
Received January 23, 2019, accepted February 12, 2019, date of publication February 22, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899921

StarZIP: Streaming Graph Compression
Technique for Data Archiving
BATJARGAL DOLGORSUREN 1, KIFAYAT ULLAH KHAN2, MOSTOFA KAMAL RASEL1,
AND YOUNG-KOO LEE 1, (Member, IEEE)
1Department of Computer Science and Engineering, Kyung Hee University, Seoul 130-701, South Korea
2Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad 75190, Pakistan

Corresponding author: Young-Koo Lee (yklee@khu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST)
under Grant 2018R1A2A2A05023669, and in part by the MSIT(Ministry of Science and ICT), South Korea, under the Grand Information
Technology Research Center Support Program supervised by the IITP(Institute for Information and communications Technology
Promotion) under Grant IITP-2018-2015-0-00742.

ABSTRACT The size of a streaming graph is possibly unbounded, and it is updated by a continuous
sequence of edges over time. Due to numerous types of real-world interactions, the nature of edge arrival in
a streaming graph is dynamic and holds different types of temporal subgraphs, such as stars, bipartite forms,
cliques, and chains. The most current techniques find such subgraphs in each snapshot of a dynamic graph
and use a dictionary or hash-based summary to compress the graph before applying a stitching technique
to demonstrate its temporal behavior. However, it remains difficult to discover those subgraph structures
from the continuous stream of edges found in large and rapidly changing dynamic graphs. In this paper,
we propose a streaming graph compression algorithm, StarZIP, that uses a new encoding scheme. Our
motivational factor is real-world graphs that contain an overwhelmingly large number of stars and a few
other structures. We have observed that all subgraph structures can be represented as star-shaped subgraphs.
Moreover, the star-shaped representation can easily be arranged in the form of an inverted index, which
enables the application of different inverted list encoding techniques for compression. Therefore, we shatter
a graph into a uniform representation of stars to compress it. The evaluation of StarZIP on real-world datasets
shows that our proposed system reduced the size of a highly dense graph to 60 times less than its original
size. Moreover, the experimental results indicate that StarZIP compression is 4 times better than the state-
of-the-art techniques.

INDEX TERMS Encoding scheme, graph compression, streaming graph, star structure.

I. INTRODUCTION
Different types of networks, such as social media, e-mail,
telephone, and web, can be modeled as streaming graphs
for knowledge discovery. Because they create new relation-
ships among a large number of entities over time, the graph
size increases rapidly. Many studies have produced tech-
niques such as sampling [1], [2], distances calculation [3]
sketches computation [4], triangle listing [5], [6], and pat-
tern matching [7], [8] to process and mine streaming graphs.
However, the large size of many graphs is a barrier to
the smooth execution of data mining algorithms. Similarly,
large graphs have issues with data storage and visualization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Daniel Benevides Da Costa.

Moreover, mining streaming data is challenging because of
the massive amount of flooding data

Applying a static graph compression algorithm to a stream-
ing graph is not straightforward because the data are implicit,
unpredictable, and rapidly changing. Zaharia et al. [9], Sun
et al. [10], Rasel et al. [11] used micro-batch processing to
compress data by dividing the incoming events into batches,
either by arrival time or window size. When a streaming
graph is divided into multiple snapshots during batch pro-
cessing, incremental encoding is well-suited to compress-
ing each snapshot. A batch processing approach recently
presented by Shah et al. [12] compresses a dynamic graph
by finding a dictionary of temporal patterns, such as stars,
bipartite forms, cliques, and chains. The authors summarized
sub-structures to compress a graph. However, that algorithm,

38020
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8795-2762
https://orcid.org/0000-0003-2314-5395

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

Timecrunch, discovers candidate sub-structures only from
individual static snapshots of a dynamic graph; it does
not consider an accumulating streaming graph. Moreover,
it labels the corresponding patterns using static identifiers to
minimize the local encoding cost. The results of Timecrunch
contain a higher frequency of star-shaped subgraphs than
of the remaining types. That technique’s limitations have
motivated us to consider only the star structure for compres-
sion, rather than considering different types of structures over
time.

In this paper, we propose a streaming graph compression
technique, StarZIP, that uses the star structure as the only rep-
resentative pattern for compression. StarZIP searches for the
required set of star-shaped subgraphs, re-orders them to apply
an encoding technique for compression, and then handles
incremental updates to the underlying graph. The compres-
sion ratio of StarZIP differs depending on the structural prop-
erties of the underlying graph because of the high edge occur-
rence and graph density. Therefore, we focus on reducing the
representative bits that show each streaming edge because
they occur repeatedly, and we arrange (reorder) their node
IDs in ascending order. Compressing a graph with respect to
the original edges is rare but necessary [13], [14] for various
real-life events. In contrast to Timecrunch, we introduce a
new encoding scheme for data compression that preserves
the edge weights, which we obtain from the number of edge
occurrences. We performed extensive experiments on graphs
of different types and sizes and found that StarZIP achieved a
62.6 times better compression ratio than the original data size.
Furthermore, we evaluated our proposed algorithm against
state-of-the-art compression techniques and found that our
system achieved a 2.6 to 4 times better compression ratio and
3 to 25.7 times better execution performance.
Motivation: The star-shaped subgraphs existence is an

average of 79.6% of all discovered subgraphs in 12 datasets,
making them much more common than subgraph struc-
tures such as cliques, chains, and bipartite forms in
Timecrunch [12] and VoG [15]. Moreover, any real-world
graph can be visualized in the form of stars G = ∪|c|i=1si
because any new streaming edge predominantly connects
with high-degree nodes. The high-degree nodes are important
for understanding the evolution of a network and identifying
the core nodes of star-shaped subgraphs. Furthermore, real-
world graphs have the common property of scale-free power-
law distribution. Networks evolve continuously by adding
new nodes that connect to existing nodes with a probability
proportional to their degree [16]. Therefore, we selected star-
shaped structures for our proposed compression method.

Our contributions are as follows:
• We propose a novel algorithm, StarZIP, to find the opti-
mal set of star subgraphs to maximize the compression
ratio of a streaming graph.

• We introduce two different techniques, All-Core-First
(ACF) and Core-First-Leaves (CFL), to label and
reorder node IDs in a priority queue to apply our encod-
ing technique.

• We propose a new encoding scheme, 0x1, to compress
an inverted integer list.

• We performed experiments using five real-world
datasets and achieved better results with our proposed
method than with existing techniques.

II. RELATED WORK
We reviewed the existing work in the field of streaming-graph
compression and categorized it into four different types:
structural compression, encoding adjacency list, finding a
suitable order of graph vertices, and edge sampling to esti-
mate subgraphs.

A. STRUCTURAL COMPRESSION
These techniques find and merge repeating graph patterns.
Recently Timecrunch [12] proposed a suitable lexicon for
dynamic graphs; the author used the minimum description
length principle (MDL) to label temporally coherent sub-
graphs, such as stars, chains, cliques, and bipartite forms, and
effectively compress a large dynamic graph. GraphZip [7]
uses a novel dictionary-based compression approach in con-
junction with MDL to discover maximally compressed pat-
terns in a graph stream. Similarly, VoG [15] uses MDL to
label subgraphs in terms of a vocabulary of static graphs
consisting of stars, (near) cliques, (near) bipartite cores, and
chains.

