
Received January 8, 2019, accepted January 15, 2019, date of publication February 22, 2019, date of current version March 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901025

LiteTE: Lightweight, Communication-Efficient
Distributed-Memory Triangle Enumerating
YONGXUAN ZHANG 1, HONG JIANG 2, (Fellow, IEEE), FANG WANG1,
YU HUA 1, (Member, IEEE), DAN FENG1, (Member, IEEE), AND XIANGHAO XU1
1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Ministry of Education of China, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA

Corresponding author: Fang Wang (wangfang@hust.edu.cn)

This work was supported in part by the National High Technology Research and Development Program (863 Program) of China under
Grant 2013AA013203, Grant 2015AA016701, and Grant 2015AA015301, in part by the National Basic Research 973 Program of China
under Grant 2011CB302301, in part by the Key Laboratory of Information Storage System, Ministry of Education, China, in part by the
NSFC under Grant 61502190, and in part by the CERNET Innovation Project under Grant NGII20170120.

ABSTRACT Distributed-memory triangle enumerating has attracted considerable interests due to its
potential capability to process huge graphs quickly. However, existing algorithms suffer from low speed due
to high communication cost and load imbalance. To solve the problems, we propose LiteTE, a lightweight,
communication-efficient triangle enumerating scheme. To reduce communication cost, LiteTE proposes
several techniques, including a graph partitioning method to fully leverage the large memory of commodity
servers and the high bandwidth of modern networks and a fast broadcast algorithm to effectively utilize the
bidirectional bandwidth of cables and the aggregate bandwidth of clusters. To reduce load imbalance, LiteTE
proposes three-level techniques, including a codesign technique of graph partitioning and partition-level
load balance, a decentralized dynamic node-level load balance technique, and a chunk-based lock-free
work-stealing technique, all of which are lightweight and incur no or hardly any communication cost. The
experimental results show that LiteTE reduces communication cost and load imbalance considerably and
achieves much better performance in metrics, such as setup time, runtime, scalability, and load balance than
the state-of-the-art algorithms. On a small-scale cluster, LiteTE enumerates the 15 trillion triangles in a graph
of 92 billion edges in 15 min, while other algorithms fail to complete.

INDEX TERMS Triangle enumerating, triangle computation, graph processing, distributed computing,
parallel processing.

I. INTRODUCTION
A triangle, i.e., a subgraph of three vertices pairwise con-
nected, is an important concept in the structural analysis
of graphs. Triangle Computation (TC), which obtains the
number of triangles or enumerates every triangle in a graph,
is a fundamental tool in graph processing to compute impor-
tant graph properties such as clustering coefficient and tran-
sitivity ratio [1]. TC has been widely used in real-world
applications, such as detecting spamming activity, assessing
content quality in social networks [2], and optimizing query
plans in databases [3]. Therefore, TC has been extensively
studied [3]–[10]. Due to the potential capability to process

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Wang.

huge graphs quickly, distributed-memory TC algorithms have
attracted considerable interests. However, existing solutions
suffer from low speed due to high communication cost and
load imbalance [8], [11]–[17].

To simplify discussions, we assume that the number of pro-
cesses (or threads) is equal to the total number of CPU cores
in the cluster so that each core is dedicated to running one pro-
cess (or thread) to get maximum computing power. We also
assume that the aggregate available memory capacity of the
cluster is not smaller than the storage sizes of graphs. The
two assumptions are also made by all distributed-memory
TC algorithms [8], [11], [12], [14]–[17]. In this paper, setup
time means the time after input finished and before triangle
computing actually starts, and runtimemeans the time during
which triangle computing is actually executed.

26294
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0003-3535-0695
https://orcid.org/0000-0002-1477-9751


Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

Existing distributed-memory TC solutions are generally
divided into two categories: range-partitioning scheme and
vertex-centric scheme. The former usually use adjacency
list to store graphs and divide graphs into partitions includ-
ing consecutive vertices (range-partitioning). Because they
support direct two-hop neighbor access and are efficient
to implement state-of-the-art TC algorithms [11], [12], [15].
However, due to the inefficiency of load balance tech-
niques and massive messages incurred in setup time and
runtime, these solutions usually suffer from long process-
ing times. The latter employ fine-grained load balance tech-
niques and vertex-centric computation mode in which each
vertex need to send messages to all its neighbors. Hence,
they usually achieve good load balance effect while still
suffer from low speed due to high communication cost from
massive messages [8], [14]. Furthermore, because a vertex
cannot directly send messages to its two-hop neighbors in
vertex-centric mode, each vertex has to send its entire neigh-
bor list to all its neighbors, which results in prohibitive mem-
ory footprint and causes vertex-centric algorithms cannot
process huge graphs.

Due to the inherent limitations of vertex-centric mode,
tailored TC algorithms usually employ the range-partitioning
scheme [11], [12], [15]. This paper proposes another range-
partitioning TC algorithms called LiteTE. As we have
mentioned, the two major problems to be solved in
range-partitioning TC are 1) the high communication cost due
tomassivemessages and long network latency comparedwith
local memory access [13]; 2) the high load imbalance due to
the power-law degree distribution ubiquitous in large-scale
graphs (i.e., large-scale graphs usually have a small number
of huge-degree vertices and a vast majority of low-degree
vertices [14]). LiteTE solves the two problems by propos-
ing several lightweight but effective techniques and achieves
much better performance. Our contributions are as follows:

A. DRAMATIC REDUCTION OF COMMUNICATION COST
First, existing solutions often divide graphs into as many
partitions as the number of processes and result in a large
number of small partitions, which incurs massive messages
during runtime [11], [12], [15], [17]. To address the prob-
lem, we leverage the big memory of modern servers and
high bandwidth of modern networks. Specifically, we divide
graphs into appropriate huge partitions and judiciously copy
each partition to multiple nodes (called a nodegroup) that
share the processing of the partition. This helps to reduce run-
timemessages by dozens of times. Second, we further employ
message coalescing and communication-computation over-
lapping to further reduce runtime messages significantly and
hide communication cost effectively. Third, when copying
huge graph partitions (in GBs) to multiple nodes, we find
that the built-in broadcast algorithm in MPI is inefficient, and
propose a fast broadcast algorithm called FastBC. FastBC can
effectively utilize the bidirectional bandwidth of cables and
the aggregate bandwidth of clusters, and achieve much faster
speed than the MPI built-in algorithm.

B. EFFICIENT THREE-LEVEL LOAD BALANCING
Existing solutions usually try to partition graphs as evenly
as possible based on complex load metrics whose comput-
ing incurs massive messages and causes long setup times.
We argue that the loss of partitioning graph based on complex
loadmetrics outweighs the gain, and show that simplemetrics
such as storage size and the number of nodes can be used by
lightweight but effective load balance techniques to achieve
better load balance. To better balance load on partition-,
node- and thread-level, we propose a codesign technique of
graph partitioning and partition-level load balance, a decen-
tralized dynamic node-level load balance technique and a
chunk-based lock-free work-stealing technique respectively.
These techniques incur few messages or avoid messages and
hence incur negligible overhead. Furthermore, due to better
load balance, these techniques help to achieve much faster
processing speed.

C. EXTENSIVE EVALUATIONS
We implement different versions of LiteTE to evaluate the
effect of our techniques. Extensive evaluations are executed
with eight real-world graphs and six synthetic graphs on
a 12-node cluster. The results show that, compared with
the state-of-the-art distributed algorithms, LiteTE reduces
communication cost dramatically and achieves much better
load balancing, and gains speedups of 9× to 202× with an
average of 49× for runtime. For setup time, scalability and
load balance, the performance of LiteTE is also much better.
In the small-scale cluster (only having 144 cores and 384 GB
aggregate RAM), LiteTE can enumerate the 15 trillion trian-
gles of a graph with 92 billion edges in 15 minutes, which
all competing algorithms fail to complete due to massive
messages or intermediate data.

