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ABSTRACT In this paper, novel heart rate variability (HRV) indices were extracted for the autonomic
nervous system (ANS) activity assessment in congestive heart failure (CHF). It has been reported that CHF
is a chronic cardiovascular syndrome along with ANS dysfunction, and HRV is a useful tool for ANS
assessment. The multi-frequency components Entropy (MFC-En), which is obtained by the Hilbert—-Huang
transform and the entropy algorithm, was proposed as novel HRV indices for analyzing ANS with CHFE.
This paper included 24-h HRV signals of 98 subjects collected with Holter (54 healthy, 12 low-risk CHF,
and 32 high-risk CHF subjects). The MFC-En indices successfully showed a statistical significance between
the control and CHF groups (p < 0.001). The CHF classification accuracy of the MFC-En was 86.7%,
while the ratio of the low- and high-frequency power was only 79.6%. Moreover, statistical significances
were found among the control, low-risk CHF, and high-risk CHF groups (p < 0.01). Therefore, the MFC-En
is a useful tool for CHF assessment that revealed the ANS of CHF patient is more activated by measuring

the complexity of the rhythms changes of the ANS throughout the day.

INDEX TERMS

Congestive heart failure (CHF), heart rate variability (HRV), Hilbert-Huang

transform (HHT), instantaneous frequency (IF), multi-frequency components analysis (MFCA).

I. INTRODUCTION
Congestive heart failure (CHF) is one of the most fatal
cardiovascular diseases that is characterized by the heart
losing the ability to pump enough blood to meet the
metabolic requirements [1] Nearly 26 million people suf-
fer from CHF globally [2]. The main characteristic of
CHF disease is the imbalanced activity of the autonomic
nervous system (ANS) [3]. The ANS can modulate the
physiological arousal of a human body to meet the envi-
ronmental demands through its two branches: the sympa-
thetic nervous system (SNS) and parasympathetic nervous
system (PNS) [4]

Heart rate variability (HRV) signal extracted from electro-
cardiogram (ECGQG) is widely used to assess the activity of the
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ANS for CHF investigation [5]. Multiple HRV indices have
been used for CHF investigation because the HRV analysis
is a noninvasive and useful tool for reflecting the status
of the ANS [6], [7]. The standard HRV analysis methods
focus on the time and frequency domain. Takase er al. [8]
found that the values of the time domain HRV indices were
significantly lower in the CHF subjects. Binkley et al. [9]
revealed that the frequency domain HRV indices reflected the
changes of the ANS and the significant difference between
the healthy and CHF subjects. Yu and Lee [10] reported that
the frequency domain indices were useful for discriminat-
ing the CHF subjects from the healthy subjects. Moreover,
the entropy has been studied as a non-linear analysis method
for CHF investigation [11]-[13]. Zhao et al. [14] reported
that the sample entropy and fuzzy measure entropy showed a
significant difference between the healthy and CHF subjects.
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These studies supported that the HRV analysis was a useful
tool for CHF diagnosis.

Various studies focused on the power of HRV [15]-[17],
which can reflect the tone of the ANS, may have neglected
the rhythms changes of the ANS. The Hilbert-Huang trans-
form (HHT) is a self-adaptive data analysis method that can
reveal the instantaneous frequency (IF) changes of the data.
Bajaj and Pachori [18] proposed a method based on the HHT
for separating the rhythms of ECG signal for seizure detec-
tion, they found that each intrinsic mode function (IMF) was
corresponding to different rhythms [18], which implied that
the HHT may useful for rhythms analysis of bio-signal. The
HHT consists of the empirical mode decomposition (EMD)
method and the Hilbert transform (HT) algorithm [19]. The
EMD method has been proven to be suitable for analyz-
ing the HRV signal of ECG and decomposing the signal
into a set of intrinsic mode functions (IMFs) [20]. Then,
the HT can be adopted at the IMFs to reveal the instantaneous
information of the signal in different frequency components.
Griffel et al. [21] found that the HHT shows a greater sensi-
tivity to the PNS analysis than that of the spectral analysis.
Jarchi and Casson [22] showed that the HHT can be used
for instantaneous heart rate estimation. Altan et al. [23] used
the mean instantaneous frequency (MIF) of the HRV signal
for CHF diagnosis. These studies supported that the HHT
is a useful tool for HRV analysis, even for analyzing the
rhythms changes of ANS. However, the MIF can only reflect
the average level of the rhythms changes of the ANS.

