IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 16, 2019, accepted February 13, 2019, date of publication February 22, 2019, date of current version March 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2900473

Toward Formal Modeling and Verification of
Resource Provisioning as a Service in Cloud

WENBO ZHOU 12, LEI LIU'-3, SHUAI LU"“124, AND PENG ZHANG “'1.2:4

! College of Computer Science and Technology, Jilin University, Changchun 130012, China

2Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
3College of Software, Jilin University, Changchun 130012, China

4College of Mathematics, Jilin University, Changchun 130012, China

Corresponding author: Peng Zhang (zhangpengccst@jlu.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant 61300049, in part by the China
Postdoctoral Science Foundation under Grant 2016M591482 and Grant 2016M590254, in part by the Natural Science Research

Foundation of Jilin Province of China under Grant 20180101053JC and Grant 20190201193JC, and in part by the Graduate Innovation
Fund of Jilin University of China under Grant 101832018C025.

ABSTRACT Cloud service provides a convenient pattern of delivery and management for the Internet-based
resource sharing. Reliable resource provisioning is very important to the stability of cloud service systems.
In order to guarantee the consistency of resource delivery in cloud service, we propose a method for
modeling and verification of resource provisioning as a service in the cloud. First, the framework of
resource provisioning as a service and the behaviors of its participants are presented. Then, client, service
manager (including allocator, finish monitor, and time monitor), and resource service are modeled based
on UPPAAL, respectively. Finally, we define some consistency properties that a service scenario needs to
satisfy and formally verify whether our model satisfies these properties using the UPPAAL model checker.
The results show that our model satisfies all the proposed properties, which demonstrates the rationality and

trustworthiness of our model.

INDEX TERMS Clouds, resource provisioning, Web services, UPPAAL, formal verification.

I. INTRODUCTION

Cloud computing leads to innovative patterns of software
development and deployment [1]. As a key infrastructure sup-
porting various applications, cloud computing provides con-
venience for the rapid development of emerging fields, such
as big data, Internet of things and artificial intelligence [1].
The essential characteristics of cloud computing include on-
demand self-service, broad network access, resource pooling
and measured service [2], which ensures cloud brings effi-
cient and convenient patterns of computation. Cloud comput-
ing delivers its capacities through services, i.e., it supplies
clients with available resources according to requirements.
Therefore, reliable control of resource provisioning is one of
important aspects of cloud services.

There are 3 typical models in cloud services, i.e., Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). IaaS permits clients to rent
CPU, storage, network, and other infrastructures. Clients can

The associate editor coordinating the review of this manuscript and
approving it for publication was Liqun Fu.

install or deploy all their software on these infrastructures.
PaaS provides clients with development environments, which
frees clients from managing or configuring basic infrastruc-
tures. Clients are capable of developing or performing other
platform-related activities directly. SaaS takes functions of
various software as services. It allows people to use software
through client or browser online. No matter which service
model is chosen, some kinds of resources are provisioned.
These resources may be virtual machines, databases, routers,
balancers, web applications, etc. Therefore, most cloud ser-
vices can be abstracted as “Resource Provisioning as a Ser-
vice (RPaaS)”, i.e., they give clients access to resources in
the form of services.

In cloud, RPaaS needs to meet basic control requirements,
such as real-time and isolation, so as to deal with problems
about multi-tenancy and multi-service. Moreover, to avoid
resource conflicts or deadlock, RPaaS should also do well in
managing and coordinating resources. The above-mentioned
facts require that RPaaS meet consistency, i.e., states that
service participants reach should be consistent. If client, ser-
vice manager and resource service do not reach consistent

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 26721

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1009-4544
https://orcid.org/0000-0002-8081-4498
https://orcid.org/0000-0001-9157-543X

IEEE Access

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

states, there may be resources misused or even abandoned.
Many researchers have studied consistency problems in
cloud services, such as data consistency [3], storage con-
sistency [4], [5], queuing service consistency [6] and repli-
cation consistency [7], [8]. However, they do not consider
resource provisioning from the perspective of service, and are
rarely concerned about consistency in the process of resource
delivery.

The aim of this paper is to propose a model of resource pro-
visioning as a service, guaranteeing consistency and correct-
ness during resource delivery. On the one hand, we believe
that a good RPaaS model should provide basic functions that
resource delivery needs, including: 1) multiple pairs of clients
and services can exist at the same time without affecting each
other; 2) clients can abort requests for services when they
receive no response for a long time; 3) there will be timeout
handling when a client’s usage time is longer than its request
time. On the other hand, a RPaaS model should comply with
specifications about consistency to ensure resource delivery
is correct. For example, a resource should be active when
a client is using it. Also, there should be some allocated
resource when scheduling successfully.

Formal methods are techniques with mathematical foun-
dations for specifying, developing and verifying computer
software and hardware systems [9]. As a mature formal tool,
UPPAAL can express real time, synchronization and other
properties well, which makes it suitable for modeling and
verification of state-sensitive control systems. Applying this
tool to cloud services makes it easier to specify behaviors of
service participants, improve integrated design of service sys-
tems, and verify functional or non-functional requirements
automatically. By this means, UPPAAL can be used to solve
consistency problems of resource delivery and improve reli-
ability of service systems [10].

