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ABSTRACT Vehicular edge computing has emerged as a promising technology to accommodate the
tremendous demand for data storage and computational resources in vehicular networks. By processing the
massive workload tasks in the proximity of vehicles, the quality of service can be guaranteed. However, how
to determine the task offloading strategy under various constraints of resource and delay is still an open issue.
In this paper, we study the task offloading problem from a matching perspective and aim to optimize the total
network delay. The task offloading delay model is derived based on three different velocity models, i.e., a
constant velocity model, vehicle-following model, and traveling-time statistical model. Next, we propose
a pricing-based one-to-one matching algorithm and pricing-based one-to-many matching algorithms for
the task offloading. The proposed algorithm is validated based on three different simulation scenarios,
i.e., straight road, the urban road with the traffic light, and crooked road, which are extracted from the
realistic road topologies in Beijing and Guangdong, China. The simulation results confirm that significant
delay decreasing can be achieved by the proposed algorithm.

INDEX TERMS Vehicular edge computing, task offloading, one-to-one matching, matching with quota,
SUMO.

I. INTRODUCTION
With the explosive development of wireless communications
and Internet of vehicles, the amount of intelligent trans-
portation applications such as automatic driving and vehic-
ular video streaming has been increasing consistently. The
successful implementation of these emergent applications
requires processing a large number of tasks with high com-
putational complexity and strict delay sensitivity [1]. Due to
the limited processing capability of vehicles, tasks have to be
offloaded from vehicles to remote cloud servers via cellular
networks [2]–[4]. However, this not only puts a heavy burden
on the already congested cellular networks, but also causes a
high computational delay due to the long distance between
vehicles and the cloud [5], [6]. To address this challenge,
vehicular edge computing (VEC) [7], which combines edge
computation and vehicle networks, has emerged as a promis-
ing solution.

Processing the task at the network edge has the following
advantages [8]. First, it can relieve the network overload since
the large amount of data needs not to travel through the
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whole network. Besides, it can avoid migrating the task in
the duplicated way, so the service quality can be enhanced
efficiently [9]. Second, due to the proximity between vehicles
and servers, the computational delay can be reduced. Last
but not least, it can increase resource utilization efficiency by
leveraging distributed servers with under-utilized resources,
and effectively process multi-source heterogeneous data [10].

Despite these advantages, VEC also meets some chal-
lenges [11]. First, the vehicle mobility has a large impact on
the task offloading optimization. A vehicle can only com-
municate with a road side unit (RSU) and upload its task
when it is within the coverage [12], [13]. The transmission
process will be interrupted once the vehicle moves out of
the coverage. Therefore, a precise estimation of the vehicle
dwell time is necessary for the optimization of task offload-
ing. Second, the self-interested and rational vehicles have
their own preferences towards edge servers. It is difficult to
derive a unified task offloading decision which can meet the
interests of each vehicle [14]. Third, most of the conventional
task offloading schemes are derived and evaluated based on
theoretical models. There lacks a comprehensive evaluation
under realistic traffic data to simulate a dynamic environment
and reflect the true vehicular performance.
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In this paper, we propose a task offloading algorithm based
on matching theory. The vehicles are considered as the one
side of matching, and the road side units (RSU) are con-
sidered as the other [15]. The proposed algorithm aims at
minimizing the total offloading delay. Besides, three vehic-
ular mobility models, i.e., constant velocity model, vehicle-
following model, and travelling-time model, are proposed to
estimate the delay, and the proposed algorithm is evaluated
under three realistic scenarios, i.e., straight road scenario,
urban road scenario with traffic light, and crooked road sce-
nario. The main contributions of this paper are summarized
as follows.
• Various mobility and delay models: Considering the
mobility of vehicles and the dynamic environment,
we study three vehicular mobility models to simulate the
movement of vehicles and derive the explicit expression
of waiting delay model and handover delay model.

• Matching-based task offloading: We propose a
matching-based task offloading algorithm to minimize
the network delay, in which both the one-to-one and one-
to-many matching are considered.

• Performance evaluation under various real-world
scenarios: The proposed algorithm is evaluated under
three realistic roads, i.e., straight road, urban road with
traffic light, and crooked road. The corresponding data
are obtained from SUMO and then used for the simula-
tion of task offloading in MATLAB.

The remaining parts of this paper are organized as follows.
The related works are presented in Section II. The system
model is introduced in Section III. Section IV describes
the problem formulation of the task offloading problem.
Section V and Section VI propose the task offloading based
on one-to-one matching algorithm and matching with quota
algorithm, respectively. Numerical Results are provided in
Section VII. Section VIII concludes this paper.

II. RELATED WORKS
The objective of this work is to study the task offloading prob-
lem in VEC. Edge computing has attracted intensive research
from both academia and industry [16]. Abbas et al. [17]
provided a mobile edge computing architecture and elabo-
rated its advantages, potential application areas and future
research directions. Rahman et al. [18] developed a mobile
edge computing framework to support real-time and location-
aware personalized services. Baktir et al. [19] provided a
comprehensive survey of edge computing and discussed its
technical challenges in depth.