Hence, multi-frequency components analysis (MFCA) was
proposed to investigate the rhythms changes of the ANS and
the complexity of the ANS throughout the day in this study.
First, the instantaneous frequency of each component of a
5-min HRV segments were extracted by the HHT algorithm,
these IF reflect the instantaneous rhythms changes of each
part of the ANS. Then, the MIF of the frequency components
were extracted to reflect the average level of the rhythms
changes of the ANS in a 5-min period. Third, the mean value
and entropy of each MIF in a 24-h period were extracted
to reflect the average level and complexity of the rhythms
changes of the ANS throughout the day, respectively. Finally,
the indices extracted by the MFCA method were validated by
CHF assessment.

Il. SYSTEM AND METHODS

In this study, a long-term HRV analysis system was pro-
posed. The framework of the system is shown in Fig.1. First,
the ECG signals were collected and the HRV signals were
extracted. Then, the corrected 5-min HRV segments were
obtained by preprocessing. After that, standard HRV mea-
surements and the MFCA method were used to calculate the
indices. Finally, these long-term indices were validated by a
statistical analysis and CHF assessment.

A. DATA COLLECTION
Holter is one of the most wildly used portable ambula-
tory electrocardiography device for monitoring the long-term
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FIGURE 1. Framework of the proposed HRV analysis system.

(over 24-h) ECG in clinic application. In this study, the HRV
signals extracted from ECG signals which collected with
Holter are used for investigating [24].

The 24-h HRV signals for 54 healthy subjects (Age:
61.38 £ 11.63 years) were collected from the Normal Sinus
Rhythms RR Interval database, and 44 CHF subjects (Age:
55.51 £ 11.44 years) were collected from two different
databases: 15 from the Beth Israel Deaconess Medical Cen-
ter (BIDMC) Congestive Heart Failure database and the
remaining 29 from the Congestive Heart Failure RR Inter-
val database. All these databases are open source in Phys-
ionet [24]-[26].

Subjects from the CHF databases were classified into
4 classes following the criterion proposed by the New York
Heart Association (NYHA). Class-I represented subjects with
cardiac disease; however, they did not have symptoms during
physical activities. Class-II represented subjects with car-
diac disease resulting in slight symptoms during physical
activities. Class-III represented subjects with cardiac disease
resulting in marked symptoms during physical activities, and
Class-IV represented subjects that had symptoms or dis-
comfort during both rest and daily physical activities [27].
According to the NYHA criterion, 44 CHF patients were
classified: 4 for Class-I, 8 for Class-1II, 17 for Class-III, and
15 for Class-III~IV.

In this study, 54 healthy subjects were categorized into the
control group, and 44 CHF subjects were categorized into
the CHF group (CHF) for CHF assessment. Furthermore,
12 mild-to-moderate CHF subjects in Class-I and Class-II
were categorized into a low-risk (LR) group, and 32 advanced
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CHEF subjects in Class-III and Class-IV were categorized into
a high-risk (HR) group for further assessment [28].

B. LONG-TERM HRV ANALYSIS

1) PREPROCESS

For obtaining noiseless signal for standard short-term HRV
analysis, the 24-h HRV signals were preprocessed. First,
the first and last RR intervals and the intervals longer than
3s were excluded in each 24-h HRV signal for removing
the noises. Then, the 24-h signals were divided into multiple
non-overlapping 5-min segments in each subject for standard
short-term HRV analysis [5]. Finally, all 5-min segments
were resampled to 2 Hz by interpolation.

2) TIME/FREQUENCY DOMAIN ANALYSIS

In this study, the long-term time/frequency domain indices
were calculated using two steps. (1) The short-term indices
were obtained from the 5-min HRV segments. (2) The mean
value of the short-term indices in 24-h were treated as
long-term indices.

The short-term time/frequency analysis of each 5-min HRV
segment was based on the standard method [15]. Three time
domain indices we used as follows: the standard deviation
of the normal-to-normal (NN) intervals (SDNN), the root
mean square of successive differences between the adjacent
NN intervals (RMSSD), and the percentage of NN intervals
greater than 50 ms (PNN50) [29]. For an N point 5-min HRV
segment, the time domain indices were defined as follows.