By combining resource with service, this paper proposes a
view of ‘“‘Resource Provisioning as a Service (RPaaS)”. Bas-
ing on UPPAAL, we design a RPaaS model in cloud and ver-
ify its consistency. Firstly, a RPaaS framework is presented
and the behaviors in this framework are illustrated. Then,
UPPAAL templates of RPaaS objects (i.e., client, service
manager and resource service) are defined from the perspec-
tive of service delivery. Finally, consistency specifications
that RPaaS should meet are analyzed, and these properties
of RPaaS are verified in UPPAAL model checker.

The remainder of this paper is organized as follows:
Section 2 presents the RPaaS framework and discusses some
scenarios. Section 3 details UPPAAL-based models of partic-
ipants in RPaaS. Section 4 describes consistency specifica-
tions and verifies these properties. Section 5 reviews related
work. Finally, Section 6 concludes the paper and outlines the
future work.

Il. RPaaS FRAMEWORK
“Resource Provisioning as a Service” refers to providing
clients with access to resources on demand in the form of

26722

Service Manager

Ll

S @

X

S

& %
& 2
N Q,
5 \

O O Use
O
Clients @

FIGURE 1. RPaaS framework.

Resource Services

services. Figure 1 shows the RPaaS framework, involving
3 participants, i.e., client, service manager and resource ser-
vice. A client performs a series of actions to obtain the
resource it needs. The service manager coordinates the inter-
action between clients and services, receives requests from
clients, assigns suitable resource services to clients and mon-
itors the process of resource services. Resource services pro-
vide corresponding resources to clients according to certain
steps.

Figure 2 illustrates a sample scenario that a client accesses
to the resource it needs successfully. C1, Al and S1 denote
behaviors relevant to the 1st client, while C2, A2 and
S2 denote behaviors relevant to the 2nd client. Here, we take
the 1st client as an example to explain how a service is com-
pleted. Client 1 applies to Service Manager for the resource
it needs (C1.1). Service Manager firstly chooses Client 1’s
request from the request queue. Then, it checks whether
there are released resource services to be collected. If all
the released resources have been collected, Service Manager
schedules and informs the corresponding resource (Al.2).
After that, Service Manager informs Client 1 that the resource
service that it needs is allocated successfully (A1.3). Before
using the resource, Client 1 should connect to its resource ser-
vice first (C1.2). When connecting to a resource service suc-
cessfully, Client 1 can start and stop it repeatedly (C1.3 and
C1.4). Limited by space, Figure 2 only describes one start
behavior and one stop behavior. Finally, Client 1 releases its
resource service (C1.5) and Service Manager is informed that
the service process has finished (S1.1). Similarly, the resource
service relevant to Client 2 will be competed. In this case,
multiple pairs of clients and services can interact with each
other at the same time normally, which accords with the 1st
basic function.

We further divide Service Manager into 3 components, i.e.,
Allocator, Finish Monitor and Time Monitor. Allocator is
used to allocate resource services to clients according to their
requests. The processing of a client’s request is atomic, which
means that Allocator can only processes clients’ requests one

VOLUME 7, 2019

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

IEEE Access

Client 1 Client 2 ServiceManager Service 1 Service 2
C1.1) apply =
>
Al.1) check
C2.1) apply _
. Al.2) inform
P A1.3) allocate "
) C1.2) connect -
>
A2.1) check
C1.3) start N
A2.2) inform R
< A2.3) allocate "
C2.2) connect N
C2.3) start ;
C1.4) stop o
C2.4) stop i .
C2.5) release :
C1.5) release N i
" S2.1) finish

FIGURE 2. Normal service scenario.

by one. Finish Monitor is used to check whether there are
some allocated resource services that have finished. Time
Monitor is used to check whether there are timeout cases. The
3 components cooperate with each other to provide the func-
tions of on-demand allocation, finishing control and timeout
handling.

When there is no response to a client’s request for a long
time, the client can abort it. In this case, there may be no
resource service allocated to the client, or there is one has
been allocated to the client. If Service Manager has not allo-
cated a resource service to the client, it is easy to directly abort
the service process. Otherwise, the allocated resource service
should be canceled. Figure 3 describes that a client aborts
its request when a resource service has been allocated to the
client. Similar to those in Figure 2, C.1, A.1 and A.2 represent
apply, check and inform, respectively. When Client sends
the abort command, Allocator cancels the resource service
(i.e., Service) that is allocated to Client (A.3). This makes
it possible that clients abort requests for services when they
receive no response for a long time, which accords with the
2nd basic function. If there is no resource meets a client’s
requirement, the primitive mismatch will make Client and
Allocator return to their initial states. This scenario is simpler
than the client aborting scenario, so no more discussion about
it will be presented here.

VOLUME 7, 2019

S1.1) finish

A client’s usage time of a resource should not be longer
than its request time. Otherwise timeout handling will occur.
Here, timeout handling refers to terminating a client’s use of
its resource service. When a resource service is allocated to
a client, a timer for recording usage time is started. Timeout
handling may occur in the following cases: 1) the client is
allowed to access to a resource service but has not connected
to it; 2) the client has connected to its resource service but
has not started it; 3) the client has started its resource service.
If timeout handling occurs in any of the above cases, TimeM-
onitor will inform the corresponding client and resource
service (T.1.1 and T.1.2) and terminate the service process
forcibly (T.2.1 and T.2.2), which accords with the 3rd basic
function.