B. ENCODING ADJACENCY LIST
Boldi and Vigna [23] proposed several compression tech-
niques for web graphs, including compression by gap
encoding, interval representation, and reference compression.
Recently, Rossi et al. [24] proposed a fast parallel framework
for graph compression based on the notion of cliques. Also,
the authors introduced a new disk-resident and in-memory
graph encoding technique, GraphZIP. We observed that those
approaches provide useful graph compression techniques for
static and dynamic cases but do not consider edge weight
information.

C. FINDING A SUITABLE ORDER OF GRAPH VERTICES
Dhulipala et al. [25] have worked to improve the compres-
sion of graphs and inverted indexes using a reordering algo-
rithm based on graph bisection. SlashBurn [26] is an efficient
node-reordering approach to graph compression after recur-
sive graph shattering. These approaches are not suitable for
streaming graphs.

D. SAMPLING AND ESTIMATION OF SUBGRAPHS
Graph priority sampling for subgraph counting was studied
in [1] and [2] to minimize the estimation variance counts
of specified sets of subgraphs. In study [1], Ahmed et al.
designed algorithms for triangle and wedge counting, and
in [2]], they specialized in bipartite subgraphs. However,
those studies proposed lossy compression techniques, and
their results are unbiased. Therefore, even though they pro-
duce a high compression ratio, they do not offer an exact

VOLUME 7, 2019 38021

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

TABLE 1. Comparison of all related compression techniques based on the properties of the input graph and the features of algorithm.

solution because no one prefers lossy information in daily
life. The usual protection against lossy compression tech-
niques is to exploit statistical redundancies to represent the
data without actually losing any information. Most real-
world graphs, such as email, internet, and calling graphs,
do exhibit statistical redundancy, but we still need to preserve
all the information for archiving and later analysis. Therefore,
we need a lossless rather than a lossy compression algorithm.
In this work, we use an encoding scheme to compress an
inverted list that stores streaming graph data by leveraging
a uniform star structure, and we also propose an efficient
incremental algorithm for shattering graph snapshots and
updating the encoded inverted list at any time point. Our
proposed technique thus offers lossless compression; we can
provide the exact results for queries from the decompressed
graph. In contrast, the existing algorithms [1], [2] achieve a
higher compression rate but with some data loss. Moreover,
we studied another work on graph compression that produced
lossy compression of weighted and dynamic graphs [36].That
work used the Top-k approximation algorithm, which can
lose some information during fraud detection. We provide
the computational analysis for each aforementioned existing
works in Table 1.

III. PRELIMINARIES
We consider a streaming graph model G = (V ,E,w),
where V = {v1, . . . vi, vj, . . . vn} is a set of vertices, E =
{e(vi, vj,w)|vi, vj ∈ V ; vi 6= vj; 1 ≤ i, j ≤ n} is a
set of edges that arrives in the form of a stream, and w is
the edge weight that indicates the strength of association
between any two vertices vi and vj. Degree d of v ∈ V is
the count of the neighborhood N (v) of node v. We process
the graph stream by batching the original stream into dis-
tinct sets of edges, where each set forms a streaming graph
object called a graph snapshot. A graph snapshot Gt (Vt ,Et)
is represented by a subsequence of interconnected edges

FIGURE 1. Instances of graph snapshots G1, G2, G3, and G4 of cumulated
streaming graph G.

Et = {e(vi, vj)|vi, vj ∈ V } and Et ⊆ E that are ordered by
their timestep t , where t is a non-negative integer.
Definition 1 (Streaming Graph): We define a streaming

graph as an undirected and weighted graph G(V ,E,w) that
consists of a chronological sequence of edges e(vi, vj) ∈ Et
corresponding to the timestep t to produce a snapshot Gt .
Figure 1 illustrates a streaming graph. Each graph snapshot

Gt , |t| = 4 has the same number of edges, |Et | = 3. The
cumulated streaming graph G has 5 nodes and 7 edges. The
edge between nodes 2 and 5 in G has weight 3, because this
edge e(2, 5) occurs once in snapshot 3 (G3), and twice in
snapshot 4 (G4).

We transform a stream of edges first into graph snapshots
and then into a set of stars. Therefore, it becomes possible to
update each star incrementally by considering the incoming
edges as a link.
Definition 2 (Star Graph): We define a star graph as

s = (c,L), where c ∈ V is a core node, L ⊂ V are leaf
nodes, and L = {(e(c, l)|l ∈ L) ∈ E}. The size of a star is the
total number of its member nodes n having n− 1 leaves. The
degree of the core node c is d(c) = n− 1, where each leaf of
the core l ∈ L has the degree d(l) = 1.

In a star structure, a core is center node, and the leaves are
its neighbor nodes. For any vertex, vi ∈ V can be used as a
core or leaf to generate a corresponding star. A graph can be
represented as a set of multiple star structures S. Figure 2a
shows a set of star graphs for the sample streaming graph G
in Figure 1.We aim to get an optimal solution by minimizing

38022 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 2. (a) A set of stars S = {s1, s2, s3}. Grey nodes are the core
nodes of each star and yellow nodes are leaves that connected to a core
node. (b) Star representation.

the number of stars |S| and maximizing the number of leaves
n− 1 for each star.

It is possible that the leaves of a star or two different stars
are connected to each other by a new incoming edge in the
underlying graphG. In that case, the new edge does not affect
the existing stars, and we consider it as an individual star with
two nodes and call it a link edge.
Definition 3 (Link Edge): A link, lnk(li, lj) ∈ E , is an edge

that connects the leaf nodes of two stars in the cumulated
graph G.

For instance, in Figure 1, we can select any node as a core
with the remaining two leaf nodes in G1. Here, the edge that
connects two leaf nodes is a link edge. Therefore, we observe
that a link edge creates a cycle in the existing star, and it
connects two different stars as well. Similarly, s3 is a link
edge that connects leaves of two different stars, s1 and s2,
as shown by a dotted line in Figure 2a. The important benefit
of the star structure is the ability to store it directly in the form
of an inverted list.
Definition 4 (Inverted List): An inverted list L of a star

s stores its core node c and a list of leaf nodes L, where
leaf nodes are sorted in ascending order. It is represented as
L(s) = c+ L(c).

We illustrate an inverted list in Figure 2b for the stars
in Figure 2a. We apply an inverted list compression algorithm
to encode the node IDs, and thus the graph is modeled in the
form of stars and stored in the inverted list. We compute the
compression ratio cr for the input graph G using Equation 1.
Compression ratio cr is a non-negative number that repre-
sents the ratio between the bits of the original graph size and
the compressed graph size.

cr(G) =
Size of an original graph (G)

Size of the compressed graph (G’)
(1)

Definition 5 (TraceNode Table): A hash table
H〈Key,Value〉 for tracking the vertex IDs consists of the new
and old identifiers of a node.

We use a hash table H, which can add and search a
pair 〈k, v〉, to log vertex IDs re-ordering. We selected the
hash table for its high performance in accessing, search-
ing, and re-ordering node IDs because the number of nodes
in a streaming graph is huge. For example, the TraceN-
ode table of the graph G shown in Figure 3 is H =

{〈1, 3〉, 〈2, 5〉, 〈3, 2〉, 〈4, 1〉, 〈5, 4〉}.
Problem statement. For a given streaming graph

G(V ,E,w), we aim to find a set of optimal stars to maximize

the compression ratio (cr) by minimizing the representative
bit size using the function f (L).