The rest of the paper is organized as follows. §II presents
preliminaries. The techniques of LiteTE are described and
analyzed in §III. §IV shows and analyzes experimental
results. In §V, existing solutions and related works are
reviewed. Finally, §VI concludes the paper with remarks on
future work. For ease of reference, Table 1 lists frequently
used notations.

TABLE 1. Notation.

II. PRELIMINARIES
In this section, we first provide a primer on TC and intro-
duce the common degree-based orientation technique used
by most recent TC algorithms and also adopted in LiteTE.
Then we introduce a distributed-memory TC algorithm called
Surrogate, a range-partitioning MPI-implemented algorithm
that inspires our work.

VOLUME 7, 2019 26295



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

A. TRIANGLE COMPUTATION
Triangle Computation (TC) includes triangle counting and
triangle enumerating (listing). The former obtains the number
of triangles of the entire graph (global triangle counting)
or of every vertex (local triangle counting), and the latter
enumerates (lists) every triangle in a graph. The two problems
are similar, and the only difference between them is that the
former increments a counter while the latter enumerates the
triangle after each triangle is found. This paper focuses on
triangle enumerating and our conclusions are also tenable for
triangle counting. As all previous works have done, we do
not actually output each triangle and just call a function
enum with the triangle as its parameter after a triangle is
found [18]–[20].

B. ORIENTATION HEURISTICS
Most recent TC algorithms leverage an efficient degree-based
orientation heuristics [4], [5], [8], [11], [12], [15], [16], [18],
[21], which is based on a total order≺ of vertices and defined
as follows [18]:

u ≺ v⇐⇒ du < dv or (du = dv and u < v)

where du is the degree of a vertex with ID u. For an undirected
graph, the orientation heuristics can be executed by directing
each edge from its lower ranked vertex to the other, i.e., after
orientation every edge (u, v) satisfies u ≺ v.
With orientation executed, each triangle (u, v,w) is enu-

merated/counted exactly once when u ≺ v ≺ w, while
without orientation each triangle will be enumerated/counted
six times (all permutations of the three vertices). More
importantly, orientation helps to considerably speedup TC
algorithms by reducing time complexity [11]. LiteTE also
leverages the orientation heuristics.

C. SURROGATE AND MESSAGE INVERSION
PATRIC [11] and Surrogate [12] (detailed later) are
MPI-implemented distributed-memory TC algorithms with
Surrogate being an updated version of PATRIC. To run Surro-
gate, a graph is range-partitioned: The vertex set V of a graph
is divided into S non-overlapping subsets V0,V1, . . . ,VS−1,
each containing consecutive vertices, where S = P = N ∗ c,
i.e., the number of cores/processes. The edge set E is also
divided into S non-overlapping subsets E0,E1, . . . ,ES−1 and
any Ei contains all edges (u, v) such that u ∈ Vi and v ∈ Nu,
i.e., all edges incident to the vertices in Vi. A partition
si consists of Vi and Ei. Each process pi runs Surrogate
on si and is responsible for counting triangles incident to
each v in si.

The key operation in most recent TC algorithms including
Surrogate is intersection [4], [5], [8]–[12], [14]–[16], [18],
[21]. For each edge (u, v), all triangles containing the edge
will be found by doing Nu ∩ Nv, as illustrated in Fig. 1(a).
Tomake Surrogate understandable, we simplify it in Fig. 1(b).
For each edge (u, v) in si (line 1), different actions are taken
depending onwhether v is also in si or not. If v is also in si (say
v0 in Fig. 2),Nu∩Nv is done without message passing (line 3).

FIGURE 1. Intersection operation in TC and the Surrogate algorithm.
(a) All triangles containing an edge (u, v ) are found by doing Nu

⋂
nv .

(b) The algorithm is run by each process pi .

FIGURE 2. Running example.

If v is in another partition sj (say v2 or v8 in Fig. 2), a naive
method is to request Nv from pj and Nu ∩ Nv is done by pi.
However, this method usually causes Nv to be sent to pi
multiple times because v is probably the neighbors ofmultiple
vertices in si.

Instead of the naive method, Surrogate proposes amessage
inversion technique. Whenever v is in another partition sj, pi
sends Nu to pj (line 5) and Nu ∩ Nv is done by pj (line 8).
Nu only needs to be sent once to pj, because once Nu arrives,
for all w ∈ Nu ∩ sj, Nu ∩ Nw is done by pj. We take
the edge (u, v8) of s0 in Fig. 2 as an example to show the
details. We assume that the process p0 is processing u and
vertices in Nu are evenly distributed across partitions. Instead
of requestingNv8 from p4, p0 sendsNu to p4. AfterNu arrives,
Nu ∩ Nv8 and Nu ∩ Nv9 both are done. In the naive method,
p0 requests Nv8 and does Nu ∩Nv8 . Because v8 may probably
be the neighbor of multiple vertices in s0, and thus Nv8 may
probably be sent to p0 multiple times.
Due to message inversion, Surrogate reduces runtime mes-

sages significantly. However, we observe that Surrogate still
generates massive messages during both setup time and run-
time. Our proposed scheme LiteTE, which also uses mes-
sage inversion, reduces runtime messages further by at least
orders-of-magnitude times and avoid setup-time messages
completely.

III. LiteTE
In this section, we first present our graph partitioning
technique, and then present the message coalescing and
communication-computation overlapping techniques, both
of which are used to reduce the runtime communication
cost; Next, we show the fast broadcast algorithm for huge
messages, which is used to speed up the copy of huge

26296 VOLUME 7, 2019



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

graph partitions and reduce setup time significantly; Finally,
we present our techniques to solve the load imbalance prob-
lem, i.e., the three-level load balance techniques. The main
framework of LiteTE is shown in Fig. 3.

FIGURE 3. LiteTE framework. Assuming the graph G should be divided
into three partitions (s0 to s2). The workflow is as follows: 1) the master
node compute the minimum number of partitions S based on the graph
size and M §(III-D; 2) the master node divides nodes into S nodegroups
as evenly as possible §(III-D; 3) the master node computes graph
partitioning scheme based on the graph size, M and N §(III-D; 3) the
master node inputs and sends each partition to its nodegroup, and each
partition is broadcasted in its nodegroup §(III-A; 4) each node
enumerates triangles and balances load §(III-D to §(III-F).

A. GRAPH PARTITIONING
LiteTE also use range-partitioning scheme. Like in Surrogate,
a partition si consists of a vertex subset Vi containing consec-
utive vertices and an edge subset Ei containing every edge
(u, v) such that u ∈ Vi and v ∈ Nu, i.e., all edges incident to
the vertices in Vi. The partitioning methods of existing works
usually try to divide graphs into partitions as many as the
number of cores, which results in massive runtime messages
hence long runtimes [11], [12], [14], [22], [23]. To solve the
problem, we divide graphs into appropriate huge partitions
up to M to fully utilize the large memory and high net-
work bandwidth, and leave load balance to other techniques
(§III-D to §III-F). ‘‘Appropriate huge’’ means that the par-
tition sizes are not the huger the better due to imbalance
issues. The optimal partition sizes should be determined by
comprehensively considering the graph size,M andN , which
is detailed in §III-D.

Because S is usually much smaller than N (in contrast,
S = N ∗ c for Surrogate), a partition is usually judiciously
copied to multiple nodes (called a nodegroup). All nodes in
a nodegroup share the processing of the partition and do not
need to pass messages one another. Furthermore, by using the
message inversion technique, messages across nodegroups
are also reduced dramatically. The detailed reasons behind the
dramatic reduction of messages are shown through the exam-
ple in Fig. 2. 1) More intersections are done without message
passing, including intersections between Nu and Nv0 to Nv15
(for Surrogate, only Nv0 and Nv1 ); 2) more intersections are
done after an inverted message Nu arrives at node2 or node3,

including intersections between Nu and Nv16 to Nv31 (for
Surrogate, only two intersections); 3) in LiteTE, nodes in a
nodegroup, say node2 and node3, need not pass messages one
another because each node has the same partition (s′1) stored
in a share-memory area. In practice, the message reduction is
more significant due to more nodes and more cores per node.
Besides the dramatically reduced messages, another notable
advantage of huge partition is that the partition-size imblance
is reduced significantly from existing work, which helps to
process much larger graphs (detailed in §IV-B2).