In this section, the RPaaS framework is presented and its
basic functions are discussed. In the next section, we model
each participant of RPaaS using UPPAAL.

Ill. MODELING RPaaS IN UPPAAL

UPPAAL is an integrated tool environment developed in
collaboration between Uppsala University and Aalborg Uni-
versity. It models systems as networks of timed automata
and verifies them basing on computation tree logic [11].
In UPPAAL, a system is depicted as a series of templates,
where each template defines a kind of timed automata that

26723

IEEE Access

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

Client | Allocator FinishMonitor TimeMonitor : Service
C.1) apply
A.1) check
A.2) inform R
C.2) abort o
A.3) cancel =
FIGURE 3. Client aborting scenario.
|\ - - - - - - - 1
| Allocator FinishMonitor | | TimeMonitor I | Service

C.1) apply

»
»

A.1) check

A.2) inform

A.3) allocate

A

C.2) connect

C.3) start

T.1.1) timeout

T.1.2) timeout

T.2.1) end

FIGURE 4. Timeout scenario.

describes behaviors of the system. UPPAAL can run the
system model in its simulator and verify some properties
using its model checker. We use UPPAAL to model each par-
ticipant of RPaaS, where the client model simulates actions
of clients, the service manager coordinates the interaction
and management among clients and resource services, and
the resource service model controls the service process. The
3 participants cooperate with each other to achieve resource
delivery in RPaaS.

A. BASIC DEFINITIONS

We first give several definitions relevant to RPaaS. These
definitions are implemented as some data structures when
defining UPPAAL templates. The set of client identifiers
is denoted as @, and the set of resource identifiers is
denoted as W. The definitions of resource, client request,

26724

T.2.2) end

resource state record and client-service bind record are as
follows.

Definition 1 (Resource): A resource is a 4-tuple, i.e.,
R = (rid, rtype, occupied , avitime), where:

(1) rid denotes a resource identifier;

(2) rtype denotes the type of resource;

(3) occupied € Bool denotes whether the resource is
occupied;

(4) aviTime denotes how long the resource can be used.

A resource has 4 attributes. rid uniquely identifies a resource
entity, while rtype indicates the type of resource entity. Since
resources are allocated dynamically during a service process,
we need to record whether a resource is occupied, i.e., the
3rd attribute of resource. In this paper, the usage time of a
resource is limited and we use aviTime to denote the avail-
able time of a resource. We focus on the service process of

VOLUME 7, 2019

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

IEEE Access

RPaaS and consider multiple relevant resources that a client
requests as a whole. Technologies for resource composition
and orchestration are out of the scope of this paper.

Definition 2 (Client Request): A client request is a 3-tuple,
i.e., C = (cid, ctype, dur), where:

(1) cid denotes a client identifier;

(2) ctype denotes the type of the resource requested;

(3) dur denotes how long the client requires to use the

resource.

Client request has 3 attributes. Similar to resource iden-
tifier, client identifier uniquely identifies a client. The 1st
attribute indicates which of the clients proposes the request.
The 2nd and 3rd attributes are type and usage time of the
requested resource, respectively. Next, we give definitions
about resource state record and client-service bind record.

Definition 3 (Resource State Record): The resource state
record is a set of pairs, i.e., p ={(rid, state) | ride
W Astatec{idle, allocated, available, active, released}} that
satisfies V(ridy, statey), (ridy, statey) € p.(rid| F#rid;), where
rid, ridy and rid, are all resource identifiers.

Resource state record is used to preserve the state of every
resource during the service process. The pair (rid, state) is
called a state record of rid. The above constraint indicates
that there is only one state record for every resource. Initially,
the state of a resource is ““idle”. When the resource is allo-
cated to a client, its state changes to ‘““allocated”. After the
client connects to the resource, its state is updated to ““avail-
able”. If the client starts to use the resource, the state is set to
“active”. The client may release the resource, which makes
the state change to “released”. Finally, the state returns to
“idle”” when the released resource is collected.

Definition 4 (Client-Service Bind Record): The client-
service bind record is a set of pairs, i.e., 0 = {(cid, rid) |
cide ®Aride W} that satisfies V(cidy, ridy), (cidy, ridy) €
o.((cidy # cidy)\(rid) # ridy)), where cid is a client identi-
fier and rid is a resource identifier.

Client-service bind record identifies binding relationships
between clients and resources. The pair (cid, rid) is called
a bind record. The assumed constraint indicates that each
client can only request one resource every time (i.e., multiple
resources can be composited into one compound resource)
and each resource can only be allocated to one client (i.e.,
resource is not shareable).

We also need 3 auxiliary queues denoted as gqueue, lqueue
and tqueue. 1) gqueue is used to record all the client requests.
Each element of gqueue is a client request, i.e., (cid, ctype,
dur). 2) lqueue is used to record the identifiers of released
resources that need to be collected. Each element of Iqueue
is a bind record i.e., (cid, rid). 3) tqueue is used to record the
identifiers of allocated resources. Each element of tqueue is
also a bind record.

Basing on the above definitions, we can further model
client, service manager and resource service using UPPAAL.
In the next sections, UPPAAL templates of participants in
RPaaS are presented.