IV. THE PROPOSED SOLUTION
A compressed graph is an encoded version that preserves the
overall structure of a streaming graph for a particular timestep
t . The selection of a locally optimal set of stars guarantees a
small number of lists and efficient re-ordering of node IDs,
which reduces the number of bits for storage compared with
the original size. Let f (L) = f (L1,L2,L3, . . . ,L|C|)) be a
continuously differentiable function defined over a set of stars
S. Then, a necessary condition for it to be a locally optimal
for a point L(s) = {l1, l2, . . . , ln} to belong to star s0 is to
minimize f (L(s)) = c+

∑d(c)
i=2 δ(i), where c is the core node

ID. The core node of a star is located in the start of its inverted
list L(s), and δ(i) = li − li−1 is the difference in the leaf
node IDs. The final function to select an optimal list of stars
is shown in Equation 2.

f (L) =
|C|∑
i=1

f (L(si)) (2)

where, |C| is the number of core nodes and is equal to the
number of stars. To solve the problem, our proposed solution
avoids computationally complex patterns and focuses on the
single representative structure of a star in the graph snapshots.
Moreover, we shatter the graphs using stars and re-order
their nodes efficiently because we transmit only star infor-
mation, which enables a small number lists in inverted list
representation.

A. STAR-BASED GRAPH SHATTERING
In StarZIP, shattering is the process of arranging a graph
in the form of stars and re-ordering the node IDs, which
encodes the data using our proposed compression schemee
(see Section IV-B). Shattering thus produces an inverted list
of cores and leaves, as shown Figure 3c. The inverted list
is an edge-disjoint decomposition of graph G into a set of
stars S, which improves the query execution performance and
increases the compression ratio. To shatter a graph, we use
an edge direction rule [33], [34] that converts an undirected
graph into a directed graph, as follows.

In the given input graph G, the edge direction rule assigns
directions to each edge e(u, v) ∈ E , f : E → {0, 1},
depending on degree of the node d(v), resulting in a directed
graph G↑↓.
• If d(vi) > d(vj), edge e(vi, vj) ∈ E directs from vi to vj.
• If d(vi) = d(vj), edge e(vi, vj) ∈ E directs from vj to vi
when vi has a smaller ID than vj.

Figure 3a depicts the directed graph produced by the direc-
tion rule for the graph in Figure 1. Similarly, we extract a set
of stars from the directed graphG↑↓, with each star consisting
of a core node adjacent to all its out neighbors. We show the
shattered stars from G↑↓ in Figure 3d. After identifying the
direction, each node with at least one outgoing edge serves
as a core node. In other words, all the outgoing neighbors

VOLUME 7, 2019 38023

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 3. Graph Shattering with Re-Ordering (a) Directed graph G↑↓ (b) Star Representation S before re-ordering (c) Inverted List L as
ordering node’s old ID to new ID{3 → 1, 5 → 2, 2 → 3, 1 → 4, 4 → 5} (d) A set of extracted stars S after re-ordering.

of each core are selected as leaves, producing lossless graph
compression. Therefore, we reverse the original graph G
from directed graph G↑↓ by deleting the direction of each
edge.

We reorder the node IDs of the shattered subgraphs to
efficiently apply delta encoding. However, we do not directly
re-order the node IDs; instead, we define some priority rules
for the core and leaf nodes. The objective of the priority rules
is to assign the minimum possible value to each node ID.
Thus, a node with higher priority gets a smaller node ID after
re-ordering. We use the following priority rules.

1) A core has higher priority than its leaves
2) If a core has a higher out-degree, then it has a higher

priority than the other core nodes.
3) If a leaf has more in-degrees, it has higher priority than

the remaining leaves.

Our objective is to minimize the function f (L) by prioritiz-
ing identifiers with new IDs for each vertex. The compression
ratio cr(G) ≥ 0 is highly effective due to the unique IDs of
the vertices. When the node ID increases, the storage cost
increases proportionally. Therefore, we select a vertex with
a small ID as a core node because a core node ID cannot be
encoded. Furthermore, the first leaf node of each star should
have a small ID to minimize the differences between the IDs
of the remaining leaf nodes.

We store the node IDs with their local information in the
hashmap, TraceNode, to improve locality because core nodes
are likely to be accessed frequently. The graph reordering
technique does not change the structure of the graph; it only
affects the layout of the graph data representations L and
H〈Key,Value〉. The reordering of the node IDs is triggered
at the end of each timestep t and performed only in the
case of new star creation; otherwise, we extend existing
stars.

We propose two different techniques for reordering a core
and its leaves: (i) All-Cores-First (ACF), in which we reorder
all cores before all leaf nodes, and (ii) Core-First-Leaves
(CFL), in which we reorder one core node at a time along
with its leaves. For example, in Figure 3c, we use ACF to
first assign the IDs 1,2, and 3 to cores 3, 5, and 2, respectively.
Then, we assign IDs to the leaf nodes of all the cores, which
have higher priority. For instance, in {2, 3, 3, . . .}, we replace
node 1 with its new ID 4 and replace node 4 with its new
ID 5, and the resultant leaf node list for core node 1 is
{2, 3, 3, 4, 5, 5}. If we use CFL instead of ACF, the new ID
list will be {3→ 1, 1→ 2, 2→ 3, 4→ 4, 5→ 5}.

B. ENCODING TECHNIQUES FOR GRAPH COMPRESSION
We propose the 0x1 scheme for our StarZIP compression
technique to compress the graph with a high compression
ratio. We transfer the inverted list L for each star into a delta
list using the delta encoding technique. Therefore, we can
execute an 8-bit packing technique to encode the deltas into
binary, which we call the 0x1 scheme.

1) DELTA ENCODING
In general, an integer value (from 0 to 4294967295(232− 1))
is stored using a word of memory, which is typically 4 bytes.
However, we aim to store the lightweight integer IDs dynam-
ically as 8 bits, 16 bits, 32 bits. Therefore, we need to store
the differences between the integers instead of the integers
themselves to reduce the size of the representative bits.

As a result of shattering and reordering, the most frequent
nodes in the list have smaller integer identities to improve
compressibility. It is also beneficial to sort the leaves by in-
degree because the higher in-degree leaf nodes are re-ordered
first. Instead of storing the original array of sorted integers
(vertex ID v1, v2, . . . , with vi ≤ vi+1 for all i), we keep only
the differences between successive elements with the initial
value (v1, δ1 = v2−v1, δ2 = v3−v2, . . .). Therefore, we com-
press the inverted list more efficiently and then decompress
it by computing the prefix sum vj = v1 +

∑j
i=1 δi for data

retrieval.

2) 0x1 SCHEME
We design a new compression scheme, named 0x1, to be
applied after the delta encoding. The output of the delta
encoding,D, contains of non-negative integers that are much
smaller than the original integers, and it contains consecutive
series of 1s, frequent 0s, and some other numbers. Therefore,
we categorize deltas into three types, 0, 1 and x, as follows.
• Frequent delta (0-type delta): Each run of zeros is
encoded with the previous x delta and numberOf (0) +
1 equal to the edge weight w.