Algorithm 1Graph Partitioning and Partition-Level Load
Balance
1 S ← ceiling(graph_size/M ) // the number of
partitions

2 if S > N then
3 print ‘‘Too big graph to be processed’’
4 return

5 Divide all the N nodes into S nodegroups in a
round-robin fashion

6 Set ideal per-node size ideal_ps = graph_size/N
7 Set the initial size of each partition to
#node_of _my_nodegroup ∗ ideal_ps

8 if N MOD S = 0 then
9 return

10 Sl ← the number of larger nodegroups
11 nl ← #node in a larger nodegroup
12 Ss← S − Sl // the number of smaller
nodegroups

13 if ideal_ps ∗ nl > M then
14 the size of partitions of larger nodegroups is set toM
15 the size of partitions of smaller nodegroups is set to

(graph_size−M ∗ Sl)/Ss

The partitioning algorithm (Algorithm 1, detailed
in §III-D) only computes partitioning scheme, and the actual
partitioning work is done during input. To input and partition
a graph, the master node inputs and sends the partitions one
by one in reverse order. Because the vertices in partitions
are consecutive, border vertices are determined by simply
scanning vertices during input, which hardly incurs any cost.
For each partition, the master node inputs and sends the
partition to the first node in the nodegroup, and the first node
in turn broadcasts the partition to the remaining nodes in the
nodegroup (if any), as shown in Fig. 3.
Assume that the number of vertices in each partition is

equal. For any edge (u, v) in a partition si, u is in si according
to partitioningmethod (§II-C). The probability that v is also in
si is 1/S, and thus Nu ∩ Nv is done without message passing
with probability of 1/S. For Surrogate, S is determined by
the number of cores (i.e., S = P = c ∗ N ) and usually in
hundreds or more. Thus, 1/S is small and the vast majority
of computing work is done via message passing. Because
most real-world large-scale graphs can be fit in the memory

VOLUME 7, 2019 26297



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

of one node [24], i.e., S = 1 for LiteTE, message passing
is avoided for these graphs. However, when process huge
graphs, 1/S can be insignificant even for LiteTE (say, when
S > 10), and most of the work still must be done via message
passing. In this case, the advantage of LiteTE ismainly shown
by dramatically increasing the efficacy of message inversion.
Theorem 1: For both Surrogate and LiteTE, the total num-

ber of messages is O(n(S−1)), and the total size of messages
is O(m(S − 1)), where n and m are the numbers of vertices
and edges in a graph respectively.

Proof: Assume that the number of vertices in each
partition is equal. For any partition si and any vertex u in si,
a message Nu should be sent once to each of the other S − 1
partitions in the worst case, i.e., for each partition, the total
number of messages sent isO(n/S ∗ (S−1)). Hence, the total
number of messages for all partitions isO(S∗n/S∗(S−1)) =
O(n(S − 1)). Assume that the average vertex degree is d̄ and
each edge is stored with one unit of storage. The total size of
messages is O(n(S− 1)) ∗ d̄ = O(nd̄(S− 1)) = O(m(S− 1)),
in which the last = is because nd̄ is just the number of edges
in a graph, i.e., m. �
For Surrogate, S = c∗N , i.e., the number cores (processes),

andO(n(S−1)) = O(n(cN−1)) = O(cnN ) = O(N ), i.e., the
total number of messages is linear to N . For LiteTE, S is
determined by the graph size and M , and is independent of
N (detailed in §III-D). The discussion related to the total size
of messages is similar.
Theorem 2: In terms of the number of messages, LiteTE is

more than c times fewer than Surrogate.
Proof: Given a graph and assume that the number of

partitions in Surrogate and LiteTE are Ss and Sl respectively.
The per-process number of messages in Surrogate is

n(Ss − 1)/P = n(P− 1)/P (1)

becauseP = c∗N = Ss. The per-process number ofmessages
in LiteTE is

n(Sl − 1)/P (2)

where P = c ∗ N > Sl . Thus, the ratio of (1) to (2) is

(1)
(2)
=

n(P− 1)/P
n(Sl − 1)/P

=
P− 1
Sl − 1

>
P
Sl
=
cN
Sl
≥ c (3)

The > in (3) is because P > Sl ≥ 1. The ≥ in (3) is because
N ≥ Sl , i.e., in LiteTE the number of partitions Sl is no larger
than the number of nodes N , or else the graph cannot be fit in
the aggregate available memory of the cluster. �
Current commodity servers equipped with dozens of cores

are commonplace, i.e., c is usually in dozens. This means that,
even in the worst case, i.e., the number partitions in LiteTE is
equal to N , the number of messages in LiteTE is still reduced
bymore than dozens of times. For the vast majority of graphs,
N is much larger than Sl and the reduction is more significant
(When Sl = 1, it is∞).

B. MESSAGE COALESCING AND
COMMUNICATION-COMPUTATION OVERLAPPING
In TC, for any edge (u, v), Nu ∩ Nv needs to be computed.
Thus, TC algorithms are usually more compute-intensive
and generate more short messages than common graph
algorithms such as BFS and PageRank (hence much
longer runtimes [14], [25]). Message Coalescing (MC) usu-
ally achieves better speedup when massive short messages
are generated [13]. Thus, TC algorithms are amenable to
MC. If an algorithm are compute-intensive and generates
massive long messages, Communication-Computation Over-
lapping (CCO) usually achieves reasonable speedup [13].
By utilizing MC, TC algorithms will meet the requirements.
Hereafter, the two techniques are collectively called MC3O.
Based on the discussions, we employ MC3O in LiteTE.

In each process, S−1 pairs of sending buffers, i.e., one pair
for each of the other S−1 partitions, and one pair of receiving
buffers are created. Of the two buffers in a sending pair, one
is used to send a (coalesced) message while simultaneously
the other is used to collect and coalesce messages generated
during computing. Once the message sending is completed
and the other buffer is full, the two buffers are swapped. The
usage of the pair of receiving buffers is similar. The MC3O
techniques help to achieve higher speed and the capability of
processing larger graphs as detailed in §IV-B2.

In Thm. 2, we have proved that in terms of the number of
messages, LiteTE is more than c times fewer than Surrogate,
and c is usually in dozens. By using message coalescing in
LiteTE, assuming themessage buffer size isB and the average
degree is d̄ , the number of messages is further reduced by a
factor of B/d̄ . When B is in KBs, B/d̄ is usually in dozens.
Hence, the number of messages in LiteTE is reduced by more
than orders-of-magnitude times from Surrogate (dozens ×
dozens). Due to the common elementary operations, i.e., for
each edge (u, v), Nu ∩ Nv is computed, the computing com-
plexity of LiteTE are the same to most of the state-of-the-art
TC algorithms including Surrogate, i.e., O(E3/2) [3]–[10].

C. FAST BROADCAST ALGORITHM
When broadcast huge partitions, we find that the built-in algo-
rithm of MPI is inefficient [26]. In big data era, broadcasting
huge chunks of data in clusters is a common operation. For
example, to support this operation, Hadoop introduces Dis-
tributed Cache and the size is set to 10 GB by default [27].
However, existing broadcast algorithms are usually designed
for messages no larger than hundreds of MBs, and they
usually use tree-based logic topology and small-chunk-based
pipelining techniques which cause the contention of the
bandwidth of a physical link by multiple logic links and
high chunking overhead [26], [28], [29]. To fully utilize each
cable’s bidirectional bandwidth and the aggregate bandwidth
of clusters, and avoid the chunking overhead of pipelining,
we propose a Fast BroadCast algorithm (FastBC).