VOLUME 7, 2019

B. MODELING CLIENT

Client model depicts expected behaviors of clients in
Figure 5. When a client is in the “‘initial”’ state, it can apply to
the service manager for a resource service. The detail actions
include putting the client request into gqueue, synchronizing
the client and the service manager, and setting the clock
variable x to 0. If the request time is not longer than that the
client can tolerate, the client synchronizes with the allocator
by synchronous variable allocate[cid], i.e., allocator assigns
a suitable resource service to the client. Otherwise, the client
aborts its request and returns to the ‘“‘initial”’ state. After a
resource service is assigned to the client, the client connects
to the resource service.

required x<=tolerance_time allocated
allocate[cid]?
crid=rid

appl connect[crid]!

x=0

queued
mismatgh[cid]? CD

creq.ccid=cid,
creq.ctype=ctypg,
creq.dur:
genqueu

timgout[crid]?
start[crid]!
active

feoutcrid]?

C
A end|crid]? 4
initial timeouted

FIGURE 5. UPPAAL template of client.

If the connection is successful, the client reaches the
“available” state. The client can switch between the ‘““avail-
able” and “active” states by sending commands called start
or stop. When the client’s usage time is longer than its request
time, the client is forced to leave its current state. In the
meanwhile, timeout handling is completed by synchronous
variables timeout[crid] and end[crid]. The client in the
“available’ state can also release its resource service. If there
is no resource service that satisfies the client’s request,
the client returns to the ““initial”’ state by synchronous vari-
able mismatch[cid].

C. MODELING SERVICE MANAGER

Service manager model is the control center for the interac-
tion between clients and resource services. Service manager
model consists of allocator, finish monitor and time monitor,
where allocator assigns suitable resource services to clients,
finish monitor collects resource services released by clients,
and time monitor manages timeout cases.

1) ALLOCATOR

Figure 6 presents the UPPAAL template of allocator. Before
beginning all the activities, allocator needs to be initialized,
i.e., variables are assigned initial values. Firstly, allocator
selects a client request from gqueue and synchronizes with
the client by apply|[cid]. Before assigning a resource service,
allocator should check whether there are released resources
that have not been collected. If so, these resources will be

26725

IEEE Access

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

applied checked

check!

schedyle(cureq)!=-199
rid=schedule(cureq)

schedule(cureg)==-199

&&rsrid].stat==0
inform[rigl]!

cid=cureq.gcid,
dur[cid]=cyreq.gdr

allocate[cid]!

tenqueue(cid, rid),

usetime|[cid]=0
abg

initialize() S
initial idle

FIGURE 6. UPPAAL template of allocator.

collected. Then, allocator schedules a resource service satis-
fying this request and changes its state to “processed’’. Here,
we use the function schedule to denote the scheduling pro-
cess. Actually, this function can be implemented according to
different scheduling strategies. If there is no resource service
that satisfies the selected client request, allocator returns
to the ““idle” state by synchronous variable mismatch|cid].
Otherwise, allocator reaches the “processed” state as we just
said.

When allocator is in the “processed” state, it will inform
the scheduled resource service and change its state to
“allocated”. At the same time, a bind record is added to
client-service bind record. This bind record is a pair of
identifiers, where one identifier denotes the client making
this request, and the other identifier denotes the resource
scheduled to satisfy the request. This action indicates that the
service manager has authorized the client to use the scheduled
resource. Finally, allocator informs the client by synchronous
variable allocate|cid]. In the meantime, the above bind record
is added to tqueue and the clock variable usetime[cid] for this
bind is set to O (i.e., timing begins). When the request time
is longer than that the client can tolerate, allocator may be
in the “processed” or ‘“‘allocated” state: if allocator is in the
“processed’ state, it directly aborts this request and synchro-
nizes with the client by synchronous variable “abort[cid]”;
otherwise, besides aborting the request, allocator also needs
to delete the corresponding bind record and cancel the sched-
uled resource to guarantee consistency.

2) FINISH MONITOR

As shown in Figure 7, finish monitor is used to control
check synchronization and finish synchronization. If lqueue
is empty, all the released resource services have been col-
lected. Otherwise, finish monitor collects released resource
services by synchronous variable finish[frid] and deletes
its corresponding bind record. Here, “collect” means that
the state of a resource service is reset to “idle” by the

26726

llempty()
curlr=ldequeue(),
foid C,

lempty()
check?

Q M7
deleteBrecord(fcid, frid)

FIGURE 7. UPPAAL template of finish monitor.

synchronization between service manager and resource ser-
vice, which permits this resource service to be assigned to
other clients.

3) TIME MONITOR

As shown in Figure 8, time monitor handles timeout cases
by checking usage time of each resource service. Once a
resource service is allocated, its corresponding bind record
will be added to fqueue and the timer for recording usage
time is started. If fqueue is not empty, time monitor judges
whether there is a case that a client’s usage time is longer than
its request time. If so, time monitor informs the relevant client
and resource service by synchronous variable timeout[trid]
and deletes the bind record. The bind records that clients’
usage time is not longer than their request time are still in
tqueue.

usetime[tcid]<=durftcid]
tenqueue(tcid, trid)

ltempty()
curtr=tdequeue()
teid=curtr.c,
trid=curtr.r

setmeltcid]>dur(tcid]
imeout[trid]!
rs[trid].stat=0

end[trid]!
deleteBrecord(tcid, thd

FIGURE 8. UPPAAL template of time monitor.