• Sequential delta (1-type delta): Each run of ones is
represented as sequential IDs of leaf nodes and encoded
into a smaller number of bits in the compressed data.

• Gap delta (x-type delta): x 6= 0 and x 6= 1.
We use the 0x1 scheme to map the input delta list into

8 sequential bits, which outputs a smaller size of binary data
than the original. This is a type of arithmetic coding that
replaces each bit with a codeword to achieve a better compres-
sion rate. Therefore, the compression reduces the data size

38024 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 4. Example of delta encoding where the first value in the
encoded list is the same as the core nodes in an inverted list L(c).
Thereafter, each number is the difference between leaves.

FIGURE 5. Illustration of proposed 0x1 scheme where encoding for 8 bits
can be determined by tracing the path from root to leaf node.

using mathematical algorithms about data redundancies and
localities, creating a fast and exact encoding scheme. In this
case, we use 8 sequential bits to encode an integer or multiple
0s and 1s.

Figure 5 summarizes the logical encoding method of the
0x1 scheme. To encode the core nodes, we use the first 2 fixed
bits as marker bits and the last 6 bits as data bits to identify
the core node. The first bit identifies 0 as a core node and 1 as
a leaf node. The second bit of the core’s byte is a continuation
marker that identifies the continuation of a core node ID:
if it is 0, then only the next 6 bits of that byte are used as
the core ID, and if it is 1, then the next bytes will also be
considered as the core ID. For leaf node encoding, the second
bit is used to differentiate the delta types. If the second bit
is 0, then the encoding delta is the x-type delta. The third
bit is a continuation marker, and the remaining 5 data bits
store the delta value. If the second bit is 1, then the next
bit represents a 0 or 1-type delta, and the remaining 5 data
bits store the frequency of the sequential 0 or 1 delta (the
run length of 0s or 1s). For instance, the inverted list for the
first star L(1) = {1, 2, 3, 3, 4, 5, 5} converts to the delta list
D(1) = {1, 1, 1, 0, 1, 1, 0}, which is in memory. In a bits
sequence, these numbers are 0000001, 11100010, 11000001,
11100010, and 11000001. As a result, we can store seven
numbers using 5 bytes instead of 28 bytes (7× 4 bytes). Sim-
ilar to the encoding of the second star, we compress the delta
D(2) = {2, 1, 0, 0, 2, 0} into the following sequence of bits:
00000010, 11100001, 11000010, 10000010, and 11000001.
Here, the fourth 8-bit sequence (10000010) is for an x− type
delta, which is decoded to 2. We know it easily because
the second marker bit of this byte is equal to 0.

FIGURE 6. For each graph instance in Figure 1, we extract a set of
sub-stars and link edges which are used to update the inverted list (L)
incrementally.

Algorithm 1 Streaming Graph Compression Using StarZIP
Require: an undirected graph G
Ensure: compressed graph CG

Step 1. Initial Graph Shattering and Encoding
1: Transfer G1 into G↑↓1 according to direction identifica-

tion rules
2: Extract a set of stars S(c,L) from G↑↓

3: Re-order each nodes and store S(c,L) into inverted list L

4: Apply Delta-Encoding Algorithm to L
5: Compress the graph using 0x1 scheme

Step 2. Incremental Update for incomingGi where i =
1, . . . , t

6: for each edge e(vi, vj) ∈ Ei do
7: Check the types of nodes vi and vj //Core, Leaf, or New

Node
8: Identify whether core or leaf node extended
9: if e(vi, vj) extends core node then update an inverted

list of s(v) and encode this list only
10: else Store the link edge lnk(e) as a new star s and

encode L(s)
11: end for

C. INCREMENTAL ENCODING
For streaming graph compression, we avoid having to begin
graph shattering and node re-encoding from the start as graph
G changes. Upon the arrival of a new set of stars, StarZIP
updates the already encoded corresponding stars, which have
same core node IDs. It avoids repeated computation to reduce
its computational cost. To evaluate an incoming edge e(vi, vj)
for encoding, we first need to check whether its nodes already
exist, whether they are marked as core or leaf nodes, and
whether they belong to the same or different stars. Accord-
ing to the power-law distribution, the new nodes connect to
existing nodes with a probability proportional to the degree of
the existing node. In other words, the high-degree core nodes,
which are located on the top of the inverted list, are extended
with new nodes. In this case, we need to find only the core
node and insert the new nodes into its inverted list, which does
not affect any other stars. In some cases, existing leaf nodes
are connected by a new edge or extended by new nodes, and
then we add those new edges as link edges lnk(e). Each link
edge is stored at the end of the inverted list (L), which encodes
only the link edges. Therefore, it has no effect on the existing
stars.

Algorithm 1 shows the incremental streaming graph com-
pression used in StarZIP.

VOLUME 7, 2019 38025

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

The proposed algorithm produces lossless data compres-
sion that maintains the integrated original graph. The query
results are exactly the same as results obtained from the
original graph. Recently, the large amounts streaming data
produced by social networks/web graphs have driven research
toward lossless compression. Therefore, the scope of lossless
graph compression is extensive, containing approximately
450 papers that use various approaches, techniques, algo-
rithms, and applications [35]. We define our lossless graph
compression algorithm as follows.
Definition 6 (Lossless Graph Compression): The com-

pressed graph G′(V ′,E ′) of original graph G(V ,E) is called
a lossless compression if it can produce a compact resultant
graph with less storage cost and without any loss of nodes
or edges and if the graph G can be recovered when it is
decompressed.

An exact replica of the original graph can be retrieved by
decrypting the compressed graph G′ because the proposed
0x1 scheme is reversible, as described in Algorithm 2.
Stream buffering:A stream is a sequence of data in term of

bytes. We use a buffer that stores data in memory temporarily.
In a streaming case, we dump incoming data into the buffer
and then process the data for compression once the buffer is
filled. We set the buffer size B to 30KB to store the com-
pressed output stars of the StarZIP algorithm. We compress
the delta list of stars obtained from the inverted list L. The
first node ID in L represents the core code of that star.
We denote this new star as s(c) and store its information into
l(c). Our proposed compression algorithm constructs L(s)
until the occupied space exceeds the given buffer size B. Our
StarZIP algorithm starts with an empty buffer that it uses to
compress l into an encoded sequential 8 bit stream. When the
nextGt item is read from the stream, we appendL ofGt to the
buffer. If the buffer B is filled, then we compress that buffer
using our encoding scheme andmeasure the compressed size.
The compressed data and metadata are stored onto the disk
and cleared from the buffer to make it empty. If the buffer
is not full, we continue on with the next Gt . If no more
stars remain to be compressed and the buffer is not empty,
we compress the remaining data and store it to the disk. In this
way, the size of the compressed list is the same inmemory and
on the disk.

V. EXPERIMENTAL EVALUATION
We evaluated our proposed solution against existing systems
using real datasets with up to 28million edges and 1.8 million
nodes, as details in Table 2. We implemented our system
in Java using Apache Spark Streaming [32] library. Apache
Spark Streaming is a processing unit for the streaming data
that enables scalable batch execution of iterative graph algo-
rithms. The experiments were conducted on a 3.0 GHz Intel
processor running Windows 10 with 32GB of RAM. Thus,
the compact representation of each graph was loaded into the
memory and stored on the disk of a single machine. In the
case of the StarZIP algorithm, we set the memory bound to
4 GB and 8 GB for the AS and Wiki datasets, respectively.