In FastBC, the master node divides a huge message into
N -1 equal-sized chunks (seed chunks) and sends one chunk to
each slave node. Then, each slave node sends its seed chunk to

26298 VOLUME 7, 2019



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

FIGURE 4. Fast BroadCast algorithm (FastBC).

other slave nodes one by one. The details are shown in Fig. 4.
Node0 is the master. In Phase1, node0 sends each chunk
to a slave node; In the ith step of Phase2, each slave node
sends its seed chunk to its ith (i = 1..4) clockwise neighbor.
Specifically, in Step1, each slave node sends its seed chunk
to its first clockwise neighbor; in Step2, each slave node
send its seed chunk to its second clockwise neighbor, etc.
Obviously, in FastBC there are no contention of a single
physical link by more than one logic link (i.e., an arrow, and a
cable contains two reciprocal physical links), and the aggre-
gate bandwidth of the cluster is more effectively utilized.
Furthermore, FastBC is simple and easy to be implemented.
In our 12-node cluster, in which all nodes are connected to
a switch, the speed of FastBC when broadcast messages of
GBs is more than 5× faster than the MPI built-in algorithm.
We leave the discussions of the efficiency of FastBC on other
network topologies to future work.

D. CODESIGN OF GRAPH PARTITIONING AND
PARTITION-LEVEL LOAD BALANCE
To avoid the complex load metrics whose computing incurs
massive messages, metrics that incur no message such as
storage size and the number of vertices are used. We will
show that, by combining these simplemetrics and lightweight
but effective load balance techniques, dramatic speedups and
better load balance can be achieved.

As discussed in §III-A, the larger the partition is, the fewer
messages are induced. An intuitive partitioning method is to
divide graphs into partitions as large as M (the last one is
usually smaller than M ). However, the intuitive method may
result in high load imbalance and hurt runtime performance.
For example, we assume that the size of a graph is 100,
M = 47 and N = 4. By using the intuitive method, the graph
are divided into three partitions with sizes of 47, 47 and 6. The
nodes should be divided into three nodegroups containing 2,
1 and 1 node respectively. To measure imbalance, we define
Imbalance Ratio (IR) as the ratio of the maximum of a
metric to the minimum, i.e., IR = max/min. By using the
intuitive method, the per-node load IR across nodegroups is
as high as 7.8 (47/6).

To fully utilize the big memory of modern servers and
avoid high load imbalance, we propose a codesign algo-
rithm of graph partitioning and partition-level load balance,

as shown in Algorithm 1 (examplified later). The main
idea is as follows. S is minimized by being set to
ceiling(graph_size/M ) (line 1). Nodes are divided into S
nodegroups as evenly as possible by being simply assigned
to each nodegroup in a round-robin fashion (line 5), which
results in no more than two types of nodegroups with the
larger one contains onemore nodes than the smaller one. Each
partition gets an initial size based on the ideal per-node size
and the number of nodes in its nodegroup (line 6-7). If the
initial partition size of larger nodegroups are larger than M ,
we adjust the size to M and adjust the size of the smaller
nodegroups’ partitions accordingly (line 13-15).

To exemplify the algorithm, we assume that the size of
a graph is 100, M = 47 and N = 4, and hence the
three nodegroups contains 2, 1 and 1 node respectively. The
ideal per-node size is 25 (100/4) and each partition gets an
initial (ideal) size of 50, 25 and 25 respectively. Because
M = 47 < 50, the final partition sizes should be adjusted
to 47, 26.5 and 26.5 respectively. Hence, the per-node load
IR is reduce to 1.1 (26.5/23.5) and the maximum per-node
load is reduced from 47 in the intuitive method to 26.5.

We now analyze the algorithm. The main conclusion is that
the per-node load IR ≤ 2. The algorithm can be analyzed in
the following two cases. Case1: When N is divisible by S,
IR = 1. Case2:WhenN is not divisible by S, nl and ns denote
the numbers of nodes for larger and smaller nodegroups
respectively. Then, we have nl = ns + 1. sl and ss denote the
partition sizes for larger and smaller nodegroups respectively,
and then ss ≤ sl . ideal_ps denotes the ideal per-node size.
If ideal_ps ∗ nl ≤ M , we need not adjust the initial partition
sizes and the per-node load IR = 1. If ideal_ps ∗ nl > M ,
we have to adjust the initial partition sizes by decreasing sl
and increasing ss. The per-node load IR = ss/ns

sl/nl
=

ss∗nl
sl∗ns
=

ss
sl
(1+ 1

ns
). Because ss

sl
≤ 1 and 1+ 1

ns
≤ 2 (ns ≥ 1), and we

have IR ≤ 2.

E. DECENTRALIZED DYNAMIC NODE-LEVEL
LOAD BALANCE
After nodes are divided into nodegroups, we need to consider
how to balance the load of a partition across the nodes of
its nodegroup. Static techniques are usually cost-effective
while cause considerable load imbalance [4], [11]; Cen-
tralized dynamic techniques usually gain good balancing
effect while cause considerable overhead [30]. We propose
a technique called Decentralized dynamic Node-level Load
Balance (DNLB), which is lightweight hence easy to be
implemented and only incurs few messages.

In DNLB, the vertices are processed by each node in a
round-robin fashion at starting point. If a node is not the
last one finishes its load, it sends idle notifications to the
intra-nodegroup nodes still working on their own load to
request load sharing. The nodes that have received idle noti-
fications respond with need-not-help message if they only
have little load left or designate an appropriate amount of
remaining load to the idle node (Data migration is not needed

VOLUME 7, 2019 26299



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

because each node in the same nodegroup has the same parti-
tion). When nodes finish the designated load and become idle
again, they broadcast completion notifications to all nodes in
the cluster.

FIGURE 5. Decentralized dynamic node-level load balance working on a
threenode nodegroup.

We take a three-node nodegroup as an example to detail
DNLB, as shown in Fig. 5. When triangle enumerating starts,
each node starts to process its load. After node3 finishes its
load, it sends idle messages (‘‘I’am idle’’) to nodes still pro-
cessing their load. After node2 receives the message, because
its remaining load is less than a threshold (we test and set the
threshold to 1024 vertices, because balancing of too little load
cannot gain performance improvement), node2 responds with
a need-not-help message; After node1 receives the message,
it designates 1/3 of remaining load to node3, where 3 is
the number of nodes whose idle notifications have not been
received plus one. When node2 finishes its load, the oper-
ations are similar. When node1 finishes its load or node2
(node3) finishes its designated load, they broadcast comple-
tion notifications to all nodes in the cluster and continue to
process messages from other nodes until all nodes finish their
work. The triangle enumerating algorithm of LiteTE after
incorporatingDNLB is shown inAlgorithm 2. DNLB reduces
the intra-nodegroup runtime IR from around 1.8 when only
use round-robin load balance to around 1.1.