SDNN = ! N HRV ! N HRV ’ 1
= ﬁzizl =5 2 HRVi) (1)

1 N-1 5
RMSSD — mzizl (HRV iy1—HRV) 2)

PNNSO — num [(HRV ;;1—HRV;) > 50ms] 3)
N -1
There are four frequency components in the HRV signal:
the very-high frequency (VHF, 0.4-1 Hz), high frequency
(HF, 0.15-0.4 Hz), low frequency (LF, 0.04-0.15 Hz), and
very-low frequency (VLEF, 0.003-0.04 Hz) [17], [30]-[33].
Therefore, five frequency domain indices were obtained in
these four components. The power spectral density of each
5-min HRV segment was computed using a fast Fourier trans-
form. The power of the VLF, LF, HF, and VHF bands were
denoted as VLFP, LFP, HFP, VHFP, respectively. The ratio of
LF and HF was denoted as LF/HF [16], [34].
Finally, the mean value of each index in 24-h was calcu-
lated as the corresponding long-term time/frequency domain
index.

3) MULTI-FREQUENCY COMPONENTS ANALYSIS

In a previous HHT-based HRV study, the mean value of
instantaneous frequency (MIF) of the HRV signal was used
for CHF diagnosis [23]. However, the MIF can only reflect
the average level of the rhythms changes of the ANS. The
HHT can reveal the instantaneous rhythms changes in the
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cardiac system [ 18], [22], and the entropy can reveal the com-
plexity of the HRV signal [11], [12], [29]. Thus, the MFCA
was proposed as a novel HRV analysis method to determine
the long-term dynamic rhythms changes of the ANS.

The MFCA was based on the HHT algorithm and entropy
measurement. First, the HHT algorithm was adopted to obtain
the IF of the 5-min HRV segments in different scales of
frequency components to reveal changes of the signal. Then,
the IF was further processed, and the entropy measurement
was adopted to quantitatively investigate the complexity of
these changes. The scheme of the MFCA is shown in Fig. 2,
and the details of the MFCA were as follows.

Input

|

—>| Empirical mode decomposition ‘

llntr'insic mode functions (IMFs)

| Hilbert transform

Instantaneous frequencies (IFs)

| Instantaneous frequency processing

Mean instantaneous frequencies
(MIFs)

Segments in subject
are all processed

Yes | MIFs sequence of all segments

| Indices sequence construction ‘

MFC-Mean

| Indices sequences of MIFs

“omplexity

MFC-En

FIGURE 2. Scheme of multi-frequency components analysis (MFCA).

Step 1 (Empirical Mode Decomposition): The EMD
method was proposed by Huang et al. [19] and has been
proven as a self-adaptive non-linear and non-stationary data
analysis method. The main characteristic of EMD is that it
can decompose any non-linear and non-stationary data into a
set of monocomponent frequency data called intrinsic mode
functions (IMFs) and a trend component [35]. The IMFs
satisfy two requirements: (1) the number of zero crossing and
extremes must be the same in each IMF, and (2) the mean
value of the envelope defined by the local maxima and the
envelope defined by the local minima at any point should be
zero in each IMF. In EMD, a sifting process is necessary for
selecting the IMF that satisfies the requirements. The input
data x subtracting its mean value m| produced | = x — m;.
The h; was treated as the new input data x', and the sifting
process was repeated / times. After the sifting process, hy; =
hi1@q-1) — my; was obtained and was denoted as the first IMF
component of the input data. Here, / was constrained by a
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stopping criterion that was defined as shown below [19].

|h1g—1y (1) = hy (l)|2
0.2 < <0.3 “4)
Zt h%(l—l) ®

After EMD, a data x was decomposed into a finite number
of IMFs and the trend component as follows.

x (1) =y " IMF (1); + trend (5)

where n is the total number of IMFs of the data x.

Here, the 5-min HRV segment was treated as the input
data x, then IMFs of the HRV segment were obtained.