Algorithm 2 Decompression
Require: Sequence of 8 Bits
Ensure: Inverted list L

Step 1. Decode bits into deltas
1: for each bytes do
2: Check the first marker bit a1
3: if a1 == 0, it encodes a core node ID then
4: create a new list D(s) to store a delta list for a star
5: check the second marker bit a2 whether 0 or 1
6: if a2 == 0 then
7: convert the remaining 6 bits to decimal number
8: else
9: check next bytes which represents core IDs also.
10: end if
11: else if a1 == 1, it encodes a leaf node ID then
12: check the second and third marker bits
13: if a2 == 0, the remaining 5 bits for x-type delta

then
14: check the next bits and convert to a number
15: else
16: check the third marker bit whether 0 or 1
17: if a3 == 0, it encodes 0-type delta then
18: convert the remaining 5 bits to know the num-

ber of 0
19: else
20: convert the remaining 5 bits to know the num-

ber of consecutive 1
21: end if
22: end if
23: end if
24: end for

Step 2. Decode deltas into node IDs
25: for each D(s) do
26: find the node IDs as cumulating deltas
27: create a new list L(s) and add node IDs
28: end for

The experiments were performed using our proposed tech-
nique and existing graph compression algorithms to evaluate
the space and time complexity of each technique.

A. COMPLEXITY ANALYSIS
1) SPACE COMPLEXITY.
In the worst case, the number of cores |C| in an inverted list
L that includes star information is equal to |V | − 1. The total
leaf nodes IDs are equal to |E|, and each core and leaf node
ID is represented by a word (4 bytes). Then space complexity
for an inverted list of an undirected graph with large values
for |C| and |E| is O(|E| + |V | − 1) words. We summarize
the space complexity of all comparable graph representations
in Table 3.
We also compute the space complexity after applying

the delta and our proposed 0x1 encoding techniques as
follows.

38026 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

TABLE 2. Summary of datasets.

Algorithm 3 Stream Buffering
Require: Streaming Graph G
Ensure: Compressed Graph CG
1: Start with an empty buffer B
2: for each Gt from stream graph G do
3: Get inverted list L of Gt
4: Read each stars data one by one l ∈ L
5: Append l to the compression buffer B = B\l
6: Compress the buffer B
7: Measure the compressed size, (number of bytes)
8: if sizeOf (B) ≥ 30KB then
9: complete the block,
10: output metadata and encoded binary bytes on the

disk
11: empty the buffer B = ∅
12: else
13: continue on with the next l
14: end if
15: if no more l in L to compress, but buffer is not empty

B! = ∅ then
16: compress it and output encoded bit stream.
17: end if
18: end for

TABLE 3. Space complexity of data representations (words).

Lemma 1: Let L(s) be a list of node IDs for a star s in
the inverted list L, and let x be the number of words used
to represent L(s). Suppose D(s) be a list of deltas after delta
encoding ofL(s). Let y and z be the number of words to repre-
sent D(s) before and after applying 0x1 scheme, respectively.
Then x = y, x ≤ z and y ≤ z.

Proof: Let L(s) be a list of node IDs in which each
node ID is represented by a word. Let D(s) be a list of
deltas obtained after using the delta encoding technique on
L(s). The delta encoding reduces the variance of the values,

and the created deltas in D(s) are smaller than the node IDs
in L(s). But there is no difference between the number of
words required to represent L(s) and D(s). Thus, x = y is
true.

Let yx , y0 and y1 be the number of representative words
in D(s) that are x-type, 0-type, 1-type deltas, respectively,
in the delta encoded data. Let y and z be the number of words
required to represent D(s) before and after applying 0x1
scheme, respectively. Each of the x-type deltas encodes only
a single node ID without edge weight; consecutive 1-type
deltas encode multiple sequential node IDs, and a series of
0-type deltas encodes multiple node IDs into a single value
(edge weight) for the previous x-type delta node IDs. There-
fore, we obtain the following relations among the number of
words in L(s) and D(s).
1) y = yx + y0 + y1
2) z = zx + z0 + z1
3) yx = zx
4) z0 ≤ y0 and z1 ≤ y1

IfD(s) contains neither consecutive 0-type deltas nor consec-
utive 1-type deltas, then z0 = 0 and z1 = 0. Thus, y0 = 0
and y1 = 0. Therefore, according to relations 1, 2, and 3,
z = y. If D(s) contains at least one 0-type or 1-type delta,
then relations 1, 2, 3, and 4 indicate that z ≤ y. Thus z ≤ y is
always valid, and z ≤ x is also valid because x = y.

2) TIME COMPLEXITY.
We calculate the time complexity for four computational parts
of StarZIP. First, the computational complexity for graph
shattering is O(|V | + |E|). In the implementation, the outer
loop execution, O(|V |), depends on the graph structure. If we
have no edge at all, the outer loop will be executed for a
single iteration with a complexity of (O(1)).The inner loop
is executed for each edge; thus, that complexity is O(deg(v)),
where deg(v) is the degree of the current node v. There-
fore, the runtime of a single iteration of the outer loop is
O(1+deg(v)). After accumulating all complexities, the graph
shattering complexity is,

O(|V | × 1+ deg(v1)+ deg(v2)+ . . .) = O(|V | + |E |).

Second, the time complexity for node-reordering is
O(|V | × log(|V |)). We store the reordered new and old node
IDs in a TraceNode table with |V | elements, and we search it

VOLUME 7, 2019 38027

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

TABLE 4. Comparison of StarZIP and VoG algorithms.

TABLE 5. Detail of VoG algorithms.

for the reordering verification using a binary search. There-
fore, the complexity isO(log(|V |)). Third, we iterate for each
star in inverted List L. The number of inverted list is |C|,
and we spend O(1) time to calculate the delta at the end of
each list. Therefore, the time complexity for calculating deltas
in the inverted list is O(|C|). Finally, the complexity of 0x1
encoding is O(|C| + 1). The 0x1 scheme works on the list
that results from the delta encoding. Encoding its integers to
binary can be more complicated, but the run-time will not
differ too much. We need to eliminate the constants, which
do not affect the long-term growth rate of functions, from the
summed equation O(|E| + |V | × log(|V |) + 2 × |C| + 1).
Therefore, the total complexity of our StarZIP algorithm
is

O(|E| + |V | × log(|V |)+ |C|).

B. COMPARISON WITH THE-STATE-OF-THE-ART
We compared our proposed graph shattering process with the
graph decomposition step used in the state-of-the-art algo-
rithmVoG [15], and the results are shown in Table 4. The exe-
cution time of VoG was up to 25.7 times (average 10 times)
longer than that of the proposed algorithm because of the
iteration numbers required. In the experiment, we observed
the iteration number for finding a set of possibly overlap-
ping subgraphs in the decomposition, as shown in Table 5.
VoG finds several structure types and a total number of
structures much larger than StarZIP uses. To evaluate all
the edges in the AS dataset, VoG required 11,236 iterations
and output 149,906 subgraphs of different types. To evaluate
all the edges in the Wiki dataset, VoG used 47,363 iter-
ations and output 493,982 sub-patterns within 100 hours.
The number of stars found by StarZIP was highly effec-
tive for the compression ratio. The compressed size from
using StarZIP is much smaller than that from VoG, which
uses a model Mwith different encoded lengths per structure:
L(st),L(ch),L(nb),L(nbc),L(fc), and L(nc).