D. MODELING RESOURCE SERVICE

Figure 9 presents the internal control process of a resource
service. When a resource service is informed by the service
manager, it changes to the “allocated” state. Then, if the
connection between this resource service and a client is
successful, this resource service changes to the ‘“‘available”
state. Controlled by start and stop commands, resource ser-
vice switches between the ‘“‘available” and ‘“‘active” state.
“available” means that a client has connected to but not
run this resource service. ‘‘active” means that a client is
running this resource service. When the resource service is
in the “available™ state, its client can release it by syn-
chronous variable release[rid], changing the 3rd attribute of
the resource from true to false (i.e., occupied to unoccu-
pied) and adding the corresponding bind record to Iqueue.

VOLUME 7, 2019

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

IEEE Access

rs[rid].stat==3
stopl[rid]?
available rsfudhstat=2 5tive

rs[rid].stat==1
connect[rid]?
rs[rid].stat=2

allocated

rp[rid].occupied==tryé& rs[rid].stat==2
&&rs[rid].stat==; start[rid]?
release[rid]? rs[rid].stat=3
rp[rid].occypfed=false
4i=4,
rplrid\occupied==true lengdeue(getBcid(rid), rid),
. deleteTqueue(getBeid(rid), rid)
nforry [Hd]7§‘§ﬂr§g‘ s
timeoyt[rid]? timeoutffid]?
timequt[rid]?
end[rid]? H
rp[rid].occupied=false, Y
\ rs[rid].stat=0 S
idle timeouted

FIGURE 9. UPPAAL template of resource service.

Releasing synchronization indicates that a client ends the
use of a resource service. Therefore, the corresponding
bind record should be removed from tqueue. After released,
the resource service should also inform the service manager,
so as to be collected by synchronous variable finish[rid].

If the resource service is allocated but its client aborts
it, the service manager cancels this resource service and
resets it to ““idle”’. The corresponding resource also becomes
unoccupied. When timeout happens, the resource service will
be forced to reach the “idle” state and its corresponding
resource will also become unoccupied.

We model client, service manager (including allocator,
finish monitor and time monitor) and resource service by
defining a UPPAAL template for each of these 5 objects. Dur-
ing the state transitions, the records are maintained, providing
useful information for further property analysis and process
control. By instantiating UPPAAL templates of clients and
resource services, we can manage and control multi-client
and multi-service RPaaS.

IV. VERIFYING CONSISTENCY OF RPaa$S
The consistency of behaviors is very important to a ser-
vice system. In order to demonstrate the correctness of our
model, we verify some properties of RPaaS model bas-
ing on UPPAAL tools. Firstly, we describe these proper-
ties using a specification language. Then, we verify whether
RPaaS model satisfies them in UPPAAL model checker. The
experiment is carried out in a PC with Intel(R) Core(TM)
i7-4790 CPU 3.60GHz, Java 1.8.0_191 and UPPAAL 4.1.19.
Our verification is based on the following instance of
RPaaS model, which involves 3 clients and 3 resource ser-
vices. The attributes of these client requests and resources are
shown in Table 1 and Table 2. We just discuss the properties
and verification of this instance, since instances with more
clients and resource services are similar to it.

A. FORMAL SPECIFICATIONS

RPaaS model should satisfy consistency. We analyzed
some researches about cloud service models [12]-[15]
and extracted 10 properties about consistency of services.

VOLUME 7, 2019

TABLE 1. Attributes of client requests.

cid ctype dur
cl tl 90
c2 tl 75
c3 2 150

TABLE 2. Attributes of resources.

rid rtype occupied avlTime
rl tl false 100
2 2 false 200
r3 tl false 160

We analyze consistency of our model by checking the satis-
faction of these properties. These 10 consistency properties
are as follows.

1) A[] not (Cl.active and not S1.active and not S2.active
and not S3.active), the same thing is true with respect
to C2 and C3

2) A[] not (Cl.available and not (Sl.available or
S2.available or S3.available)), the same thing is true
with respect to C2 and C3

3) A[] not (Cl.initial and C2.initial and C3.initial and
(S1.available or S2.available or S3.available))

4) A[] not (Cl.initial and C2.initial and C3.initial and
(S1.active or S2.active or S3.active))

5) A[] Sl.dle imply (forall (i: int[0, RLEN-1]) cr[i].r !=
1), the same thing is true with respect to S2 and S3

6) A[] SMA.allocated imply (S1.allocated or S2.allocated
or S3.allocated)

7) A[] SMTM.timeouted imply (Cl.timeouted or
C2.timeouted or C3.timeouted) and (S1.timeouted or
S2.timeouted or S3.timeouted)

8) A<> Cl.allocated imply exists (i: int[0, RLEN-1])
(crfi]l.c==1) and (Cl.creq.ctype==rp[cr[i].r].type)
and (Cl.creq.dur<=rp[cr[i].r].avltime), the same thing
is true with respect to C2 and C3

9) A[] not deadlock

10) A[]not (SMA.checked and S1.released and S2.released
and S3.released)