Step 2 (Hilbert Transform): The HT is a useful tool for
calculating instantaneous attributes of a time series, espe-
cially the envelope amplitude and IF of the signal [36].
Because of the strict requirement that the signal must be
monocomponent in frequency, the HT cannot be used in the
HRV signal directly. The EMD method expanded the use
of the HT because the IMF decomposed by EMD was a
monocomponent real-valued signal [20], [35].

For a signal IMF (t);, its HT IMF (t); was given as shown
below.

+00 )
IMF (t); = H [IMF (1);] = %p/ MF @);

oo T
1 IMF (t);
= Lim — / MF ©)i ) 6)
e=>0T T Jjp—zj2e [—T

The parameter P is the Cauchy principal value of the
integral.

Generally, the HT of an IMF signal is written as an analytic
signal of the IMF (AIMF), as shown below.

AIMF (Z)i = IMF (t)i +] . W(t)i —A (Z) ei@[ (7)

where j is the imaginary unit.

A(r) = \/IMF (2 + IMF (¢); . 6; (1) = tan™" (%)
®)

Hence, the IF sequence of IMF (t); is defined as follows.
IF; = d6; (t) /dt 9)

The IF sequence of all the IMFs in a 5-min HRV segment
were obtained in this step.

Step 3 (Instantaneous Frequency Processing): The IF
sequence of each signal was further processed by calculating
the MIF to reflect the average level of the frequency changes.
For an N point IF sequence, the MIF was defined as shown
below.

1 N )
MIF; = + Z,-=1 IF; (j) (10)

The MIF of all IF sequences in a 5-min HRV segment were
calculated in this step. Step 1 to step 3 were repeated until all
5-min segments in the subject were processed.

Step 4 (Indices Sequence Construction): For each subject,
the MIFs were calculated from all 5-min HRV segments
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in 24-h. Hence, multiple 5-min indices of each subject were
obtained. An indices sequence (IS) to represent the index over
24-h was constructed as follows.

IS (index) = {I1, I, ..., I;} (11

The parameter I, is a 5-min index, and » is the amount of
I over 24-h.

Step 5 (Indices Calculation): The indices calculation in
the MFCA consisted of the mean value calculation and the
complexity measurement of each IS. The definitions of the
MFCA-based indices are shown as follows.

MFC-Mean: The MFC-mean was calculated from the
mean value of the IS for the robustness improvement. An IS
of MIF; was denoted as IS (MIF;)={I,,1,,...,I,}. The
MFC — mean (MIF ;) was defined as shown below.

YASMIF) Y Al b, .... I}
n

n

MFC — mean (MIF;) =

(12)

The parameter » is the amount of the index in 24 — h.

MFC-En: The MFC-En was the entropy of the IS, which
reflected the complexity of the index in 24-h. In this
study, the fuzzy entropy (FuzzyEn) algorithm proposed by
Chen et al. was used as the complexity measurement. The
fuzzy membership function of FuzzyEn was selected as expo-
nential function exp L—((dg’)) /r"|. The parameters n, m, and
r were selected as 2, 2, and 0.25 times the standard deviation
of the input data in this study, respectively [37], [38].

The pseudo-code of the MFCA is described as follows.

Algorithm 1 Multi-Frequency Components Analysis.
Input:
{HRV;,j =1, ..., m} : long—term HRV signal m : total
number of 5-min segments of {HRV;} n : total number
of IMFs
fori < 1tondo
IMF; < EMD(HRV)
for j < 1 tomdo
IF;; < HT (IMF;j)
MIFj; < mean(IF;)
IS(MIF ;) < {MIF;)
end for
MFC — Mean(MIF;) < mean(IS (MIF;))
MFC — En(MIF;) < FuzzyEn(IS(MIF;))
end for
return
MFC — Mean(MIF—_,)
MFC — En(MIF—,,)

= AR el S e

— o -

Here, the input series {HRVj,j =1, m} is the 24-h
HRV signal. m and n is total numbers of 5-min segments
in 24-h period, and the numbers of IMF we selected, respec-
tively. The algorithm returns the MFC —mean and MFC — En
indices of each IMF.
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C. VALIDATION

The HRV indices used in this study were validated in three
aspects. First, a t-test was used to analyze the significant
difference of the control group and CHF group. Then, a one-
way ANOVA followed by a post hoc analysis with the least
significant difference test was used to analyze the statis-
tical significance among the control, LR, and HR groups.
A p < 0.05 was considered statistically significant, and
the values of the statistical analysis were expressed as the
mean =+ standard deviation (SD) [39]. Further, for validating
the performance of these HRV indices, the Fisher discrim-
inant function from SPSS was used for CHF assessment.
The results were expressed as the accuracy, sensitivity, and
specificity. These tests were performed using SPSS version
22.0.0.0 (SPSS Inc., Chicago, IL, USA).