C. COMPARISON WITH INVERTED INDEX-BASED
COMPRESSION TECHNIQUES
We selected three well-known inverted list compression
algorithms, Variable Byte (VB) [17], Simple9 [18], and
PforDelta [19], to compare with the performance of our pro-
posed algorithm. We also compared our proposed shattering
method with two naive shattering approaches that shatter a
graph into stars based on the identity of nodes (the lowest ID)
and the degree of nodes (maximum degree of nodes).
The results in Figure 7-11 show that our proposed scheme

provides better compression of the delta lists, up to 4 times
higher than the existing methods. The delta computation
is generally considered to be a minor operation, a negligi-
ble fraction of the total encoding and decoding time. Our
proposed algorithm takes advantage of its small number of
deltas. The evaluation results also show that a graph’s struc-
tural property greatly affects the compression ratio and that
the compression ratio has a considerable effect on the graph
density: D = 2|E|

|V | (|V |−1) . These results show the memory
required to apply the three compression and four shattering
methods.

The results shown in Figures 7a, 8a, 9a, 10a, and 11a
indicate that our proposed technique achieved a higher
compression ratio than the well-known bit compression
techniques. Therefore, it needs to encode only a small
number of deltas into 8-bit sequences as node identifiers.
Figures 7b, 8b, 9b, 10b, and 11b report the compressed size
of the graph after applying the different compression meth-
ods. We compressed original graphs to reduce memory foot-
print and then compared the existing compression methods in
terms of their compression ratio andmemory footprint. Recall
that the compression ratio of StarZIP is always higher than
other algorithms, and the larger compression ratio implies the
smaller compressed size for the original data.

We selected the Zachary dataset as a benchmark because
it contains nodes without joining multiple communities at
the same time. However, two different communities are

38028 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 7. Zachary Dataset (a) Compression ratio (cr) (b) Memory footprint analysis achieved by different shattering and compression methods. It was
computed based on the size of the original graph represented by Edge List.

FIGURE 8. Email Dataset (a) Compression ratio using different Shattering Methods (b) Memory footprint analysis using different compression algorithms.

FIGURE 9. BLP Dataset (a) Comparison of compression ratio for different Shattering methods while applying different compression techniques
(b) Memory footprint analysis.

connected by edges between the nodes of correspond-
ing communities. This non-overlapping feature of nodes
between communities is called a ground truth community.
The ground truth community structure affects graph com-
pression. We achieved a high compression ratio and easily
visualized the graph by representing each community as a star
structure. Figure 7 shows that our proposed technique com-
pressed the graph 4 times better than the existing techniques.

In the Email graph shown in Figure 8, we compressed the
original graph by 25% due to its degree distribution, which

holds a strong power of the law property. For example, more
than 10 thousand emails have been transferred to others. This
result indicates that we obtained a smaller number of stars
and assigned consecutive integer IDs to many nodes.

In Figure 9, the compression ratio of the DBLP graph
is much smaller because of the structural behavior of the
graph. In this graph, the nodes are authors, and an edge exists
between them if they have written a paper together in a given
period of time. In real life, a few authors publish together
often, which implies that more intra-structures will be present

VOLUME 7, 2019 38029

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 10. AS Skitter Dataset (a) Comparison of compression ratio for different Shattering methods while applying different compression techniques
(b) Memory footprint analysis.

FIGURE 11. Wiki-Tops Dataset (a) Comparison of compression ratio for different Shattering methods while applying different compression techniques
(b) The size of memory that reserved entirely for each compression process.

FIGURE 12. Compression ratio and space complexity effectiveness of
using 0x1 scheme on different datasets.

in small subparts of the graph and is the main reason that
our proposed technique was unable to achieve better com-
pression. Clique-based or triangle mesh compression shows
better results for this type of graph.

We also selected two large datasets,which have
approximately the same number of nodes and different num-
bers of edges. The AS Internet topology graph was com-
pressed by 33% compared with the original size, as shown
in Figure 10. The compression rate of the Wiki dataset is
1.8 times higher than that of the AS because of its density;
it has two times more edges than the AS graph, as shown
in Figure 11. We observed that the compression ratio of
StarZIP was close to 3 on large graphs with small-world

properties, such as DBLP, AS, and Wiki. The StarZIP com-
pression ratio was more than 4 on datasets with a density
higher than 0.5 before we applied any encoding scheme.
Effect of 0x1 Scheme:We also evaluated the effectiveness

of the proposed 0x1 scheme on the five datasets.
We observed that high edge occurrences are beneficial

because they create many 0-type deltas, and sequential
1-type deltas also appeared as a consequence of re-ordering.
In Figure 12, we show the size of the graph originally, com-
pressed, and on disk after applying the proposed technique
and compression scheme. We measured and show the com-
pression ratio before and after applying the 0x1 scheme. Our
proposed approach significantly improved the compression
ratio cr(Proposed) by 2.6 to 4 times. After applying the
0x1 scheme, the experimental results show a high variation
in compression ratio, from 3.7 to 62.6 times depending on
the type of dataset. For example, the 0x1 scheme achieved
a compression ratio of more than 60 times for the Email
dataset, which is the densest one tested. We calculated the
cr(Proposed) and cr(0x1) as follows the equation can be
derived, as shown at the bottom of next page:

D. COMPARISON WITH BITMAP COMPRESSION
TECHNIQUES
We also compared our proposed scheme against three well-
known bitmap compressions schemes: Word Aligned Hybrid

38030 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 13. Size of memory after applying different bit compression schemes.

(WAH) [20], the Byte-aligned Bitmap Code (BBC) [21] and
Roaring [22]. WAH and BBC are lossless run-length com-
pression schemes that can be queried without decompression
and fully support intersection (AND) and union (OR) directly
from the compressed bitmaps. The representation of WAH
is the size of a typical word, and the representation of BBC
is the size of a single byte of data. Roaring uses packed
arrays for compression instead of run length encoding and
divides the entire list into different buckets. Our experimental
results indicate that BBC achieved a better compression ratio
than WAH on the large datasets such as Email and DBLP.
On the other hand, the results from the 0x1 scheme were
better than those from all the existing schemes, as shown
in Figure 13. The proposed inverted list compression achieved
a higher compression ratio than the other methods because it
applies the 0x1 scheme to encode the bits sequences. By com-
parison, the existing bitmap compression schemes consume
more space than the original list compression, as shown
in Figure 13.

E. EVALUATION OF STARZIP ON A STREAMING GRAPH
Our goal with this set of experiments was to evaluate our
algorithm with a streaming graph. Therefore, we divided the
number of graph snapshots in each dataset equally. How-
ever, the number of edges for the incoming streams dif-
fered; therefore, the dataset size both varies and evolves.
Figure 14 shows the changing behavior driven by the number

of nodes and stars and the size of the compressed graph at
each timestep. The size of the compressed graph increased
linearly as we divided the graph into more timesteps, even
though the number of stars increased slowly. These results
also confirm that our technique batched the graph to update
the compressed data incrementally. The algorithm updated
more than 55% existing stars, which were then added to the
previous timesteps.