In mobile edge computing, one of the most impor-
tant problems is task offloading [20]. A set of studies
have already focused on how to optimize task offload-
ing from different perspectives. Liu et al. [21] proposed
a distributed computation offloading algorithm based on
game theory. Ali et al. [22] developed a distributed and self-
organizing method to solve the matching game to minimize
the end-to-end latency in Internet of Things (IoT) networks.
Gu et al. [23] designed a task assignment mechanism to

reduce overall energy consumption, which can also satisfy the
heterogeneous delay requirements and support good scalabil-
ity. However, these works have not considered the mobility of
vehicles and the complicated transportation scenarios.

There exist some works which have investigated task
offloading in VEC. Qiao et al. [24] developed a novel
paradigm to offload the computational-intensive tasks to het-
erogeneous mobile edge computing servers and resource-
rich vehicles. In [21], in order to reduce the latency of the
computation offloading of vehicles, Liu et al. formulate the
problem as a multi-user task offloading problem, and pro-
posed a distributed task offloading algorithm to reduce the
offloading delay of vehicles. Zhou et al. [25] proposed an
energy-efficient VEC framework for in-vehicle user equip-
ment (UEs) with limited battery capacity, and developed an
alternating direction method of multipliers (ADMM)-based
energy-efficient resource allocation algorithm. Liu and Zhang
[14]investigated the task offloading problem, and proposed a
heuristic searching algorithm to solve the problem by opti-
mizing candidates selection, offloading ordering and task
allocation.

Matching theory provides a strong tool to solve the com-
binational problem about task offloading [26]. It can be
used to study the establishment of dynamic and mutually
beneficial relations. It is particularly effective in developing
extendable, flexible, decentralized, and practical solutions
for some complex networks [27]. In particular, it can effec-
tively deal with the high dynamics of networks, by consider-
ing the competitive, distributed nature of network elements,
limited radio resources, and the dynamic quality of service
(QoS) constraints of different elements [28], [29]. Thematch-
ing theory originates from stable marriage problem (SM).
There are some classical algorithms such as the conven-
tional Gale-Shapley algorithm [30], swapmatching algorithm
[31], and pricing-based matching algorithm [27] to solve
the general concepts of matching models. Matching problem
can also be divided into four categories, i.e., one-to-one,
one-to-many, many-to-one, and many-to-many matching.
Wang et al. [32] proposed a one-to-one stable matching algo-
rithm for latency optimization in the D2D-based social IoT
networks. Zhao et al. [33] proposed a novel algorithm for
obtaining a sub-optimal solution based on the many-to-many
two-sided matching game with externalities. Gu et al. [34]
introduced the idea of cheating inmatching to further improve
the throughput of D2D communications.

We also resort matching to solve the vehicle task offloading
problem. Our feature is that we employ different velocity
models to analyze the complex delay models. Particularly,
we study three vehicular mobility models and derive the
mathematic expressions of constant velocity model, vehicle-
following model and travelling-time statistical model. Fur-
thermore, we also use SUMO to evaluate our algorithm based
on realistic road topologies [35] because a realistic evaluation
scenario is crucial to evaluate the performance of proposed
algorithm. SUMO is a road traffic simulation software to
evaluate the real-world road topologies without deploying
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FIGURE 1. The architecture of VEC.

a physical equipment to catch realistic data and has been
widely used for performance evaluation in vehicular net-
works. In [36], the proposed content distribution algorithm
was compared with two heuristic schemes based on real-
world map and realistic vehicular traffic by employing both
SUMO and MATLAB. Zhou et al. [37], investigated the con-
tent distribution problem in D2D-based cooperative vehicular
networks, based on realistic vehicular traffic provided by
SUMO, which is useful to give a more precise construction
of a dynamic environment. Codeca et al. [36] used SUMO
to rebuild a realistic traffic pattern and dealt with traffic
congestion problems.

III. SYSTEM MODEL
The three-layer VEC framework is presented in Fig.1, which
is composed of the centralized control layer, the distributed
VEC layer and the vehicular network layer.

The centralized control layer is responsible for task assign-
ment and handover management. The macro base station
(MBS) locates at the center of the road, and we assume
that the coverage of the MBS is large enough to ensure that
all the vehicles can access to it. The MBS connects with
a remote cloud server, which can offer the computational
resource to the MBS. Here, we consider that the remote cloud
server has enough computational resource but causes a heavy
delay due to the long distance. The MBS can determine the
task offloading strategy based on the collected information
from vehicles (the task computing requirements, position,
and velocity information, etc.), RSUs and the remote cloud
server (the idle computational resources and channel state
information, etc.).

In the distributed VEC layer, M RSUs with differ-
ent coverage areas are considered to be deployed along
this unidirectional road, the set of which is denoted as

RSU = {RSU1, · · · ,RSUm, · · · ,RSUM }, and the
corresponding set of indices is denoted as M =

{1, · · · ,m, · · · ,M}. The coverage radius of RSUm is denoted
as rm. Based on the coverage area of M RSUs with different
radius, the road is divided into M segments with different
sizes. A vehicle can only communicate with RSUm when it
is located in the section m. For any RSUm ∈ RSU , it has a
co-located edge server to offer the computational resource,
which is denoted as δm. For the sake of narrative, the MBS
can be denoted as RSU0 and added into the setRSU . Besides,
the corresponding index is m = 0 and the computational
resource of the remote cloud server is denoted as δ0.
The vehicular network layer is composed of N vehi-

cles travelling towards the same direction into an uni-
directional road. Denote the set of vehicles as V =