Ill. RESULTS

The significant difference among the control, LR, and HR
groups of the indices and the performance of the indices are
shown in this section. In total, 16 long-term HRV indices
were calculated, including 3 time-domain indices (SDNN,
RMSSD and PNNS50), 5 frequency-domain indices (VLFP,
LFP, HFP, VHFP, and LF/HF), and 8 MFCA-based indices
(MFC-Mean and MFC-En calculated from IMF;, IMF,,
IMF3, and IMFy).

A. HRV ANALYSIS BY THE HHT

The results of EMD of a typical 5-min HRV segment are
shown in Fig. 3 (a). The first 4 IMFs contained almost the
entire energy of the HRV signal. Hence, the first 4 IMFs
of the HRV signal of each subject were selected for further
analysis. Fig. 3 (b) shows the IF sequence of the first 4 IMFs.
The MIF and SD of each IF sequence were also represented
as the mean &+ SD. The red lines indicated the value of
the MIF, which showed the average level of the rhythms
changes of the corresponding IMF. From Fig. 3 (b), the MIF
showed that the IMF; corresponded to the VHF compo-
nent (0.431 Hz). IMF, was the HF component (0.199 Hz).
IMF3 was the LF component (0.076 Hz), and IMF; was
the VLF component (0.027 Hz). Therefore, the first 4 IMFs
corresponded to 4 frequency components of the HRV signal,
respectively.

Fig. 4 shows the distribution of the normalized MIF in a
24-h period of the first 4 IMFs. The complexities of the color
distribution increased with the severity of CHF. Therefore,
the complexity of the MIF in a 24-h period may have potential
for early stage CHF detection.

B. STATISTICAL ANALYSIS AMONG THE GROUPS WITH

LONG-TERM TIME AND FREQUENCY DOMAIN INDICES

The mean + SD values of the time/frequency domain indices
for the control, LR, and HR groups are listed in TABLE 1.
The VHFP and LF/HF showed a significant difference
(»p < 0.001), and PNN50 showed a significant difference
(p < 0.01) between the control and CHF groups. In addition,
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FIGURE 4. Distributions of normalized MIF in 24-h period for a typical
subject from (a) control group, (b) LR group, and (c) HR group.

no index showed a significant difference (p < 0.05) among
the control, LR, and HR groups. For the control versus the
LR groups and the control versus the HR groups, LF/HF
showed a better statistical significance than that of the other
indices. Fig. 5 shows the results of the RMSSD, PNN50,
VHFP, and LF/HF among the control, LR, and HR groups.
The LF/HF was the only index that showed a stepwise change
with the severity of CHF. Hence, the LF/HF was considered
the representative index among the time/frequency domain
indices in this study.

C. STATISTICAL ANALYSIS AMONG THE GROUPS

WITH THE MFCA-BASED INDICES

In total, 8 MFCA-based indices were obtained by the
MFCA method. The mean £ SD values are listed in
TABLE 2. The MFCA-based indices showed significant
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TABLE 1. Long-term time/frequency domain indices for control, LR and HR groups.

Control group LR group HR group p-value
Indices

(mean + SD) (mean + SD) (mean + SD) C versus LR C versus HR LR versus HR
SDNN 0.053+0.016 0.062+0.035 0.043+0.023 0.223 0.038* 0.013*
RMSSD## 0.023+0.146 0.057+0.035 0.042+0.032 0.000%** 0.001** 0.166
PNN50# 2.727+4.491 8.670+8.283 7.367+12.229 0.026* 0.013* 0.642
VLFP 0.032+0.027 0.049+0.053 0.024+0.024 0.074 0.263 0.016*
LFP 0.856+0.815 1.637+1.841 0.780+0.894 0.017* 0.737 0.014*
HFP 0.569+1.133 1.539+1.902 0.801+0.916 0.012* 0.383 0.069
VHFP# 0.257+0.468 1.517+1.598 1.136+1.167 0.001%* 0.001%* 0.332
LF/HF## 3.045+1.198 1.578+0.677 1.196+0.791 0.000%%** 0.000%%** 0.275