Furthermore, we measured the execution time for each
step (graph shattering, node reordering, delta encoding, and
0x1 encoding) in compressing the large AS andWiki datasets,
as shown in Figure 15. In that experiment, the number of
edges in timestep t was set to 1 and 2 million for the AS
andWiki datasets, respectively. The shattering and reordering
steps took 99%of the execution time. The encoding algorithm
needed 0.1 to 10 seconds to compress the pre-prepared integer
list for one million edges.
Comparison With Timecrunch: We compared our algo-

rithm with Timecrunch, which is an effective approach for
concisely summarizing large and dynamic graphswhile lever-
aging the MDL. The authors proposed an effective and scal-
able algorithm to find coherent and temporal patterns in
dynamic graphs. We used the original code of Timecrunch,1

which is available publicly. Timecrunch finds the best model

1www.cs.cmu.edu/ neilshah/code/timecrunch.tar

cr(Proposed) =
Size of Original Graph

Size of Compressed Graph(Proposed technique)

cr(0x1) =
Size of Original Graph

Size of Compressed graph(Proposed technique+0x1 scheme)

VOLUME 7, 2019 38031

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

FIGURE 14. Comparing effect of different timesteps on performance of the proposed 0x1 scheme.

FIGURE 15. Execution time in detail (a) AS-Skitter, in million edges per
timestep (b) Wiki dataset, in two million edges per timestep, the y-axis is
in log scale.

M that consists of all possible permutations of the subsets
of C , where C =

⋃
v Cv and Cv denotes the set of all

possible temporal structures � = {st, fc, nc, bc, nb, ch} of
phrase v ∈ 8 over all the possible combinations of timesteps.
In Figure 16, we represent the size of the compressed
graph (CG) on the y-axis (right) using two different bars
and the number of stars and structures in the CG on the
y-axis (left) using lines. The x-axis of these figures shows the

FIGURE 16. Comparison of StarZIP and TimeCrunch algorithms.

number of edges in different timesteps t , with 1 and 2 million
edges per t for the AS and Wiki datasets, respectively. The
encoding cost of the StarZIP algorithm is almost 10 times
lower than that of Timecrunch for all timesteps. But the
number of stars is larger than the number of structures in
Timecrunch because the other substructures extract into more
than two stars.

The encoding cost increases more slowly over time than
for other non-constant polynomials. Therefore, the space
complexity function is logarithmic. Logarithmic growing
curves increase quickly at the start of execution, and then the

38032 VOLUME 7, 2019

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

gains decrease and become more horizontal over time. The
reason for this phenomenon is the large number of stars in the
initial shattered graphs, which is extended by the incoming
edges using only the existing stars. The logarithmic scale
on the horizontal axis (t) allows for the same proportional
increase in a variable to be represented by the same number
of incoming edges |E|.

VI. CONCLUSION
Our proposed system, StarZIP, is an algorithm that workswith
a new encoding scheme, 0x1, to compress streaming graphs.
Our motivation for StarZIP, which specifically targets the star
subgraph structure, stemmed from the results of an existing
technique using multiple subgraph types. As a result of this
work, we can successfully compress a streaming graph with a
better compression ratio than existing solutions can provide.
Moreover, our compression scheme is especially beneficial
for compressing large evolving graphs in which the edge
weight is represented as the occurrence of edges. Previous
studies ignored the edge weights during compression; thus,
the proposed solution is up to 60 times more effective than
existing techniques. Based on our success in this study, our
future work will focus on implementing potential optimiza-
tions to this algorithm and scheme. We will also extend our
study to a scalable distributed stream processing system to
achieve runtime benefits.

REFERENCES
[1] N. K. Ahmed, N. Duffield, T. L. Willke, and R. A. Rossi, ‘‘On sampling

from massive graph streams,’’ Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1430–1441, 2017.

[2] N. Ahmed, N. Duffield, and L. Xia, ‘‘Sampling for approximate bipartite
network projection,’’ in Proc. IJCAI, 2018, pp. 3286–3292.

[3] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, ‘‘Graph
distances in the data-stream model,’’ SIAM J. Comput., vol. 38, no. 5,
pp. 1709–1727, 2008.

[4] K. J. Ahn, S. Guha, and A. McGregor, ‘‘Graph sketches: Sparsification,
spanners, and subgraphs,’’ in Proc. 31st ACM SIGMOD-SIGACT-SIGAI
Symp. Princ. Database Syst., 2012, pp. 5–14.

[5] P. Wang, Y. Qi, Y. Sun, X. Zhang, J. Tao, and X. Guan, ‘‘Approxi-
mately counting triangles in large graph streams including edge duplicates
with a fixed memory usage,’’ Proc. VLDB Endowment, vol. 11, no. 2,
pp. 162–175, 2017.

[6] Y. Lim and U. Kang, ‘‘MASCOT:Memory-efficient and accurate sampling
for counting local triangles in graph streams,’’ in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 685–694.

[7] P. Charles, and H. B. Lawrence, ‘‘GraphZip: Mining graph
streams using dictionary-based compression,’’ in Proc. SIGKDD
Workshop Mining Learn. Graphs, 2017. [Online]. Available:
http://www.mlgworkshop.org/2017/paper/MLG2017_paper_18.pdf

[8] J.-S. Kao and J. Chou, ‘‘Distributed incremental pattern matching on
streaming graphs,’’ in Proc. ACM Workshop High Perform. Graph Pro-
cess., 2016, pp. 43–50.

[9] M. Zaharia et al., ‘‘Apache spark: A unified engine for big data process-
ing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[10] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, ‘‘GraphScope:
Parameter-free mining of large time-evolving graphs,’’ in Proc. 13th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007, pp. 687–696.

[11] M. K. Rasel, E. Elena, and Y.-K. Lee, ‘‘Summarized bit batch-based
triangle listing in massive graphs,’’ Inf. Sci., vol. 441, pp. 1–17, May 2018.

[12] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, ‘‘TimeCrunch:
Interpretable dynamic graph summarization,’’ in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1055–1064.

[13] K. U. Khan, B. Dolgorsuren, T. N. Anh, W. Nawaz, and Y.-K. Lee,
‘‘Faster compression methods for a weighted graph using locality sensitive
hashing,’’ Inf. Sci., vol. 421, pp. 237–253, Dec. 2017.

[14] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, ‘‘Compression
of weighted graphs,’’ in Proc. 17th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2011, pp. 965–973.

[15] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, ‘‘Summarizing and
understanding large graphs,’’ Stat. Anal. Data Mining, vol. 8, no. 3,
pp. 183–202, 2015.

[16] A. L. Barabási and R. Albert, ‘‘Emergence of scaling in random networks,’’
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] D. Cutting and J. Pedersen, ‘‘Optimization for dynamic inverted index
maintenance,’’ in Proc. 13th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., 1989, pp. 405–411.

[18] V. N. Anh and A.Moffat, ‘‘Inverted index compression using word-aligned
binary codes,’’ Inf. Retr., vol. 8, no. 1, pp. 151–166, 2005.

[19] M. Zukowski, S. Heman, N. Nes, and P. Boncz, ‘‘Super-scalar ram-cpu
cache compression,’’ in Proc. 22nd Int. Conf. Data Eng., Apr. 2006, p. 59.