F. CHUNK-BASED LOCK-FREE WORK-STEALING
FOR THREAD-LEVEL LOAD BALANCE
In each node, we need to balance load among threads
(cores). Because threads can interact with each other through
lightweight share-memory access, we need not resort to
heavyweight message passing as inter-node load balance.
Though pure static methods such as round-robin incurs
hardly any overhead, they usually cause remarkable imbal-
ance (e.g. the runtime IR, i.e., max_runtime/min_runtime,
of round-robin is averagely 1.8) [4]. Though fine-grained
dynamic techniques, such as work-stealing in edges or ver-
tices can achieve ideal load balance effect, our evaluations
show that they incur remarkable overhead. We employ a
chunk-based lock-free work-stealing technique to solve the
problem. Vertices in the load of the node are divided into
chunks containing 128 vertices each, and threads process
these chunks in round-robin fashion at starting point. When a

Algorithm 2 Triangle Enumerating in LiteTE

1 foreach edge (u, v) of the vertices in my load parallel
do

2 if v is also in my partition then
3 enumerate triangles by doing Nu ∩ Nv

4 else
5 Send Nu to one of nodes containing v if not sent

yet

6 while exist pending messages do
7 receive a message
8 case
9 message is neighbor list

10 enumerate triangles case
11 message is idle notification from nodej

12 if my remaining #vertices > 1024 then
// r is #nodes whose idle

notifications haven’t been
received

13 designate 1/(r + 1) of my remaining work to
nodej

14 else
15 send need-not-help message to nodej

16 case
17 message is completion notification

18 increment completion counter

19 if I’m not the last node becoming idle then
20 send idle notification to intra-nodegroup nodes

whose idle notifications haven’t been received
21 In parallel process messages and designated load

until designated load done

22 Broadcast completion notifications
23 Process messages till have received N − 1 completion

notifications

thread finishes its own work, it try to steal and process chunks
from other threads until all work done. The stealing operation
is implemented through the atomic CAS instruction [31] and
the use of locks is avoided. Smaller chunk sizes cause too fre-
quent use of atomic instruction and hurt parallelism; Larger
chunk sizes may cause measurable load imbalance and hurt
runtime. Our evaluations show that the chunk size of 128 ver-
tices achieves a good compromise. After employing this tech-
nique, the load imbalance among threads becomes negligible,
i.e., the intra-node runtime IR is reduced to close to 1.

IV. EVALUATION
In this section, we experimentally evaluate LiteTE and com-
pare it with state-of-the-art TC algorithms. We first introduce
the setup, including the competitor algorithms, the running
environment and the datasets used, and then evaluate and

26300 VOLUME 7, 2019



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

compare LiteTE with competitor algorithms in terms of setup
time, runtime, scalability, the number of messages and load
imbalance.

A. EXPERIMENTAL SETUP
1) COMPETITOR ALGORITHMS
We mainly compare LiteTE with three state-of-the-art dis-
tributed TC algorithms including Surrogate,1 HavoqGT2 and
PTE.3 HavoqGT [8] is an vertex-centric TC algorithms origi-
nated from PowerGraph [14]; PTE [18] is the fastest MapRe-
duce TC algorithm running on Hadoop, and its authors only
provide the binary code.

Parallel shared-memory graph algorithms running on a
high-end server with big-memory and dozens of cores are
usually significantly faster than the distributed algorithms
running on small-scale clusters because shared-memory
accesses are much faster than inter-node massage passing.
However, because LiteTE reduces messages from previous
works by at least orders-of-magnitude and causes message
passing to no longer be bottleneck, LiteTE achieves sig-
nificant speedups than state-of-the-art shared-memory algo-
rithms. The performance improvement over share-memory
algorithms will be shown by comparing LiteTE with GBBS4

and TRICORE.5 The former is a CPU algorithm and the latter
is a GPU algorithm.

2) RUNNING ENVIRONMENT
All distributed algorithms are run in a cluster of 12 nodes
connected via QDR Infiniband Network (40 Gbps), with
each node equipped with 12 cores and 32 GB of memory.
Shared-memory algorithms are run on a high-end server
with 256 GB of memory, 32 cores and two K40C GPUs.
Though no more nodes available, LiteTE should gain bet-
ter performance improvements in larger scale clusters given
its better scalability (§IV-C). Programs are coded in C++,
MPI and Pthreads, and are compiled using G++ 4.9.2 with
-O3 option.

Unless otherwise stated, all algorithms are run with the
maximum computing power. Specifically, LiteTE, Surrogate
and HavoqGT are run with all the 12 nodes and 12 pro-
cesses/threads per node; For PTE, all the 12 nodes is used,
and in each node we run 11 Reducers because it gives the
best results. When only part of the nodes are used, pro-
grams are also run with the possible maximum computing
power. All times are the average of three runs. In LiteTE
evaluations, M is set to 26 GB to leave enough RAM to
MPI and OS. When the size of the data collected in a
buffer reaches a sending threshold of 4 KB, we consider the
buffer full.

1https://github.com/cbaziotis/patric-triangles
2https://github.com/LLNL/havoqgt
3https://datalab.snu.ac.kr/ ukang/
4https://github.com/ldhulipala/gbbs
5https://github.com/huyang1988/TC/

3) DATASETS
The information of datasets is in Table 2. The upper eight
datasets are real-world graphs, and the rest are synthetic
RMAT graphs [32] generated with a tool from Ligra.6 In the
real-world graphs, soc-lj,7 twitter7 and friendster8 are social
networks; arabic,9 IRLhost,10 gsh,9 uk9 and eu9 are web
graphs. Orientation can be executed in preprocessing [11],
[20], [21], [33] or on the fly [4], [5], [19]. Because the binary
code of PTE only accepts graphs with orientation executed,
the orientation of all datasets is uniformly done in preprocess-
ing for fair comparisons.

TABLE 2. Dataset.

B. SETUP TIME AND RUNTIME
Because LiteTE sends a large graph partition to each node
during setup, a natural question arises: whether the sending
of these large partitions results in longer overall processing
time or not? We first answer the question.

1) SETUP TIME
For LiteTE, Surrogate and HavoqGT, the setup time is the
time before triangle computing actually start with input time
subtracted. For PTE, the setup time is the pre-partitioning
time. To evaluate the effect of FastBC, we use two versions
of LiteTE, i.e., one using MPI built-in broadcast algorithm
(LiteTEb) and the other using FastBC (LiteTE). The results
are shown in Fig. 6(a). The speedups of LiteTE range from
6.1× to 162× with an average of 58×.

The reasons for the much faster setup speed of LiteTE are
3-fold. First, the partitioning method of LiteTE is lightweight
and avoidsmessage passing. In contrast, the setup of competi-
tor algorithms generate massive messages or huge amounts
of intermediate data. Second, LiteTE only needs to send
some large partitions. Due to high network bandwidth but
long latency, long messages can be sent with much higher
bps than short messages [13]. Third, the FastBC algorithm
more effectively utilize the bidirectional bandwidth of cables
and the aggregate bandwidth of the cluster. Compared with
LiteTEb, the speedups of LiteTE range from 2.6 to 5.5 with
an average of 4.1. For the graphs from soc-LJ to friendster
that are divided into only a single partition (i.e., they can be
fit in M ), the setup time is just the broadcast time and the
speedups are higher (from 3.4 to 5.5). For IRLhost and gsh,

6https://github.com/jshun/ligra
7http://snap.stanford.edu/
8https://archive.org/download/friendster-dataset-201107
9http://law.di.unimi.it/
10http://irl.cs.tamu.edu/projects/motifs/index.asp

VOLUME 7, 2019 26301



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

FIGURE 6. Setup time and runtime. (a) LiteTE achieves setup speedups of 6.1× to 162× with an average of 58×. (b) LiteTE achieves speedups
of 9× to 202× with an average of 49×. (c) LiteTE achieves speedups of 1.5× to 5.3× with an average of 3.2×. The absent bars indicate
processing failures.

the broadcast in some nodegroups is overlappedwith partition
sending and the speedups are relative low (3.1× and 2.6×).

2) RUNTIME
a: COMPARED WITH DISTRIBUTED ALGORITHMS
To evaluate the effect of MC3O techniques, we use two ver-
sions of LiteTE, including LiteTE without MC3O (LiteTEn)
and LiteTE with MC3O (LiteTE). The results are shown
in Fig. 6(b). The speedups range from 9× to 202× with an
average of 49×. Due to the dramatically reduced messages
(detailed in §IV-D) and the good effect of the three-level load
balance techniques (§III-D to §III-F), LiteTE can success-
fully process all the graphs with high speed while competing
algorithms fail to process at least one.