Property 1) indicates that there must be some resource ser-
vice in the ““active’ state when a client is using a resource ser-
vice. Property 2) indicates that there must be some resource
service in the ‘‘available” state when a client has been
allocated a resource service. Property 3) indicates that no
resource service is in the “‘available’ state when all the clients
are in the ““initial” state. Property 4) indicates that no resource
service is in the ‘““active” state when all the clients are in the
“initial” state. Property 5) indicates that if a resource service
is in the ““idle” state, there is no bind record about it in client-
service bind record, i.e., the state of a resource service is con-
sistent with client-service bind record. Property 6) indicates
that there must be some resource service has been allocated
after allocator successfully schedules one and reaches to the

26727

IEEE Access

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

3 FDocton st 6T Ruppacl-40.
Xt ®% WE IR EN =8

BaEoc¢|aae RQ=-e

e B BE 2 WEE Yeedresil

iceCOMPLETESxm - UPPAAL

HERGEE 1 varisbles)

idle

4, queued, quened — -
B

. red queued spplied - - 3
check: SUA - SUFM

(queved, required, quened checked, ~ = i
A

(quene

allocated
lconnecticia

Trace S

dee | bk | > e aciive -
SR 7 I
v sowe] [wewes] [wewsd) -
& # I

FIGURE 10. UPPAAL simulation.

TABLE 3. Results of the verification.

No. Verification time/Kernel time/Total time (s) Resident memory/Virtual memory peak (KB) Results
1 56.969/0.171/57.178 495,304 /1,001,284 Satisfied
2 24.687/0/24.716 495,316 /1,001,296 Satisfied
3 24.61/0/24.614 495,316 /1,001,296 Satisfied
4 24.625/0/24.64 495,320/ 1,001,300 Satisfied
5 25/0/25.032 495,324 /1,001,304 Satisfied
6 24.62/0/24.66 495,324 /1,001,304 Satisfied
7 24.797/0/24.816 495,328 /1,001,308 Satisfied
8 0.36/0.063 /0.422 495,332 /1,001,316 Satisfied
9 105.5/0.25/105.784 497,100 / 1,006,324 Satisfied
10 56.094/0.188 /56.311 496,008 / 1,002,744 Satisfied

““allocated” state. Property 7) indicates that when there is
a timeout case, the relevant client and resource service will
change to the “‘timeouted” state. Property 8) indicates that
once a client is allocated a resource, there is a bind record
that conforms to the client request. Property 9) indicates that
there is no deadlock. Finally, property 10) indicates that all
the released resource services have been collected before
allocator begins to schedule a new resource service.

B. FORMAL VERIFICATION
UPPAAL model checker uses on-the-fly searching technique
and symbolic technique to search state space and checks
whether a property is satisfied by a system description [11].
Figure 10 presents a scenario of our instance produced by
UPPAAL simulator.

As shown in Table 3, we verified all the properties given
in the last section. Our model satisfies all the 10 consistency

26728

properties, which indicates that the proposed model is reliable
to some extent. The 2nd and 3rd columns of Table 3 are
about time and space overhead, respectively. The most time
overhead is 105.5s and the average space overhead is about
495,567/1,001, 947KB, which is acceptable in the normal
case.

Actually, instances with more clients and resource ser-
vices are similar to this instance. Therefore, our model can
be applied to control of multiple-client and multiple-service
RPaaS. Moreover, the scheduling process in our model is
regarded as a separate module, providing possibility for fur-
ther verification of different scheduling strategies.

V. RELATED WORK

Formal modeling and verification of cloud services is
an interesting topic, which attracts attention in academics
recently. We review researches about formal models of cloud

VOLUME 7, 2019

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

IEEE Access

service, formal verification of cloud resource management
and applications of UPPAAL tool as follows.

Formal models of cloud services provide good basis for
further analysis and verification, contributing to the improve-
ment of security and quality of service. Sun and Fu [16]
used Unifying Theories of Programming (UTP) to pro-
vide a formal model for cloud computing. They interpreted
cloud services as designs in UTP and discussed composi-
tion and dynamic reconfiguration of cloud services [16].
Newcombe et al. [17] introduced how Amazon applies for-
mal methods (particularly, TLA+) to the design of complex
real-world software, including public cloud services. They
emphasized that formal methods can find bugs that cannot
be found through other technique and bring good return on
investment [17]. Klai and Ochi [18] used Symbolic Obser-
vation Graphs (SOG) to abstract cloud services and check
the correction of their composition with respect to event- and
state-based LTL formulae (Hybrid LTL). Rezaee et al. [19]
proposed the Fuzzy Inference Cloud Service (FICS) modeled
using the CSP process algebra and introduced four formal
verification tests to allow strict analysis of certain behavioral
disciplines in the FICS. The above work provides good solu-
tions for modeling, design and verification of cloud services.
However, they do not consider related effects of resources.

The reliable management of cloud resources is crucial to
a trustworthy cloud computing system. Weerasiri et al. [20]
provided a unified and comprehensive analysis framework
to accelerate fundamental understanding of cloud resource
orchestration in terms of concepts, paradigms, languages,
models, and tools. Graiet et al. [21] proposed a formal-
ism based on the Event-B language for specifying cloud
resource allocation policies in business process models,
which can be used to check the consistency and correct-
ness of cloud resource allocation according to user require-
ments and resource capabilities. Jlassi et al. [22] developed
a Cloud Resources Allocation Model (CRAM4FOSS) for
FOSS applications using the Event-B method, and formally
verified the resource allocation behaviors deployed in a cloud
environment. These researches contribute to the understand-
ing and correctness of cloud resource management. Com-
pared with them, our model provides the point of studying
resource provisioning and delivery from the perspective of
service.