{V1, · · · ,Vn, · · · ,VN }, and the corresponding set of indices
is denoted as N = {1, · · · , n, · · · ,N }. The velocity and
acceleration of Vn are denoted as vn and an, respectively. For
each vehicle Vn, it will generate a task when it arrives at the
road, which can be characterized by a triplet {Dn,Cn, τn}.
Dn represents the data size of the task (bits), Cn denotes
the computational resource demand for processing the task
(MHz), and τn is the delay constraint (seconds).
The task offloading and execution process are imple-

mented as follows. Firstly, each vehicle Vn ∈ V informs the
MBS of its task computational requirement, i.e., Dn, Cn, and
τn. Then, the MBS determines to offload the tasks either to
the RSUs or the MBS for execution in order to reduce the
offloading delay. Next, theMBSwill inform the vehicles with
the task offloading decision, based on which, the task will be
either offloaded to the corresponding RSU, or to the MBS.
If the vehicle chooses the RSU to offload its task, the task will
be processed by the edge server with a short delay. Otherwise,
the task will be offloaded to the MBS and processed by

27630 VOLUME 7, 2019



P. Liu et al.: Matching-Based Task Offloading for VEC

TABLE 1. Parameter.

the remote cloud server with a heavy delay, though it has
ample computational resource. During the task computational
period, a vehicle may travel into the coverage of another RSU
due to the mobility of vehicles, in this situation, the MBS has
to collect all the task computational results.When the task has
been processed, the computational result will be feed back to
the RSU, in which the vehicle is located currently, then the
result is transmitted to the target vehicle.

Denote the total offloading delay as the time difference
between the vehicle entering the road and receiving the
computational results, which consists of transmission delay,
task computational delay, waiting delay, and handover delay.
Among the various types of delay, the waiting delay and
handover delay depend on the specific mobility models.
In this paper, we consider three types of mobility models
to simulate the motion of vehicles and calculate the wait-
ing delay and handover delay, which are constant velocity
model, vehicle-following model and travelling-time statisti-
cal model. Besides, we compare the performance of these
three models with the real motion data generated by SUMO.
The detailed mobility model, handover model, and delay
model are elaborated as follows. The mathematical variables
used throughout this work are summarized in Table 1.

A. THE MOBILITY MODEL AND WAITING DELAY
If the vehicle Vn determines to offload its tasks to RSUm,
a precedent condition is that the vehicle must locate in the
coverage of RSUm. That is to say, the vehicle Vn cannot
offload its task to RSUm until it reaches the coverage of
RSUm, and the corresponding waiting time is called waiting
delay, which is denoted as Twn,m. In this section, we introduce

three vehicular mobility models, and derive the correspond-
ing waiting delay.

Without loss of generality, we consider a scenario that the
RSUs are arrayed from left side of the road to right side,
i.e., RSU1 is at the far left of the road and RSUM is at the far
right of the road, as shown in Fig. 1. Furthermore, we assume
that all vehicles enter into the road from the left edge of
the road, i.e., the coverage of the RSU1. Thus, the travelling
distance of any vehicle until it enters into the coverage of
RSUm can be calculated as

Sm = 2
m−1∑
i=1

ri. (1)

Remark 1: If the vehicle Vn determines to offload its tasks
to the MBS or RSU1, there will be no travelling distance and
waiting delay, i.e., the travelling distance is S0 = S1 = 0, and
the waiting delay is Twn,0 = Twn,1 = 0.
Then, vehicular mobility models are described in details as

follows.

1) CONSTANT VELOCITY MODEL
We assume that any vehicle Vn ∈ V travels with a constant
velocity vn when it enters into the road, and the velocity
of each vehicle Vn is uniformly distributed in the range of
[0, 27.7] m/s. Then the waiting delay of the vehicle Vn can be
calculated as

Twn,m =
Sm
vn
. (2)

2) VEHICLE-FOLLOWING MODEL
In the urban traffic scenario, the vehicle-following model is
often adopted, in which the vehicle velocity is affected by
numerous factors [38], such as the traffic lights, the mobile
behavior of the leading vehicle, etc. We mainly consider the
impact of traffic lights here and the impact of the leading
vehicle can be analyzed similarly. Specifically, we assume
that there exists K traffic lights located evenly in this road.

The vehicle-followingmodel consists of three phases when
the vehicle Vn passes a traffic light, which are the continuous
braking phase, the stationary phase, and the acceleration
phase. The details are described as follows.

The vehicleVn is assumed to travel with a constant velocity
vn initially. During the continuous braking phase, the velocity
of the vehicle Vn will decrease from vn to zero with a constant
deceleration an after the driver notices the traffic light and
takes the braking action. The distance of the vehicle Vn in
this stage is calculated as

dan =
v2n
2an

, (3)

and the braking time tan is calculated as

tan =
vn
an
. (4)
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Then during the stationary phase, the vehicle Vn will wait
for a period of time twn at the intersection, which is

twn = βnTmax , (5)

where Tmax is the predetermined maximum waiting delay for
red light. βn is the ratio of the remaining waiting delay for red
light to the maximum waiting delay Tmax , which is related to
the time when the vehicle arrives at the intersection and can
be seen as a random value in the simulation.