MPI usually needs to buffer large amounts of messages
for speed, and when buffer small messages more auxiliary
memory is consumed protect [34]. Surrogate generates at
least dozens-of-times more (uncoalesced) small messages
than LiteTEn; The partitioning metrics of Surrogate only
considers computation load and results in severe size imbal-
ance across partitions; Large-size partitions usually not only
take up more memory but also generates more messages.
All these factors result in out of memory error (OOM) in the
nodes housing large partitions during Surrogate’s processing
of graphs from IRLhost to eu. LiteTEn generates dozens-
of-times more messages than LiteTE and the messages are
small (uncoalesced). Thus, much more auxiliary memory
needed to buffer the messages, which results in OOM when
LiteTEn processes uk and eu. For LiteTE, messages are
coalesced and at least dozens-of-times fewer than those in
LiteTEn. Thus, much less auxiliary memory needed and
LiteTE can process all graphs.When processing eu, PTE fails
to complete in 48 hours due to huge amount of intermediate
data.

Because the four graphs from soc-LJ to friendster can be
fit in the memory of a single node and message passing is
avoided, which explains why the runtimes of LiteTEn are
identical to those of LiteTE. For IRLhost and gsh, due to the
MC3O technique, LiteTE is significantly faster than LiteTEn
(the speedups are 3.2 and 2.3).

b: COMPARED WITH SHARED-MEMORY ALGORITHMS
As we have mentioned, shared-memory graph algorithms
on high-end servers are usually significantly faster than the
distributed algorithms on small-scale clusters due to the
much faster shared-memory accesses than inter-node mas-
sage passing. However, LiteTE overcomes this deficiency.
We show this by comparing LiteTE with two state-of-the-
art shared-memory algorithms including GBBS, a CPU algo-
rithm, and TRICORE, a GPU algorithm, and the results
are shown in Fig. 6(c). The speedups range from 1.5× to
5.3× with an average of 3.2×. The significant speedups
are achieved by LiteTE because communication and load
imbalance overheads are no longer bottlenecks and the pro-
cessing capacity of CPUs is effectively utilized (computation
accounts for more than 70% of runtime in LiteTE. In contrast,
in the three competing distributed algorithms, computation
accounts for no more than 10% of runtime).

C. SCALABILITY
Both strong scalability, i.e., how runtime varies with the
number of nodes for a fixed total problem size, and weak scal-
ability, i.e., how runtime varies with the number of nodes for
a fixed problem size per node [35], are evaluated. The strong
scalability is shown in Fig. 7.With the number of nodes varies
from 1 to 12, the runtime of LiteTE decreases steadily and
quickly, showing superior scalability on every graph to other
algorithms. As we have proved in Thm. 1, the better strong
scalability of LiteTE is because the total number of messages
keep constant with the increasing of the number of nodes
for a given graph. Because Hadoop must be run on at least
three nodes, PTE fails to run on one node. For Surrogate and
HavoqGT, the runtimes on a single node are usually shorter
than those on 3 nodes because intra-node message passing
is implemented through shared-memory copying, which is
much faster than inter-node message passing. When Havo-
qGT processes arabic on one node, the huge number of mes-
sages passed along each edge result in heavy usage of swap
areas and hence severe memory thrashing, which explains the
abnormally long processing time (2156 S). The other missing
data points indicate the failures of processing due to OOM.

26302 VOLUME 7, 2019



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

FIGURE 7. Strong scalability. The missing data points indicate the failures of processing (for LiteTE, due to OOM). Note that, there are
breaks in some vertical axes. (a) soc-LJ. (b) Arabic. (c) Twitter. (d) Friendster. (e) IRLhost. (f) Gsh.

FIGURE 8. Weak scalability. HavoqGT fails to process any graph.

We use synthetic graphs to evaluate weak scalability.When
use two nodes, graph RMAT2 is processed; when use four
nodes, graph RMAT4 is processed, etc. As shown in Fig. 8,
LiteTE shows nearly ideal and much better scalability than
other algorithms. The better results are because its novel
design reduces messages dramatically and balances load bet-
ter, which causes communication and imbalance to no longer
be bottlenecks. PTE fails to run on two nodes becauseHadoop
must be run on at least three nodes. HavoqGT fails to process
any graph due to OOM caused by huge amounts of messages.

D. THE NUMBER OF MESSAGES
In our analysis in §III-A, we predict that LiteTE
should induce at least orders-of-magnitude fewer messages

than Surrogate.We will validate the prediction in this section.
The number of messages when processing real-world graphs
are shown in the upper part of Table 3. For LiteTE, the graphs
from soc-LJ to friendster can be fit in the memory of a single
node and message passing is avoided. For the rest real-world
graphs, only LiteTE can process all of them and Surrogate
fails to process any of them. Thus, we cannot directly com-
pare LiteTE with Surrogate on the same graphs when LiteTE
needs message passing. Nevertheless, the prediction in §III-A
can be indirectly validated by the results of soc-LJ vs. those
of from gsh to eu. Though the latter are orders-of-magnitude
times larger than the latter, the numbers of messages of gsh
to eu in LiteTE (21M, 12M, 65M) are comparable to that of
soc-LJ in Surrogate (27M).

TABLE 3. The number of messages.

To further compare the number of messages, we exper-
iment with RMAT graphs and the results are shown
in the lower part of Table 3. For the graphs from

VOLUME 7, 2019 26303



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

RMAT8 to RMAT10, compared with those of Surrogate,
the numbers of messages in LiteTE are reduced by 656×,
590× and 538× respectively, which validates our prediction,
i.e. messages are reduced by more than orders-of-magnitude
times. The dramatic message reduction stems from our graph
partitioning algorithm and the MC3O techniques.

As mentioned in §IV-A, the sending threshold of buffer
is set to 4 KB, i.e., once the total size of data in a sending
buffer is not smaller than 4 KB, we consider the buffer is
full. Our evaluations show that when the threshold goes larger
than 4 KB, runtimes no longer decrease obviously.

E. LOAD IMBALANCE
To demonstrate that simple load metrics such as storage sizes
and the number of vertices combined with lightweight but
effective load balance techniques achieve better load balance
than the complex metrics of Surrogate, we further compare
the communication and computation imbalance of LiteTE
with those of Surrogate.

1) COMMUNICATION IMBALANCE
The IRs (Imbalance Ratio) of the number of messages are
shown in Table 4. For LiteTE, the graphs from soc-LJ to
friendster can be fit in the memory of a single node and
message passing is avoided, and hence the IRs do not exist
theoretically. Nevertheless, because we use IR to measure
the communication imbalance and communication imbalance
does not exist for these graphs, and thus we consider these IRs
to be 1, the ideal IR.

TABLE 4. Load imbalance.

The average IRs of LiteTE and Surrogate are 1.16 and 3.73.
Thus, the communication in LiteTE is much better balanced.
The better balance comes from the three-level load balance
techniques (§III-D to §III-F). The partitioning method of Sur-
rogate only takes computation into consideration and results
in significant partition-size imbalance. Large partitions usu-
ally generate more messages and cause high communication
imbalance. Furthermore, the IRs of 1 for the graphs from
soc-LJ to friendster significantly contributes to the overall
better balance of LiteTE.

2) COMPUTATION IMBALANCE
The computation load is defined as the runtime of the code
snippet after setup is finished and before completion notifi-
cations are broadcasted, i.e., line 1 to 6 in Fig. 1(b) or line

1 to 19 in Algorithm 2, and the IRs are shown in Table 4.
The average IRs of LiteTE and Surrogate are 1.36 and 2.94.
Thus, the computation of LiteTE is better balanced. The
better balance of LiteTE comes from the three-level load
balance techniques (§III-D to §III-F).When LiteTE processes
graphs that can be fit in the memory of a single node (from
soc-LJ to friendster), the low average IR of 1.10 shows
the high efficiency of the decentralized dynamic node-level
load balance technique (III-E) and chunk-based lock-free
work-stealing technique (III-F) because the partition-level
load balance technique does not take effect for these graphs.

V. RELATED WORK
To support TC in various settings, a large body of works
propose different techniques. They are generally classified
into four categories and briefly reviewed in this section.