SDNN: the standard deviation of the normal-to-normal (NN) intervals; RMSSD: the root mean square of successive differences between the adjacent NN

intervals; PNN50: the percentage of NN intervals greater than 50 ms; VLFP, LFP, HFP, and VHFP: the power in VLF, LF, HF, and VHF band of HRV,

respectively; SD: standard deviation; C: control group, LR: low-risk group, HR: high-risk group; #, ##, ### represent p < 0.05, p <0.01, and p < 0.001

between control and CHF group, respectively; *, ¥*, *** represent p < 0.05, p <0.01, and p < 0.001 among control, LR, and HR groups, respectively.

C: control group, LR: low-risk group, HR: high-risk group

TABLE 2. MFCA-based indices for control, LR and HR groups.

Control group LR group HR group p-value
Indices

(mean + SD) (mean = SD) (mean + SD) Cversus LR Cversus HR LR versus HR
MFC-Mean(MIF,)* 0.419+0.042 0.462+0.070 0.460+0.065 0.016* 0.001** 0.910
MFC-Mean(MIF,)"# 0.195+0.025 0.252+0.048 0.248+0.036 0.000%** 0.000%** 0.702
MFC-Mean(MIF;)*# 0.093+0.012 0.140+0.037 0.140+0.026 0.000%** 0.000%** 0.985
MFC-Mean(MIF,)*# 0.049+0.006 0.077+0.025 0.077+0.017 0.000%** 0.000%** 0.945
MFC-En(MIF,)** 0.943+0.151 1.221+0.342 1.396+0.232 0.000%%* 0.000%%* 0.015*
MFC-En(MIF,)** 1.255+0.149 1.426+0.238 1.600+0.195 0.003%* 0.000%%* 0.004%**
MFC-En(MIF;)*# 1.437+0.163 1.545+0.239 1.666+0.174 0.060 0.000%** 0.046*
MFC-En(MIF,)* 1.621+0.121 1.618+0.157 1.719+0.152 0.941 0.002%* 0.030%*

MFC-Mean: mean value of multi-frequency components, MFC-En: multi-frequency components entropy; MIF: the mean instantaneous frequency; SD:

standard deviation; C: control group, LR: low-risk group, HR: high-risk group; #, ##, ### represent p < 0.05, p < 0.01, and p < 0.001 between control

and CHF group, respectively; *, **, *** represent p < 0.05, p <0.01, and p < 0.001 among control, LR, and HR groups.

differences (p < 0.01) between the control and CHF groups.
The MFC-Mean indices showed significant differences
among the control versus LR groups and the control versus
HR groups (p < 0.05). The MFC-En indices showed sig-
nificant differences between the LR and HR groups (p <
0.05). Moreover, the MFC-En(MIF;) and MFC-En(MIF,)
showed significant differences among the control, LR, and
HR groups (p < 0.05). Fig. 6 shows the results of the
MFC-Mean and MFC-En of IMF; and IMF, among the
control, LR, and HR groups. MFC-En(MIF;) and MFC-
En(MIF,) showed monotonicity among the control, LR, and
HR groups.
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D. PERFORMANCE OF THE MFC-EN INDICES

The performance of the MFC-En indices and LF/HF
were validated by CHF assessment. The Fisher dis-
criminant function in SPSS was used for classifying
each sample as a healthy or CHF subject. The accu-
racy (ACC), sensitivity (SEN), and specificity (SPE) val-
ues of the MFC-En indices and LF/HF were computed
and are listed in TABLE 3. The ACC was defined as
the percentage of correctly classified samples. The SEN
was defined as the percentage of correctly classified
CHF samples. The SPE was defined as the percentage of
correctly classified healthy samples. As shown in Table 3,
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TABLE 3. Performance of indices for CHF screening.