During the acceleration phase, the velocity of the vehicle
Vn will increase from zero to vn again with a constant accel-
eration a′n. Similar to those in the continuous braking phase,
the vehicle Vn travelling distance da

′

n and the corresponding
acceleration time ta

′

n in this phase can be expressed as

da
′

n =
v2n
2a′n

, (6)

ta
′

n =
vn
a′n
. (7)

As discussed above, the total travelling distance of the
vehicle Vn passing an intersection with the traffic light can
be calculated by

dvn = dan + d
a′
n , (8)

and the total time of the vehicle Vn passing an intersection is

tvn = tan + t
w
n + t

a′
n . (9)

Considering there are K traffic lights located in the road,
and the vehicle Vn has passed by K ′n traffic lights before
it enters to the segment m. Then, the waiting delay for the
vehicle Vn entering the coverage of RSUm is composed of
two part. One is the uniform motion phase and the moving
distance can be expressed as the difference between Sm and
K ′nd

v
n . The other is the continuous braking phase and acceler-

ation phase, the total travelling time can be expressed asK ′nt
v
n .

From what has been discussed above, the waiting delay can
be obtained as

Twn,m =
Sm − K ′nd

v
n

vn
+ K ′nt

v
n, (10)

here, we must have K ′n ≤ K .

3) TRAVELLING-TIME STATISTICAL MODEL
The two theoretical models described above are too optimistic
for real-world implementation, especially in complex traffic
scenarios. Several works have focused on the vehicular trav-
elling time for a given road segment, i.e., the waiting delay,
which is demonstrated to follow a Gamma distribution [39],
[40]. The details are described as follows.

Generally, if the vehicle Vn travels for a distance dn, and
the corresponding time is denoted as tn, then the probability
distribution function (PDF) of Gamma distribution Ga(dn, θ)
can be expressed as

f (tn, dn, θ) =
tdn−1n e−

tn
θ

θdn0(dn)
, (dn > 0, θ > 0), (11)

where dn is also called the shape parameter and θ is called the
scale parameter. 0(dn) is the Gamma function which is given
by

0(dn) =
∫
+∞

0
tdn−1n e−tndtn. (12)

Therefore, when the travelling distance of the vehicle Vn
is Sm, i.e., dn = Sm, the waiting delay is assumed to follow
a Gamma distribution, i.e., tn ∼ Ga(Sm, θ), where θ is deter-
mined by the actual conditions of the road segment [41] and
can be obtained based on the historical traffic information,
including the vehicle trajectory, road congestion, accident
probability and so on. We take the expectation of tn as the
waiting delay of the vehicle Vn arriving at the coverage of
RSUm, i.e.,

Twn,m = Smθ. (13)

4) MOBILITY MODEL BY SUMO
In addition to the three vehicular mobility models described
above, we can get the actual motion data of the vehicle by
SUMO.

The traffic simulator software, SUMO, is able to select the
real-world map for simulation, and with which we can avoid
the expensive costs for deploying a physical transportation
measurement system. Each vehicle Vn is treated as an inde-
pendent element in SUMO and various mobility parameters
of vehicles such as acceleration, deceleration, velocity, and
route, can be adjusted and controlled separately. Particularly,
we consider three different scenarios, which are the straight
road, urban road with traffic light and crooked road, as shown
in Fig. 2,3 and 4, respectively. The application of TSUMO
with different scenarios is described in details in Section VII.

B. THE DATA TRANSMISSION MODEL
Assuming that each vehicle Vn is allocated with orthogonal
channel, i.e., there is no interference among the vehicles.
Considering the data are transmitted from the vehicle Vn
to RSUm, the effective signal to noise ratio (SNR) of the
transmission link between Vn and RSUm can be expressed as

γn,m =
Ptgn,m
N0

, (14)

where Pt is the transmission power of the vehicle Vn, which
is constant for each vehicle Vn. N0 is the power of the
additive white Gaussian noise (AWGN). gn,m represents the
channel power gain of the transmission link from the vehicle
Vn to RSUm. Due to the mobility of vehicle, the channel
varies rapidly and it is difficult to get the real-time channel
state information. Previous works have verified that only
considering the large-scale fading causes little performance
degradation. For the sake of simplification, we ignore the
small-scale fading and the channel power gain is expressed as
gn,m = r−αm [21]. Here, we consider the vehicle Vn transmits
its task once it enters to the coverage of RSUm, and α is
pathloss exponent. Then the data transmission rate of the
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FIGURE 2. The scenario of straight road.

FIGURE 3. The scenario of urban road with traffic light.

vehicle Vn can be calculated as

Rn,m = B log(1+ γn,m), (15)

where B refers to the channel bandwidth, and we assume that
the bandwidth is same for each vehicle Vn. If the vehicle
Vn transmits its task with data size Dn to RSUm, the data
transmission delay can be calculated as

T tn,m =
Dn
Rn,m

. (16)

Remark 2: The data transmission process must be com-
pleted during the time that the vehicle Vn is within the cov-
erage of RSUm, i.e., the dwell time T tmaxn,m . That is to say,
the transmission delay T tn,m must be less then or equal to
T tmaxn,m . The representations of dwell time T tmaxn,m in different
vehicular mobility models can be expressed as:
• Constant velocity model:

T tmaxn,m =
2rm
vn
. (17)

• Vehicle-following model:

T tmaxn,m =


2rm − dvn

vn
+ tvn, if Vn meets traffic light

2rm
vn
, otherwise

,

(18)

here, 2rm − dvn means the travelling distance in uniform
motion phase, which is similar to (10).