A. SINGLE NODE OUT-OF-CORE TC
These algorithms usually focus on TC in a PC. Because
large-scale graphs usually cannot be fit in the memory of a
PC and must be processed out of core. These works usually
introduce efficient I/O techniques to leverage the relatively
high sequential bandwidth of secondary storage devices.
Hu et al. [19] present MGT, which buffers a specific number
of edges in memory and search all the triangles contain-
ing one of the in-memory edges by traversing every vertex.
Cui et al. [20] propose Trigon, which creates a scheme based
on the lessons learned from previous works and allows bal-
ance between the I/O and CPU costs in order to achieve high
speed.

Despite highly cost effective, these algorithms usually can-
not be scaled out to process huge graphs and suffer from
long processing times due to the limited resources of a PC.
Furthermore, these algorithms usually cannot output all the
triangles of huge graphs. Taking the eu graph in our datasets
for example, it contains 15 trillion triangles taking up 180 TB
of storage space if all are output.

B. SHARED-MEMORY TC
Because graphs with billions of edges can usually be fit and
efficiently processed in the memory of a commodity server
equipped with hundreds of GB memory and dozens of cores,
several share-memory TC algorithms are proposed. Except
the competitor algorithms introduced in §IV-A, Latapy [36]
proposes an algorithm to solve the load imbalance prob-
lem of TC. Shun and Tangwongsan [5] present a high-speed
cache-oblivious algorithm, which can be easily implemented
with dynamic multithreading libraries such as Cilk Plus and
OpenMP.

Shared-memory TC in a commodity machine is usually
more efficient than in a cluster in terms of cost effectiveness,
ease of programming and runtime. However, due to the lim-
ited resources of a single machine, these algorithms usually
cannot be scaled out to process huge graphs with dozens of
billions of or more edges. Furthermore, our proposed algo-
rithm LiteTE has shown that distributed algorithms can be

26304 VOLUME 7, 2019



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

much faster, which seems to diminish the speed superiority
of these algorithms.

C. DISTRIBUTED TC
Except the competing algorithms introduced in §IV-A, there
are many other distributed works. Zhu et al. [37] pro-
pose a MapReduce algorithm called FTL, which utilizes a
light-weight data structure to reduce intermediate data and
leverage multiple-round techniques to reduce the usage of
memory and network bandwidth. Giechaskiel et al. [4] pro-
pose PDTL, which copies the entire graph to the secondary
storage of every node and processes the graph in a static
load balance way. Wang et al. [16] propose a hybrid TC
algorithm called SEN-Iterator that uses the bulk synchronous
parallel (BSP) mode.

MapReduce allows for simplified programming on clus-
ters of commodity machines, and MapReduce programs can
be easily scaled out to a large number of machines. How-
ever, MapReduce TC algorithms usually suffer from long
processing times due to the huge amount of intermediate
data exchanged through the network. Because the entire
graph needs to be copied to every machine, PDTL cannot
be scaled out to process huge graphs. Algorithms based on
the BSP mode usually generate massive messages and hence
are slow.

VI. CONCLUSION AND FUTURE WORK
To speed up distributed-memory TC, we propose LiteTE
in this paper, which divides graphs into appropriate huge
partitions to dramatically reduce messages during run-
time, and introduces three-level load balance techniques
to better balance load across partitions, nodes and threads
with hardly any message passing. Evaluations show that
LiteTE achieve much better performance than previous algo-
rithms in runtime, setup time and other metrics. Future
work can focus on expanding the work to other graph
algorithms.

REFERENCES
[1] M. E. Newman, ‘‘The structure and function of complex networks,’’ SIAM

Rev., vol. 45, no. 2, pp. 167–256, 2003.
[2] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, ‘‘Efficient

semi-streaming algorithms for local triangle counting in massive
graphs,’’ in Proc. SIGKDD, 2008, pp. 16–24.

[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, ‘‘Reductions in streaming
algorithms, with an application to counting triangles in graphs,’’ in Proc.
SODA, 2002, pp. 623–632.

[4] I. Giechaskiel, G. Panagopoulos, and E. Yoneki, ‘‘PDTL: Parallel and
distributed triangle listing for massive graphs,’’ in Proc. ICPP, Sep. 2015,
pp. 370–379.

[5] J. Shun and K. Tangwongsan, ‘‘Multicore triangle computations without
tuning,’’ in Proc. ICDE, Apr. 2015, pp. 149–160.

[6] A. Azad, A. Buluç, and J. Gilbert, ‘‘Parallel triangle counting and
enumeration using matrix algebra,’’ in Proc. IPDPS, May 2015,
pp. 804–811.

[7] D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke, ‘‘Tracking
structure of streaming social networks,’’ in Proc. IPDPS, May 2011,
pp. 1691–1699.

[8] R. Pearce, ‘‘Triangle counting for scale-free graphs at scale in distributed
memory,’’ in Proc. HPEC, Sep. 2017, pp. 1–4.

[9] L. Dhulipala, G. E. Blelloch, and J. Shun, ‘‘Theoretically efficient par-
allel graph algorithms can be fast and scalable,’’ in Proc. SPAA, 2018,
pp. 393–404.

[10] Y. Hu, H. Liu, and H. H. Huang, ‘‘Tricore: Parallel triangle counting on
GPUs,’’ in Proc. SC, 2018, pp. 171–182.

[11] S. Arifuzzaman, M. Khan, and M. Marathe, ‘‘PATRIC: A parallel algo-
rithm for counting triangles inmassive networks,’’ inProc. SIGKDD, 2013,
pp. 529–538.

[12] S. Arifuzzaman, M. Khan, and M. Marathe, ‘‘A space-efficient parallel
algorithm for counting exact triangles in massive networks,’’ in Proc.
HPCC, Aug. 2015, pp. 527–534.

[13] D. A. Patterson, ‘‘Latency lags bandwith,’’ Commun ACM, vol. 47, no. 10,
pp. 71–75, 2004.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘Powergraph:
Distributed graph-parallel computation on natural graphs,’’ in Proc. OSDI,
2012, pp. 17–30.

[15] S. Arifuzzaman, M. Khan, and M. Marathe. (2014). ‘‘Parallel algorithms
for counting triangles in networks with large degrees.’’ [Online]. Available:
https://arxiv.org/abs/1406.5687

[16] W.Wang, Y. Gu, Z.Wang, and G. Yu, ‘‘Parallel triangle counting over large
graphs,’’ in Proc. DASFAA, 2013, pp. 301–308.

[17] A. S. Tom et al., ‘‘Exploring optimizations on shared-memory platforms
for parallel triangle counting algorithms,’’ in Proc. HPEC, Sep. 2017,
pp. 1–7.

[18] H.-M. Park, S.-H. Myaeng, and U. Kang, ‘‘PTE: Enumerating trillion
triangles on distributed systems,’’ in Proc. SIGKDD, 2016, pp. 1115–1124.

[19] X. Hu, Y. Tao, and C.-W. Chung, ‘‘Massive graph triangulation,’’ in Proc.
SIGMOD, 2013, pp. 325–336.

[20] Y. Cui, D. Xiao, D. B. H. Cline, and D. Loguinov, ‘‘Improving
I/O complexity of triangle enumeration,’’ in Proc. ICDM, Nov. 2017,
pp. 61–70.

[21] Y. Cui, D. Xiao, and D. Loguinov, ‘‘On efficient external-memory triangle
listing,’’ in Proc. ICDM, Dec. 2016, pp. 101–110.

[22] H. Das and S. Kumar, ‘‘A parallel TSP-based algorithm for balanced graph
partitioning,’’ in Proc. ICPP, Aug. 2017, pp. 563–570.

[23] D. Margo and M. Seltzer, ‘‘A scalable distributed graph partitioner,’’ Proc.
VLDB Endowment, vol. 8, no. 12, pp. 1478–1489, 2015.