UPPAAL is a useful tool for analysis and verification of
real-time and distributed systems. Zhou et al. [23] studied
two kinds of evolution scenarios and proposed a novel ver-
ification approach based on hierarchical timed automata to
model check dynamically evolvable service oriented systems.
Meng et al. [24] used UPPAAL to model and verify a robot
joint bus communication system, and they also proposed a
dynamic priority strategy for reducing the worst arbitration
delay. Balasubramaniyan et al. [25] presented a methodology
to design and verify CPS using multi-objective evolution-
ary optimization, model checking and supporting software
tools. They verified properties such as safety using UPPAAL
model checker [25]. Kartal et al. [26] developed the algorithm

VOLUME 7, 2019

TUConvert for converting distributed Timed Input/Output
Automata (TIOA) models to UPPAAL behavioral models,
formally proved its correctness and demonstrated its appli-
cability by the formal verification of a distributed real-time
industrial communication protocol. Sultana and Arif [27]
provided translation rules that automatically transforms C++
codes into UPPAAL’s automata and explored a case study
of traffic light system. The objects of these researches are
general real-time or service-oriented systems. We focus on
the application of UPPAAL to cloud services, particularly the
verification of RPaaS.

VI. CONCLUSION

Our work is one of the attempts that apply the techniques
of formal verification to cloud services. We proposed a
UPPAAL-based method for modeling and verifying RPaaS.
The RPaaS framework mainly includes client, service man-
ager and resource service, where service manager can be
further divided into allocator, finish monitor and time moni-
tor. The control of multiple-client resource delivery is imple-
mented by state transitions and synchronous actions of the
above 5 objects. We modeled these objects using UPPAAL,
defined consistency properties and verified whether our
model satisfies these properties. The results of the verifica-
tion show that our RPaaS model satisfies all the proposed
properties, demonstrating the rationality and reliability of this
model.

In our current model, we only focus on basic requirements
of clients, i.e., types and available time of resources. More
complex attributes, such as priority and quality of service,
should be taken into consideration. For example, we can set
priorities by adjusting the order of client requests in a queue.
Moreover, we only implemented a basic resource schedul-
ing strategy as a simple function now. In our future work,
we intend to study how to verify more complicated resource
scheduling strategies basing on our model.

REFERENCES

[1]1 Republic of China, A Three-year Action Plan for the Development of Cloud
Computing (2017-2019). Accessed: Dec. 28, 2018. [Online]. Available:
http://www.miit.gov.cn/n1146290/n4388791/c5570594/content.html

[2] P. Mell and T. Grance. (2011). The NIST Definition of Cloud Comput-
ing. Accessed: Dec. 28, 2018. [Online]. Available: https://www.nist.gov/
publications/nist-definition-cloud-computing?pub_id=909616

[3] I. Fetai and H. Schuldt, “Cost-based data consistency in a data-as-a-

service cloud environment,” in Proc. IEEE 5th Int. Conf. Cloud Comput.,

Jun. 2012, pp. 526-533.

J. Sun, C. Hu, T. Wo, L. Du, and S. Yang, “HCFS2: A file storage service

with weak consistency in the hybrid cloud,” in Proc. IEEE Symp. Service-

Oriented Syst. Eng., Mar. 2018, pp. 228-233.

[5] B. H. Kim and D. Lie, “Caelus: Verifying the consistency of cloud ser-

vices with battery-powered devices,” in Proc. IEEE Symp. Secur. Privacy,

Aug. 2015, pp. 880-896.

Z. Zhang, Y. Wang, H. Chen, M. Kim, J. M. Xu, and H. Lei, “A cloud

queuing service with strong consistency and high availability,” IBM J. Res.

Dev., vol. 55, no. 6, p. 10:1, Oct. 2011.

T. Chen, R. Bahsoon, and A.-R. H. Tawil, “Scalable service-oriented

replication with flexible consistency guarantee in the cloud,” Inf. Sci.,

vol. 264, pp. 349-370, Apr. 2014.

[8] Q.Liu, G. Wang, and J. Wu, “Consistency as a service: Auditing cloud con-
sistency,” IEEE Trans. Netw. Service Manage., vol. 11, no. 1, pp. 25-35,
Mar. 2014.

[4

=

[6

—

[7

—

26729

IEEE Access

W. Zhou et al.: Toward Formal Modeling and Verification of Resource Provisioning as a Service in Cloud

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Wang, N. Zhan, X. Feng, and Z. Liu, “Overview of formal methods,”
Ruan Jian Xue Bao/J. Softw., vol. 30, no. 1, pp. 41-63, Dec. 2017.

A. Souri, N. J. Navimipour, and A. M. Rahmani, “Formal verification
approaches and standards in the cloud computing: A comprehensive and
systematic review,” Comput. Standards Interfaces, vol. 58, pp. 1-22,
May 2018.