• Travelling-time statistical model:

T tmaxn,m = 2rmθ, (19)

here, we consider dn = 2rm and the dwell time T tmaxn,m
follows the Gamma distribution Ga(2rm, θ).

Specially, if the task is offloaded to theMBS, then it will be
processed by the remote cloud server. Thus, the transmission
delay from the vehicleVn to theMBS adds an additional delay
Tcloud , which is composed of the transmission time from
the MBS to the remote cloud server and the feedback time.
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FIGURE 4. The scenario of crooked road.

For the sake of simplification, denote Tcloud as an constant
value. Then, the transmission delay from the vehicle Vn to
the MBS is calculated as follows:

T tn,0 =
Dn
Rn,0
+ Tcloud . (20)

where Rn,0 is the data transmission rate of the vehicle Vn
which offload its task to the MBS.

C. THE TASK COMPUTATIONAL MODEL
When the task generated by Vn is offloaded to RSUm, the task
with computational request Cn will be processed by the co-
located edge server or the remote cloud server. The computa-
tional delay can be expressed as

T cn,m =
Cn
δm
, (21)

where δm is the computational capability of RSUm. Here,m =
0 means the task is processed by the remote cloud server.

D. HANDOVER MODEL
During the period of task processing, the vehicle Vn might
move out of the coverage of RSUm and enter into the coverage
of another RSU RSUm′ , and m′ ≥ m. The computational
result has to be transmitted firstly from RSUm to RSUm′ , and
then transmitted from RSUm′ to the target vehicle Vn. Assum-
ing that the data size of computational result is negligible
compared to that of the task, and the feedback delay can be
ignored. Then the handover delay is mainly related to the
backhaul delay, which is expressed as

T hm,m′ = (m′ − m)ct , (22)

where ct means the handover delay from RSUm to RSUm+1,
which is assumed as a constant value. From (22), it can be
seen that the critical issue is to predict where the vehicle Vn
is located. From arriving at the coverage of RSUm to the task
has been finished, the travelling time of the vehicle Vn is

Tn = T tn,m+T
c
n,m, which can be obtained from (16) and (21).

Then the corresponding travelling distance dn can be pre-
dicted by centralized controller under three different vehic-
ular mobility models.
• Constant velocity model:

dn = vnTn. (23)

• Vehicle-following model:

dn=

{
k ′nd

v
n+(Tn − k

′
nt
v
n)vn, if Vn meets traffic light

vnTn, otherwise
,

(24)

here, Tn−k ′nt
v
n means themoving time in uniformmotion

phase, which is easy to derive from (10).
• Travelling-time statistical model:

dn =
Tn
θ
, (25)

here, we treat Tn as the expectation value of the Gamma
distribution Ga(dn, θ), then (25) can be derived from
(13).

When the vehicle travels from RSUm to RSUm′ , the following
inequality must be satisfied:

2
m′−1∑
i=m

ri ≤ dn ≤ 2
m′∑
j=m

rj. (26)

Then the location of the vehicle Vn can be predicted.
Remark 3: If the vehicle Vn is still within the coverage of

RSUm or it offloads its task to the MBS, there will be no
handover cost, i.e, T hm,m = 0.

E. TOTAL OFFLOADING DELAY
Based on the discussion above, the total offloading delay can
be expressed as the sum of transmission delay, the computa-
tional delay, the waiting delay and the handover delay, that
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is

Tn,m = T tn,m + T
c
n,m + T

w
n,m + T

h
m,m′ . (27)

IV. PROBLEM FORMULATION
The optimization variable of the task offloading is defined as
xn,m. Here, xn,m = 1 means the vehicle Vn offload its task
to RSUm, and otherwise, xn,m = 0. Then the task offload-
ing problem can be transformed into a matching problem
between vehicles and RSUs. This work aims at minimizing
the total offloading delay, which can be formulated as fol-
lows:

P1 : min
{xn,m}

∑
m∈M,n∈N

xn,mTn,m,

s.t. C1 : xn,mTn,m ≤ τmaxn ,∀m ∈M,∀n ∈ N ,
C2 : T tn,m ≤ T

tmax
n,m ,∀m ∈M,∀n ∈ N ,

C3 : γn,m ≥ γmin,∀m ∈M,∀n ∈ N ,
C4 : xn,m ∈ {0, 1},∀m ∈M,∀n ∈ N ,
C5 :

∑
m∈M

xn,m ≤ 1,∀n ∈ N ,

C6 :
∑
n∈N

xn,m ≤ qm,∀m ∈M. (28)

Here,C1 represents that the delay tolerate of the whole task
offloading process. C2 is the transmission delay constraint
that the vehicle Vn must finish its transmission process during
the dwell time in the coverage of RSUm. C3 denotes the QoS
requirement in terms of SNR. C4 ∼ C6 denote the task
offloading relationship between vehicles and RSUs, which
means that a vehicle can only offload its task to only one RSU,
but the RSU can serve up to qm vehicles, simultaneously.