Indices ACC (%) SEN (%) SPE (%)
MFC-En(MIF)) 86.7 79.5 92.6
MFC-En(MIF,) 80.6 727 87.0
MFC-En(MIF;) 714 70.5 722
MFC-En(MIF,) 60.2 63.6 57.5
LE/HF 79.6 86.4 74.1

for 98 samples, the MFC-En(MIF;) achieved 86.7% ACC
and 92.6% SPE, and MFC-En(MIF,) achieved 80.6% ACC
and 87.0% SPE, while the LF/HF only achieved 79.6%
ACC and 74.1% SPE.

Moreover, the receiver operating character (ROC) curve
and area under the curve (AUC) of MFC-En(MIF)),
MFC-En(MIF;), and LF/HF are shown in Fig. 7.
MFC-En(MIF;) achieved the highest AUC value (0.8742),
while MFC-En(MIF,) and LF/HF achieved lower values
(0.8026 and 0.8030, respectively).

The results showed that MFC-En(MIF;) was the most
accurate index for distinguishing the CHF subjects from

37714

1 : : : =2
— | |
0.8} ' 1
g
o 0.0 i
B
o 041 i
£
[_1
0.2 — LF/HF AUC=0.8030 1
—— MFC-En(MIF1) AUC=0.8742
0 —— MFC-En(MIF2) AUC=0.8026

0 0.2 0.4 0.6 0.8 1
False positive rate

FIGURE 7. The ROC curves of MFC-En(MIF1), MFC-En(MIF2), and LF/HF.

the healthy subjects among the time/frequency domain and
MFCA-based indices in this study.

IV. DISCUSSION

A. COMPARISON AND SUMMARY

In this study, most of the time/frequency domain indices
showed significant differences between the control and CHF
groups, as previous studies have reported [8]-[10]. Among
all indices, LF/HF had the greatest statistical significance
among the control versus LR and the control versus HR
groups (p < 0.001) (TABLE 1). Therefore, LF/HF was
selected as the representative index for comparison among
the time/frequency domain indices in this study.

Previous study showed mean instantaneous frequency
(MIF) of each IMF of HRV signal can be used as indices
for CHF diagnosis. Bajaj and Pachori [18] used a bunch
of indices including MIF with complex machine learning
technic for diagnosing the CHF from normal subjects with
over 90% accuracy. In this study, we proposed MFCA method
for analyzing the HRV with CHF, and analyzed the physio-
logical significance with each single index. Results showed
that the MFC-En (MIF;) and MFC-En (MIF,) have statis-
tical significance among the control, LR, and HR groups,
while the time/frequency domain indices had no significant
differences (TABLE 2) [6], [28], [40]. Moreover, MFC-
En(MIF)) achieved a higher classification ACC than that of
LF/HF (86.7% versus 79.6%) (TABLE 3). Briefly, MFC-En
has potential for CHF classification and early stage CHF
detection.

B. MOTIVATION OF THE MFCA METHOD

This study proposed the MFCA method as a novel HRV
analysis method for CHF assessment. The MFCA method
was developed on the HHT algorithm and entropy measure-
ment. The HHT revealed the rhythms changes of the ANS by
monitoring the IF changes of the HRV signal, and the entropy
measurement revealed the complexity of the rhythms changes
of the ANS.
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The HHT algorithm that consisted of the EMD and HT
revealed the instantaneous changes of the signal in different
scales of frequency components [41]. It has been reported
that the HRV signal had four components: the VHF, HF,
LF, and VLF component [17], [30]-[33]. The EMD method
can decompose the non-linear and non-stationary HRV sig-
nal into a set of monocomponent frequency signals called
IMFs [20], [35]. Each IMF contains information for a dif-
ferent frequency component of the HRV signal. The HT
can reveal the instantaneous rhythms of the signal by the
IF changes of each IMF [18]. The results of EMD of a
typical 5-min HRV segment showed that the first 4 IMFs
corresponded to the VHF, HF, LF, and VLF component of the
HRYV signal, respectively (Fig. 3). Then, the first 4 IMFs of the
HRV signal were selected. Therefore, the HHT revealed the
rhythms changes of the ANS by monitoring the IF changes
of the first 4 IMFs of the HRV signal, and the MIF of
the 5-min HRV segment reflected the average level of the
rhythms changes of the ANS in a 5-min period.