UPPAAL. Accessed: Dec. 28, 2018. [Online]. Available:
http://www.uppaal.org/

R. D. Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro, ‘“‘Aeolus:
A component model for the cloud,” Inf. Comput., vol. 239, pp. 100-121,
Dec. 2014.

A. Brogi and J. Soldani, “Finding available services in TOSCA-
compliant clouds,” Sci. Comput. Program., vols. 115-116, pp. 177-198,
Jan./Feb. 2016.

M. Dorigatti, A. Guarnaschelli, O. Chiotti, and H. E. Salomone,
“A service-oriented framework for agent-based simulations of collabora-
tive supply chains,” Comput. Ind., vol. 83, pp. 92-107, Dec. 2016.

S. Huang, X. Gu, H. Zhou, and Y. Chen, “Two-dimensional optimization
mechanism and method for on-demand supply of manufacturing cloud
service,” Comput. Ind. Eng., vol. 117, pp. 47-59, Mar. 2018.

M. Sun and G. Fu, “A formal design model for cloud services,” in Proc.
Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2017, pp. 173-178.

C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon Web services uses formal methods,” Com-
mun. Acm, vol. 58, no. 4, pp. 66-73, Mar. 2015.

K. Klai and H. Ochi, ““Model checking of composite cloud services,” in
Proc. IEEE Int. Conf. Web Services, Jul. 2016, pp. 356-363.

A. Rezaee, A. M. Rahmani, A. Movaghar, and M. Teshnehlab, ‘“Formal
process algebraic modeling, verification, and analysis of an abstract fuzzy
inference cloud service,” J. Supercomput., vol. 67, no. 2, pp. 345-383,
Feb. 2014.

D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, and R. Ranjan,
“A taxonomy and survey of cloud resource orchestration techniques,”
ACM Comput. Surv., vol. 50, no. 2, pp. 1-41, May 2017.

M. Graiet, A. Mammar, S. Boubaker, and W. Gaaloul, ‘“Towards correct
cloud resource allocation in business processes,” IEEE Trans. Serv. Com-
put., vol. 10, no. 1, pp. 23-36, Jan./Feb. 2017.

S. Jlassi, A. Mammar, I. Abbassi, and M. Graiet, “Towards correct cloud
resource allocation in FOSS applications,” Futur. Gener. Comput. Syst.,
vol. 91, pp. 392-406, Feb. 2019.

Y. Zhou, J. Ge, P. Zhang, and W. Wu, “Model based verification of
dynamically evolvable service oriented systems,” Sci. China Inf. Sci.,
vol. 59, no. 3, pp. 032101:1-032101:17, 2016.

Y. Meng, X. Li, Y. Guan, R. Wang, and J. Zhang, “Modeling and ver-
ification for robot joint bus communication system,” Ruan Jian Xue
Bao/J. Softw., vol. 29, no. 6, pp. 1699-1715, Aug. 2018.

S. Balasubramaniyan, S. Srinivasan, F. Buonopane, B. Subathra, J. Vain,
and S. Ramaswamy, “Design and verification of cyber-physical systems
using truetime, evolutionary optimization and UPPAAL,” Microprocess.
Microsyst., vol. 42, pp. 37-48, Jul. 2016.

Y. B. Kartal, E. G. Schmidt, and K. W. Schmidt, “Modeling distributed
real-time systems in TIOA and UPPAAL,” ACM Trans. Embed. Comput.
Syst., vol. 16, no. 1, pp. 1-26, Sep. 2016.

S. Sultana and F. Arif, “Computational conversion via translation rules for
transforming C++ code into UPPAAL’s automata,” IEEE Access, vol. 5,
pp. 14455-14467, 2017.

26730

WENBO ZHOU received the B.S. and M.S.
degrees in computer software and theory from Jilin
University, Changchun, China, in 2014 and 2017,
respectively, where he is currently pursuing the
Ph.D. degree in computer software and theory.
His research interests include formal methods and
cloud computing.

LEI LIU received the B.S. and M.S. degrees in
computer software from Jilin University, China,
in 1982 and 1985, respectively, where he is cur-
rently a Professor and a Doctoral Supervisor with
the College of Computer Science and Technol-
ogy. His research interests include program the-
ory, semantic web, formal methods, and compiler
theory.

SHUAI LU received the M.S. and Ph.D. degrees in
computer software and theory from Jilin Univer-
sity, China, in 2007 and 2010, respectively, where
he is currently an Associate Professor with the
College of Computer Science and Technology. His
research interests include artificial intelligence,
machine learning, and automated reasoning.

PENG ZHANG received the B.S. and Ph.D.
degrees in computer software and theory from
Jilin University, China, in 2009 and 2014, respec-
tively, where he is currently a Lecturer with the
College of Computer Science and Technology.
His research interests include software testing and
cloud computing.

VOLUME 7, 2019

	INTRODUCTION
	RPaaS FRAMEWORK
	MODELING RPaaS IN UPPAAL
	BASIC DEFINITIONS
	MODELING CLIENT
	MODELING SERVICE MANAGER
	ALLOCATOR
	FINISH MONITOR
	TIME MONITOR

	MODELING RESOURCE SERVICE

	VERIFYING CONSISTENCY OF RPaaS
	FORMAL SPECIFICATIONS
	FORMAL VERIFICATION

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	WENBO ZHOU
	LEI LIU
	SHUAI LÜ
	PENG ZHANG