V. TASK OFFLOADING BASED ON
ONE-TO-ONE MATCHING
We firstly consider a simple scenario where each vehicle can
offload its task to one RSU and each RSU merely execute
the computational task of one vehicle, i.e., qm = 1, m ∈
{1, 2, · · · ,M}. Then, the problem P1 can be converted to a
one-to-one matching [31] between N vehicles and M RSUs,
which can be expressed as

P2 : min
{xn,m}

∑
n∈N ,m∈M

xn,mTn,m,

s.t. C1 ∼ C5,

C7 :
∑
n∈N

xn,m ≤ 1,∀m ∈ {1, 2, · · · ,M}, (29)

where C7 represents that any RSU can accept no more than
one vehicle. The transformed problem is defined as a triplet
(V,RSU,F), where V and RSU are two finite and distinct
sets of the participants in this matching, i.e., N vehicles and
M RSUs, respectively. F denotes the set of the matching
preference.
Definition 1 (One-to-One Matching): For the formulated

matching problem (V,RSU,F), a matching φ represents a
one-to-one correspondence from the set V ∪ RSU onto the

set V ∪ RSU ∪ {∅} based on the preference F . φ(Vn) =
RSUm represents that the vehicle Vn is matched with RSUm.
Specially, if the vehicle Vn is rejected by all the RSUs, it will
be matched with MBS, i.e., φ(Vn) = RSU0.
To carry out thematching, each vehicle is required to estab-

lish its preference list via arranging RSUs from the other side
according to its preference. Denote G = {G1, ...,Gm, ...GM }
as the price set of vehicles, in whichGm represents the match-
ing cost of RSUm. For any vehicle wishing to be matched with
RSUm, it has to bear the matching cost Gm. For the sake of
simplicity, we define the preference of Vn towards RSUm as
the difference between the reciprocal of offloading delay Tn,m
and the matching cost Gm, which is given by

Un,m |φ(Vn)=RSUm=
1

Tn,m
− Gm. (30)

It is noted that the initial value of Gm ∈ G is set as zero for
simplification.

A complete, reflexive, and transitive binary preference
relation, i.e., ‘‘�’’, is introduced to compare the preferences.
For instance, the vehicle Vn prefers RSUm to RSUm′ can be
represented as RSUm �Vn RSUm′ , ∀n ∈ N , m,m′ ∈M, and
m 6= m′, which is given by

RSUm �Vn RSUm′ ⇔ Un,m > Un,m′ . (31)

Denote the preference list ofVn asFn, which is constructed
by arranging all the M RSUs according to the obtained Un,m
in a descending order. In the procedure of the one-to-one
matching,N vehicles andM RSUs will be matched with each
other in accordance with the derived preference lists.
The matching is implemented in an iterative manner. Any

vehicle Vn that remains unmatched will send a matching
request to its most preferred RSUm in Fn. If RSUm receives
only one request, then a matching between Vn and RSUm will
be constructed, i.e., xn,m = 1. A matching conflict arises
when RSUm receives multiple matching requests from the
vehicles simultaneously. In this case, the RSUm will increase
its price step by step. During the i-th pricing rising step,
the price of RSUm is given by

Gm[i] = Gm[i− 1]+1G, (32)

whereGm[i] means the price of RSUm at the i-th pricing rising
step. 1G is a price increment which is a predefined amount.
Afterwards, the preference lists of competing vehicles will
be updated in accordance with the latest preference of RSUm,
which is decreased due to1G. As the matching cost increase,
some competing vehicles will give up RSUm if another more
preferred RSUs occur, that is, these vehicles will prefer
another RSU RSUm′ than RSUm (m 6= m′), i.e., RSUm′ �Vn
RSUm. The price rising process will be finished when only
one vehicle remains. The matching iteration will terminate
when any vehicle Vn ∈ V has been matched with either
an RSU or the MBS. The one-to-one matching is shown in
Algorithm 1.

We give the definitions of the Blocking Pair and Stable
Matching [42].
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Algorithm 1 The Iterative Matching Algorithm
1: Input : V ,RSU , 1G ;
2: Output : φ;
3: Initialization :
4: Each vehicle Vn ∈ V builds its preference list Fn based

on (31);
5: Set φ = ∅,Pm = 0,RSUV

m = ∅,∀m ∈M,

6: while ∃φ(Vn) = ∅ do
7: for Vn ∈ V do
8: Each vehicle Vn ∈ V proposes to the most preferred

RSU RSUm in its preference list Fn;
9: end for

10: for RSUm ∈ RSU do
11: if RSUm receives only one request then
12: Match the vehicle Vn with RSUm directly;
13: end if
14: if RSUm receives more than one requests then
15: Add Vn which proposed to RSUm to the condition

set RSUV
m .

16: end if
17: if RSUV

m 6= ∅ then
18: while RSUV

m 6= ∅ do
19: Rising price Gm based on (32);
20: The vehicleVn ∈ RSUV

m update its correspond-
ing preference list Fn;

21: if Vn ∈ RSUV
m has a better choice then

22: Remove Vn from RSUV
m .

23: end if
24: end while
25: end if
26: end for
27: end while

Definition 2 (Blocking Pair): The vehicle Vn and
the RSU RSUm form a blocking pair if both Vn and
RSUm prefer the others than their currently matched
result.
Definition 3 (Stable Matching): A matching 8 is defined

as stable if it is not blocked by any pair.
Theorem 1: Given the set of vehicles V and RSUs

RSU , Algorithm 1 achieves a stable matching between
them.