The MFC-Mean indices showed significantly larger val-
ues in the CHF group with p < 0.001, revealing that the
rhythms changes of the ANS in the CHF patients were more
rapid throughout the day (TABLE 2). The complexities of
the MIF values increased from the control to the LR to the
HR groups (Fig. 4). The daily activity level of the CHF
patients was irregular and was related to the severity of the
disease [27], and the entropy revealed the intrinsic complexity
of the HRV signal [11], [12], [29]. Therefore, the entropy
was introduced to investigate these complexities. FuzzyEn is
a proven, powerful tool for measuring the complexity of the
signal owing to its insensitivity to noise and data length [37].
Thus, FuzzyEn was selected as the complexity measurement
method. MFC-En showed a statistical significant among the
control, LR, and HR groups with p < 0.05, which revealed
that the rhythms changes of the ANS throughout the day were
more complex in the CHF groups, especially in the HR group.
Moreover, MFC-En achieved a higher ACC in CHF classifi-
cation than that of LF/HF (86.7% versus 79.6%). Therefore,
the MFCA method has potential for CHF classification and
early stage CHF detection.

The 5-min HRV segment was used for the indices calcu-
lation because the 5-min segment was suitable for the time
and frequency domain analysis [15]. The complexity of the
indices in 24-h was analyzed because the circadian rhythms
led the ANS changes throughout the day [41]-[44].

C. PHYSIOLOGICAL SIGNIFICANCE

It has been reported that CHF disease is a chronic cardiovas-
cular syndrome along with ANS dysfunction, and HRV is a
useful tool for ANS assessment [3]. Previous studies have
investigated the power changes of the HRV signal, which
revealed the tone of the ANS is different between the healthy
and CHF subjects [15]-[17]. The HHT reveals the rhythms
changes of the bio-signal by monitoring the instantaneous fre-
quency changes of the signal [18]. In this study, the rhythms
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changes of the ANS were more rapid and complex in the CHF
subjects.

MFC-En(MIF;) and MFC-En(MIF;) reflected that the
rhythms changes of the VHF and HF component of the HRV
signal were more complex in the CHF groups, respectively.
The VHF and HF components were related to the cardiac
contractility and PNS activity [31]-[33], and these complexi-
ties increased with the severity of CHF Thus, MFC-En(MIF;)
and MFC-En(MIF;) revealed the rhythms of the cardiac con-
tractility and respiratory pattern are were more complex in
the CHF patients, especially in the HR patients (TABLE 2).
This result showed that the rapid and disordered respiratory
pattern of the CHF patients was consistent with previous
studies [45], [46] MFC-Mean(MIF3) and MFC-Mean(MIF,)
showed significant differences (p < 0.001) among the
control and LR groups while MFC-En(MIF3) and MFC-
En(MIF,) had no significant differences (TABLE 2) Thus,
although the rhythms of the SNS changed, the changes were
not obvious at the beginning stage of CHF disease [47]

In conclusion, the MFCA-based indices indicated that the
rhythms changes and complexities of each component of the
HRYV signal increased in the CHF group, thus revealed that
the ANS in CHF patients are more activated, even in the early
stage of disease [47]. These results showed that the rhythms
of cardiac contractility and the modulation of the ANS were
more rapid and complex in CHF patients.

D. LIMITATIONS

This study had some limitations. First, the ages of the subjects
in the control and CHF groups were significantly different,
which may have influenced the results. Second, the study
in the large sample found that the EMD method failed to
completely decompose the HRV signal into four frequency
components for the first 4 IMFs. Third, the performances
of MFC-En in CHF early stage detection were not ideal.
MEFC-En achieved a higher ACC than that of LF/HF (65.91%
versus 54.55%), which may be related to the effects of the
imbalances in the data and the performance of the classifier.
Finally, the algorithms should to be improved. Therefore,
these limitations should be considered in future studies.

V. CONCLUSION

This study proposed the MFCA method as a novel HRV anal-
ysis method for analyzing HRV with CHF. The MFC-Mean
and MFC-En indices were nonlinear HRV indices and were
significantly higher in the CHF patients. These indices
showed that disordered rhythms changes of the ANS occurred
in the CHF patients. The MFC-En values were also signifi-
cantly different among the three classes of subjects. There-
fore, this study was able to propose a novel method for CHF
assessment.
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