[24] Y. Perez et al., ‘‘Ringo: Interactive graph analytics on big-memory
machines,’’ in Proc. SIGMOD, 2015, pp. 1105–1110.

[25] A. Buluç and K. Madduri, ‘‘Parallel breadth-first search on distributed
memory systems,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2011, p. 65.

[26] R. Thakur, R. Rabenseifner, and W. Gropp, ‘‘Optimization of collective
communication operations in MPICH,’’ Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, 2005.

[27] T. White,Hadoop—The Definitive Guide. Sebastopol, CA, USA: O’Reilly
Media, 2015.

[28] J. L. Träff and A. Ripke, ‘‘Optimal broadcast for fully connected
processor-node networks,’’ J. Parallel Distrib. Comput., vol. 68, no. 7,
pp. 887–901, 2008.

[29] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda. (2017).
‘‘Optimized broadcast for deep learning workloads on dense-GPU
infiniband clusters: MPI or NCCL?’’ [Online]. Available: https://arxiv.
org/abs/1707.09414

[30] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, ‘‘Mizan: A system for dynamic load balancing in large-scale
graph processing,’’ in Proc. EurSys, 2013, pp. 169–182.

[31] G. Marçais and C. Kingsford, ‘‘A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers,’’ Bioinformatics, vol. 27, no. 6,
pp. 764–770, 2011.

[32] D. Chakrabarti, Y. Zhan, and C. Faloutsos, ‘‘R-MAT: A recursive model
for graph mining,’’ in Proc. SODA, 2004, pp. 442–446.

[33] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu, ‘‘OPT: A new framework
for overlapped and parallel triangulation in large-scale graphs,’’ in Proc.
SIGMOD, 2014, pp. 637–648.

[34] M. Snir, S. Otto, S. Huss-Lederman, J. Dongarra, and D.Walker,MPI: The
Complete Reference: The MPI Core. Cambridge, MA, USA: MIT Press,
1998.

[35] P. Pacheco, An Introduction to Parallel Programming. Burlington, MA,
USA: Elsevier, 2011.

[36] M. Latapy, ‘‘Main-memory triangle computations for very large (sparse
(power-law)) graphs,’’ Theor. Comput. Sci., vol. 407, pp. 458–473,
Nov. 2008.

VOLUME 7, 2019 26305



Y. Zhang et al.: LiteTE: Lightweight, Communication-Efficient Distributed-Memory Triangle Enumerating

[37] Y. Zhu, H. Zhang, L. Qin, and H. Cheng, ‘‘Efficient mapreduce algorithms
for triangle listing in billion-scale graphs,’’ Distrib. Parallel Databases,
vol. 35, no. 2, pp. 149–176, 2017.

YONGXUAN ZHANG received the B.E. degree
in computer science and technology from Nan-
chang Hangkong University, China, in 2005. He is
currently pursuing the Ph.D. degree in computer
science and technology with the Huazhong Uni-
versity of Science and Technology, Wuhan, China.
His current research interests include graph pro-
cessing and parallel/distributed processing.

HONG JIANG (F’14) received the B.E. degree
from the Huazhong University of Science and
Technology, Wuhan, China, in 1982, the M.A.Sc.
degree from the University of Toronto, Canada,
in 1987, and the Ph.D. degree from Texas A&M
University, College Station, in 1991. He is cur-
rently the Wendell H. Nedderman Endowed Pro-
fessor and Chair of the Department of Computer
Science and Engineering, The University of Texas
at Arlington. He has over 200 publications inmajor

journals and international conferences in these areas, including the IEEE
TPDS, IEEE TC, ACM TOS, ACM TACO, JPDC, ISCA, MICRO, FAST,
USENIX ATC, USENIX LISA, SIGMETRICS, MIDDLEWARE, ICDCS,
IPDPS, OOPLAS, ECOOP, SC, ICS, HPDC, and ICPP. His research has
been supported by the NSF, DOD, and the State of Nebraska. His research
interests include computer architecture, computer storage systems, and par-
allel/distributed computing. He serves as an Associate Editor for the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.

FANG WANG received the B.E. and master’s
degrees in computer science and the Ph.D. degree
in computer architecture from the Huazhong
University of Science and Technology, China,
in 1994, 1997, and 2001, respectively, where
she is currently a Professor of computer science
and engineering. She has more than 50 publi-
cations in major journals and international con-
ferences, including FGCS, ACM TACO, Science
China Information Sciences, the Chinese Journal

of Computers, HiPC, ICDCS, HPDC, and ICPP. Her research interests
include distributed file systems, parallel I/O storage systems, and graph
processing systems.

YU HUA (M’13) received the B.E. and Ph.D.
degrees in computer science from Wuhan Uni-
versity, China, in 2001 and 2005, respec-
tively. He is currently a Professor with the
Huazhong University of Science and Technol-
ogy, China. He has more than 80 papers to
his credit in major journals and international
conferences, including IEEE the TRANSACTIONS

ON COMPUTERS, the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, USENIX
ATC, USENIX FAST, INFOCOM, SC, ICDCS, ICPP, and MASCOTS.
His research interests include computer architecture, cloud computing, and
network storage. He is a Senior Member of CCF and a member of ACM
and USENIX. He has been on the organizing and program committees of
multiple international conferences, including INFOCOM, ICDCS, ICPP,
RTSS, and IWQoS.

DAN FENG (M’12) received the B.E., M.E., and
Ph.D. degrees in computer science and technol-
ogy from the Huazhong University of Science
and Technology, China, in 1991, 1994, and 1997,
respectively, where she is currently a Professor and
the Vice Dean of the School of Computer Science
and Technology. She has more than 100 publi-
cations in major journals and international con-
ferences, including the IEEE TC, IEEE TPDS,
ACM-TOS, JCST, FAST, USENIX ATC, ICDCS,

HPDC, SC, ICS, IPDPS, and ICPP. Her research interests include computer
architecture, massive storage systems, and parallel file systems. She is a
member of ACM. She serves on the program committees of multiple inter-
national conferences, including SC 2011, SC 2013, and MSST 2012.

XIANGHAO XU received the B.E. degree in com-
puter science and technology from Liaoning Uni-
versity, Shenyang, China, in 2015. He is currently
pursuing the Ph.D. degree in computer architec-
ture with the Huazhong University of Science and
Technology, Wuhan, China. His current research
interests include computer architecture and graph
processing.

26306 VOLUME 7, 2019


	INTRODUCTION
	DRAMATIC REDUCTION OF COMMUNICATION COST
	EFFICIENT THREE-LEVEL LOAD BALANCING
	EXTENSIVE EVALUATIONS

	PRELIMINARIES
	TRIANGLE COMPUTATION
	ORIENTATION HEURISTICS
	SURROGATE AND MESSAGE INVERSION

	LiteTE
	GRAPH PARTITIONING
	MESSAGE COALESCING AND COMMUNICATION-COMPUTATION OVERLAPPING
	FAST BROADCAST ALGORITHM
	CODESIGN OF GRAPH PARTITIONING AND PARTITION-LEVEL LOAD BALANCE
	DECENTRALIZED DYNAMIC NODE-LEVEL LOAD BALANCE
	CHUNK-BASED LOCK-FREE WORK-STEALING FOR THREAD-LEVEL LOAD BALANCE

	EVALUATION
	EXPERIMENTAL SETUP
	COMPETITOR ALGORITHMS
	RUNNING ENVIRONMENT
	DATASETS

	SETUP TIME AND RUNTIME
	SETUP TIME
	RUNTIME

	SCALABILITY
	THE NUMBER OF MESSAGES
	LOAD IMBALANCE
	COMMUNICATION IMBALANCE
	COMPUTATION IMBALANCE


	RELATED WORK
	SINGLE NODE OUT-OF-CORE TC
	SHARED-MEMORY TC
	DISTRIBUTED TC

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YONGXUAN ZHANG
	HONG JIANG
	FANG WANG
	YU HUA
	DAN FENG
	XIANGHAO XU