Proof: Contradiction is utilized to verify the validity of
Proposition 1. Assuming that the matching result is φ(Vn) =
RSUm′ , but Vn and RSUm form a blocking pair, that is, Vn and
RSUm prefer to be matched each other, but they have not been
matched, thus we have φ(Vn) 6= RSUm, RSUm �Vn RSUm′ .
However, according to the pricing strategy of Algorithm 1,
φ(Vn) = RSUm is not the matching result, which means that
the vehicle Vn has abandoned RSUm during the process of
rising prices. Furthermore, the final winner for Vn is RSUm′ ,
that is RSUm′ �Vn RSUm. The analysis result contradicts
the assumption. Therefore, Algorithm 1 achieves a stable
matching.

VI. TASK OFFLOADING BASED ON
MATCHING WITH QUOTA
There is a practical scenario in which one RSU can accept
multiple tasks generated by multiple vehicles. That is to
say, each vehicle can offload its task to only one RSU but
each RSU can execute the computational task from up to qm
vehicles, i.e., qm ≥ 2. Thus, the problem P1 can be converted
to a one-to-many matching [30], which is expressed as

P3 : min
{xn,m}

∑
m∈M,n∈N

xn,mTn,m,

s.t. C1 ∼ C5,

C8 :
∑
n∈N

xn,m ≤ qm,∀m ∈ {1, 2, · · · ,M},

(33)

Here, C8 represents that RSUm can accept up to qm tasks
simultaneous. Similar to the one-to-one matching, the trans-
formed problem P3 is a one-to-many matching problem and
can be defined as a triple (V,RSU,F). φ(Vn) = RSUm
means that the Vn is matched with RSUm. Specially, the vehi-
cle Vn which is not matched with any RSU will be matched
with the MBS.

In the one-to-many matching process, each vehicle pro-
poses to its most preferred RSU based on the preference
list Fn, similar to the one-to-one matching process. If RSUm
receives nomore than qm computational request, it will accept
all the proposed vehicles. Otherwise, RSUm will increase
its matching price Gm based on (32) until only qm vehicles
remain. The stability of one-to-many matching is different
from that of one-to-one matching. In the one-to-many match-
ing, we can use the concept of group stability. At first, a coali-
tion C ⊂ V ∪RSU consists of at least one RSU. A matching
φ is blocked by a coalition C if there exists another matching
φ′ that meets the following conditions:
• φ′(RSUm) ∈ C,∀RSUm ∈ C;
• Un,m′ |φ′(Vn)=RSUm′≥ Un,m |φ(Vn)=RSUm ,∀Vn ∈ C;
• If Vn ∈ φ′(RSUm), then Vn ∈ φ(RSUm) ∪ C.

The first condition ensures that all the vehicles Vn in C are
matched to RSUm in C. The second conditions denotes that all
vehicles in C prefer their current matching results in φ′ to their
matching results in φ, and the third condition represents that
each vehicle can be matched with a combination of new RSU.
Therefore, φ is blocked by some coalition C, if the vehicle Vn
and the RSUm both find a better choice to φ. Given the above
conditions, group stability is defined as follows.
Definition 4 (Group Stable Matching): A matching φ is

defined as group stable if it is not blocked by any coalition.
Theorem 2: Given the set of vehicles V , RSUs RSU and

quota qm,∀m ∈M, the proposed algorithm achieves a group
stable matching between V andRSU .

Proof: Assuming that the matching result is φ, but it
is blocked by a coalition C, i.e., a matching φ′ is better than
current matching φ. Thus, it must have Un,m′ |φ′(Vn)=RSUm′≥
Un,m |φ(Vn)=RSUm ,∀Vn ∈ C. However, according to the
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pricing strategy of the proposed algorithm, φ(Vn) = RSUm′ is
not the matching result, which means that the vehicle Vn has
abandoned RSUm′ during the process of rising prices, and the
winner for Vn is RSUm. Thus, it must have RSUm �Vn RSUm′ .
The analysis result contradicts the assumption. Therefore,
the proposed matching algorithm achieves a stable matching
result.

VII. NUMERICAL RESULTS
In this section, we evaluate the proposed algorithm based
on different scenarios and vehicular mobility models. Firstly,
we introduce the scenario establish and the experimental set-
ting. Then, we present the numerical results. The simulation
parameters can refer to previous work [43], and they are
summarized in TABLE 2.

TABLE 2. Simulation parameters.

We adopt SUMO to evaluate the proposed algorithm based
on real-world road topologies. The characteristic information
of the real-world scenarios is extracted from OpenStreetMap,
and using JOSM, which is an extensible editor for Open-
StreetMap, to process the digital map. Then these digital map
data are imported to SUMO for the processing, in which
the vehicular traffics are generated based on the specific
road topologies. Via the predefined interfaces of SUMO [35],
some key parameters of vehicles, such as velocity and the
corresponding time can be obtained during the simulation.
These essential information will be saved as several XML
files for data processing. The three simulation scenarios are
presented as follows.
• The Scenario of Straight Road: It is a unidirectional
straight lane which is the basic element in most traf-
fic scenarios. A typical straight road, named Wugang
Road, in FoshanCity of theGuangdong Province, China,
is selected for evaluation. Fig. 2(a) shows its real-world
map based on aerial photography, and Fig. 2(b) shows
its simulation scenario based on SUMO.

