily describe individual
systems, but it cannot effectively reflect the relationship and
cooperation between these individual systems. Based on our
research, we will consider extending the scope of situation
study and research on more kinds of queuing models and
external conditions. In addition, we will further optimize and
improve the methods proposed in this paper in the future.
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