[20] K. Wu, E. J. Otoo, and A. Shoshani, ‘‘Optimizing bitmap indices with
efficient compression,’’ ACM Trans. Database Syst., vol. 31, no. 1,
pp. 1–38, 2006.

[21] G. Antoshenkov, ‘‘Byte-aligned bitmap compression,’’ in Proc. DCC Data
Compress. Conf., Mar. 1995, p. 476.

[22] S. Chambi, D. Lemire, O. Kaser, and R. Godin, ‘‘Better bitmap per-
formance with Roaring bitmaps,’’ Softw.-Pract. Exper., vol. 46, no. 5,
pp. 709–719, 2016.

[23] P. Boldi and S. Vigna, ‘‘The webgraph framework I: Compression tech-
niques,’’ in Proc. 13th Int. Conf. World Wide Web, 2004, pp. 595–602.

[24] R. A. Rossi and R. Zhou, ‘‘GraphZIP: A clique-based sparse graph com-
pression method,’’ J. Big Data, vol. 5, no. 1, pp. 1–14, 2018.

[25] L. Dhulipala, I. Kabiljo, G. Ottaviano, S. Pupyrev, and A. Shalita, ‘‘Com-
pressing graphs and indexes with recursive graph bisection,’’ in Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 1535–1544.

[26] Y. Lim, U. Kang, and C. Faloutsos, ‘‘SlashBurn: Graph compression and
mining beyond caveman communities,’’ IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 12, pp. 3077–3089, Dec. 2014.

[27] Zachary Karate Club. Accessed: Sep. 4, 2018. [Online]. Available:
http://konect.uni-koblenz.de/networks/ucidata-zachary

[28] Email-Eu-Core Temporal Network. Accessed: Aug. 24, 2018. [Online].
https://snap.stanford.edu/data/email-Eu-core-temporal.html

[29] DBLP Collaboration Network and Ground-Truth Communities. Accessed:
Aug. 24, 2018. [Online]. https://snap.stanford.edu/data/com-DBLP.html

[30] Autonomous Systems by Skitter. Accessed: Aug. 24, 2018. [Online].
http://snap.stanford.edu/data/as-Skitter.html

[31] Wikipedia Network of Top Categories. Accessed: Sep. 3, 2018. [Online].
http://snap.stanford.edu/data/wiki-topcats.html

[32] Apache Spark Streaming. Accessed: Jul. 28, 2018. [Online]. Available:
https://spark.apache.org/streaming/

[33] X. Hu, Y. Tao, and C.-W. Chung, ‘‘Massive graph triangulation,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 325–336.

[34] X. Hu, Y. Tao, and C. W. Chung, ‘‘I/O-efficient algorithms on triangle
listing and counting,’’ ACM Trans. Database Syst., vol. 39, no. 4, p. 27,
2014.

[35] M. Besta, and T. Hoefler. (Jun. 2018). ‘‘Survey and taxonomy of lossless
graph compression and space-efficient graph representations.’’ [Online].
Available: https://arxiv.org/abs/1806.01799

[36] W. Henecka, and M. Roughan, ‘‘Lossy compression of dynamic, weighted
graphs,’’ in Proc. 3rd Int. Conf. Future Internet Things Cloud, Aug. 2015,
pp. 427–434.

BATJARGAL DOLGORSUREN received the B.S
and M.S degrees in computer science from the
Mongolian University of Science and Technology,
in 2010 and 2012, respectively. She is currently
pursuing the Ph.D. degree with the Department
of Computer Science and Engineering, Kyung
Hee University, South Korea. She was a Lec-
turer with the Department of Computer Science,
Mongolian University of Science and Technology,
from 2010 to 2014. Her research interests include

streaming graphmining and distributed computing. She has received the Best
Paper Awards at BigDAS 2016 and the Best Presentation Award at BigComp
2017 International Conference for papers related to streaming graph mining
and graph algorithms, respectively.

VOLUME 7, 2019 38033

B. Dolgorsuren et al.: StarZIP: Streaming Graph Compression Technique for Data Archiving

KIFAYAT ULLAH KHAN received the B.S.
degree from Gomal University, Pakistan, in 2005,
theM.S. degree from the University of Greenwich,
U.K., in 2007, and the Ph.D. degree from Kyung
Hee University, South Korea, in 2016. He was a
Postdoctoral Fellow with the Department of Com-
puter Science and Engineering, Kyung Hee Uni-
versity, South Korea, from 2016 to 2018. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, National University

of Computer and Emerging Sciences, Islamabad, Pakistan. He has several
publications in the form of patents, journals, and conferences of prestige,
including some research works currently in progress/review. His research
interests include data mining, data warehousing, graph summarization, arti-
ficial intelligence, the Internet of Things, and big data. He is an Active
Researcher and working on various research assignments in collaboration
with researchers from various parts of the globe.

MOSTOFA KAMAL RASEL received the B.S.
degree in computer science and information tech-
nology from the Islamic University of Technology,
Dhaka, Bangladesh, in 2009, and the M.S. degree
in computer science and engineering from Kyung
Hee University, South Korea, in 2014, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineer-
ing. His research interests include graph com-
pression, graph mining, and big data processing.

He received the Best Paper Award from the 3rd International Conference on
Big Data and Smart Computing, in 2016.

YOUNG-KOO LEE received the B.S., M.S., and
Ph.D. degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea, in 1988, 1994, and 2002,
respectively. From 2002 to 2004, hewas a Postdoc-
toral Fellow with the Advanced Information Tech-
nology Research Center, KAIST, South Korea,
and a Postdoctoral Research Associate with the
Department of Computer Science, University of
Illinois at Urbana Champaign, USA. Since 2004,

he has been a Professor with the Department of Computer Engineering, Col-
lege of Electronics and Information, KyungHeeUniversity, South Korea. His
research interests include ubiquitous data management, data mining, activity
recognition, bioinformatics, on-line analytical processing, data warehousing,
database systems, spatial databases, and access methods.

38034 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	STRUCTURAL COMPRESSION
	ENCODING ADJACENCY LIST
	FINDING A SUITABLE ORDER OF GRAPH VERTICES
	SAMPLING AND ESTIMATION OF SUBGRAPHS

	PRELIMINARIES
	THE PROPOSED SOLUTION
	STAR-BASED GRAPH SHATTERING
	ENCODING TECHNIQUES FOR GRAPH COMPRESSION
	DELTA ENCODING
	0x1 SCHEME

	INCREMENTAL ENCODING

	EXPERIMENTAL EVALUATION
	COMPLEXITY ANALYSIS
	SPACE COMPLEXITY.
	TIME COMPLEXITY.

	COMPARISON WITH THE-STATE-OF-THE-ART
	COMPARISON WITH INVERTED INDEX-BASED COMPRESSION TECHNIQUES
	COMPARISON WITH BITMAP COMPRESSION TECHNIQUES
	EVALUATION OF STARZIP ON A STREAMING GRAPH

	CONCLUSION
	REFERENCES
	Biographies
	BATJARGAL DOLGORSUREN
	KIFAYAT ULLAH KHAN
	MOSTOFA KAMAL RASEL
	YOUNG-KOO LEE