• The Scenario of Urban Road with Traffic Light: This
scenario is based on the urban roadwith the traffic lights,
and only considers the impact of the traffic lights on the
vehicular velocity. A straight road with a traffic intersec-
tion in JianguomenOverpass area in Beijing City, China,

is selected. Fig. 3 (a)-(b) show its real-world map and the
simulation scenario based on SUMO, respectively.

• The Scenario of Crooked Road: Complex road topol-
ogy of roads, especially the road turning, is mainly con-
sidered in this scenario. We select a crooked road with a
turning intersection in Changping District, Beijing City,
China as the road simulation scenario. Fig. 4 (a)-(b)
show its real-world map and the simulation scenario
based on SUMO, respectively.

FIGURE 5. The average offloading delay versus the number of vehicles
(qm = 1).

FIGURE 6. The average offloading delay versus the number of vehicles
(qm = 2).

Fig. 5 and Fig. 6 show the average offloading delay ver-
sus the number of vehicles under two different situations,
which are formulated as one-to-one matching (qm = 1) and
one-to-many matching (qm = 2), respectively. The number
of RSUs is M = 4. It is clearly that the average delay
increases monotonously with the number of vehicles N . The
reason is that a larger number of vehicles leads to more
tasks to be offloaded and processed, which increases both the
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data transmission and task computation delay. Furthermore,
the increasing number of vehicles may lead to a longer wait-
ing delay due to competition in vehicles. It is obviously that
the constant velocity model and the straight road scenario
can achieve a smaller average delay compared with other
models or scenarios. The reason is that they are more ideal
and do not consider the influence of traffic light and turning.
Thus, the average offloading delay is also smaller, since the
waiting delay has a greater impact on average delay compared
with transmission delay and handover delay. The traffic lights
will have a large impact on the velocity of vehicles in vehicle-
following model and the urban road scenario, which will
cause a worse average offloading delay performance.

FIGURE 7. The average offloading delay in different models or scenarios
(N = 6).

Fig. 7 shows the average offloading delay versus different
models or scenarios under different quota values. The number
of vehicles N is set to 6. The performances of qm = 1 and
qm = 2 are consistent with the performances shown in Fig. 5
and Fig. 6, respectively. Specifically, we can note that the
average offloading delay is inversely proportional to the quota
value, i.e., a larger quota value gives rise to a smaller average
delay. The reason is that the RSU can process more tasks
when the quota value is large, which will reduce the waiting
delay, and lead to a more efficient task offloading work.

Fig. 8 shows that the average waiting delay versus different
models and scenarios under different quota values. It can
be seen that with the increasing of quota, the waiting delay
increases firstly and then decreases. Compared to Fig. 7, it can
be seen although the waiting delay increases, the average
offloading delay decreases. The reason is that when qm = 2,
more vehicles choose RSU rather than the MBS to offload
their tasks, which will indeed reduce the offloading delay, but
the waiting delay will increase due to the fact that the vehicle
has to reach the target RSU based on matching results, which
may be far away from the vehicle. With the quota further
increasing, the vehicles choose nearby RSUs to offload theirs

FIGURE 8. The average waiting delay in different models or scenarios
(N = 6).

FIGURE 9. The average offloading delay in different models or scenarios
(N = 6).

tasks, which reduces both the average offloading delay and
the waiting delay.

Fig. 9 shows the proportion of transmission delay, com-
putational delay, waiting delay and handover delay in the
average offloading delay, with N = 6 and qm = 1. It can
be seen that the offloading delay is mainly dominated by
waiting delay and computational delay. Given a task, and
the computational delay is a determined value. Thus, how to
reduce the task offloading delay mainly depends on how to
reduce the waiting delay.

Fig. 10 and Fig. 11 show the average offloading delay
versus the velocity of vehicle and task complexity, respec-
tively. In Fig. 10, it can be seen that with the increasing of
velocity, the average offloading delay is decreasing. It should
be pointed out that the performance of travelling-time sta-
tistical model is little related to velocity, so it is a straight
line. In Fig. 11, the average offloading delay increases almost
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FIGURE 10. The average offloading delay versus the velocity of vehicle
(qm = 1, N = 6).

FIGURE 11. The average offloading delay versus the task complexity
(qm = 1, N = 6).

linearly with the task complexity. The reason is that the
increasing delay is mainly related to the computational delay
which is a linear function of the task complexity.

VIII. CONCLUSIONS
In this paper, we investigated the task offloading problem
in vehicular edge computing, which aimed to minimize the
task offloading delay. The task offloading delay was con-
sist of data transmission delay, task computational delay,
waiting delay, and handover delay, which was derived based
on three different velocity models, i.e., constant velocity
model, vehicle-following model, and travelling-time statis-
tical model. Then a novel matching-based task offloading
algorithm was proposed, and the original problem was trans-
formed into one-to-one matching and matching with quota,
respectively. The proposed algorithm was validated under
three different simulation scenarios extracted by SUMO,
which were straight road, urban road with traffic light, and
crooked road. The numerical results showed that the proposed

algorithm can effectively simulate the overall motion of the
vehicle with suitable vehicular mobility models under differ-
ent real-road topology scenarios, and achieve a significant
delay decreasing.
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