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ABSTRACT In this paper, a TE340-mode substrate-integrated cavity (SIC) excited 2 × 2 slot antenna
subarray with two TE210-mode SICs’ loading is presented at 140 GHz in low-temperature co-fired ceramic.
By using the TE340-mode SIC, the number of vias used in the feeding network and the area of the feeding
network can be reduced compared to the feeding network composed of conventional TE10/TE20-mode SIW
power dividers. The proposed simplified andminiaturized high-order mode SIC-based feeding network leads
to lower transmission loss and fabrication cost and reduces the fabrication difficulty. Each pair of radiating
slots is loaded by a TE210-mode SIC to improve the impedance bandwidth and the gain performance. For
the proof of concept, an 8 × 8 antenna array is further designed and measured. The measured impedance
bandwidth of the proposed 8 × 8 antenna array is 10.7% from 130.3 to 145 GHz for |S11| ≤ −10 dB. The
measured peak gain is 20.5 dBi. The measured radiation efficiency is 59.2%.

INDEX TERMS 140 GHz, low temperature co-fired ceramic (LTCC), TE340 mode, TE210 mode, substrate
integrated cavity (SIC), slot antenna.

I. INTRODUCTION
The D-band (110-170 GHz) has been allocated for the appli-
cations such as communications, radars, imaging [1]–[5].
High-level integrated antennas with excellent performance
are highly desirable for these systems. A conventional
high-gain or high-efficiency antenna is a parabolic reflec-
tor antenna or hollow waveguide based antenna. In [6],
a parabolic reflector antenna is presented at 120 GHz with a
peak gain of 48.7 dBi. However, the bulky size (antenna diam-
eter is 450 mm) and large profile make it not suitable for inte-
gration with front-end planar circuits. In [7] and [8], a 32 ×
32 and a 16 × 16 hollow waveguide based antenna arrays
fabricated with a costly process called diffusion bonding are
presented at D-band, respectively. These two arrays show
the advantages of high gain (39.1 dBi and 31.7 dBi, respec-
tively) and low profile (antenna array heights are 2.4 mm and
4.8 mm, respectively). However, high mechanical pressure in
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the fabrication process will deform the antennas especially
when fabricating large and complex structures, which leads
to a low rate of finished products. At such a high operating
frequency band, the integration of high-performance anten-
nas with front-end planar circuits is important and preferred.
Low temperature co-fired ceramic (LTCC), a multilayer tech-
nology, can realize integration of passive/active devices with
antennas in a package [9]–[12].

A planar waveguide structure named substrate integrated
waveguide (SIW) [13] or laminated waveguide [14] has been
widely used in antenna designs by many researchers because
of its merits of low-loss characteristics, low fabrication costs
and ease of integration. Millimeter-wave (MMW) antenna
arrays based on SIW feeding networks have been realized
with printed circuit board (PCB) and LTCC processes in
much literature [15]–[19]. In [15] and [16], large arrays fed
by TE10-mode SIW feeding networks are presented with
excellent performances. Compared to the dominant mode
SIW, higher order mode SIW uses less metal vias which
leads to lower loss and fabrication cost [17], [19]. In [17],
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a 140-GHz LTCC 8 × 8 slot array fed by a TE20-mode
SIW based feeding network is presented with a 15.3% band-
width and a peak gain of 21.3 dBi. However, the seven-
layer complicated feeding network occupies a relatively big
area and leads to a low aperture efficiency (30%) and low
radiation efficiency (35%). In [18], a LTCC-based low loss
transmission line called ridge gap waveguide (GWG) forms
a hybrid multilayer feeding network with an SIW feeding
network for an 8 × 8 antenna array at W -band. The antenna
array based on GWG feeding network shows higher gain and
higher radiation efficiency compared to the array fed by SIW
feeding network. However, a small air gap is required in the
GWG structures which needs high machining accuracy in
MMW bands and increases the fabrication difficulty.

In order to design a simplified and compact antenna array
with better radiation performances, high-order mode sub-
strates integrated cavities (SICs) have been introduced to the
feeding networks of the antenna arrays [20], [21]. Compared
to the conventional TE10/TE20 mode SIW power divider
based feeding network, less vias are used in the high-order
mode SICs which simplifies and miniaturizes the feeding
network of the antenna array leading to lower loss caused by
feeding network and lower fabrication cost.

In this paper, high order mode (TE340 mode) SICs are
designed to simplify the feeding network of a multilayer 8 ×
8 antenna array in LTCC. Only four substrate layers are used
in the proposed feeding network. Compared to the effective
radiating aperture size of the 140-GHz LTCC 8 × 8 antenna
array fed by TE20-mode SIW based feeding network in [17]
(15.1 mm× 10.8 mm), the effective radiating aperture size of
the proposed 140-GHz LTCC 8× 8 antenna array (9.6 mm×
8.6 mm ) has been reduced by 49.4%. Meanwhile, due to
the simplified design and smaller occupied area of the feed-
ing network, the measured aperture efficiency (51.1%) and
radiation efficiency (59.2%) are higher than those in [17].
TE210-mode SICs are loaded atop of the 8 × 8 slot array
to improve the impedance matching and gain. The simulated
and measured results show that the proposed array has the
characteristics of wide bandwidth, high gain and stable radi-
ation patterns, which indicates that the proposed array is a
good candidate for 140-GHz wireless communications.

The paper is organized as follows. Section II presents the
geometry of the 2× 2 subarray. The design of the 8× 8 array
is illustrated in Section III. Section IV gives the measured
results of the 8 × 8 array, and a conclusion is given in
Section V. All simulations are performed using the full-wave
electromagnetic simulator CST MWS.

II. 2 × 2 SUBARRAY
The geometry of the proposed 2 × 2 subarray is shown
in Fig. 1. The multilayer LTCC substrates used in this paper
are Ferro A6M with a dielectric constant of 5.9 and a loss
tangent of 0.002. Each fired substrate layer thickness is
0.096mm. The conductor used for the metallization and via is
silver with a conductivity of 6.3×107s/m and a metallization
thickness is 0.01 mm. There are six substrate layers and four

FIGURE 1. Geometry of the proposed antenna element. (a) Exploded
view. (b) Top view of the TE210-mode SICs. (c) Top view of the radiating
element. (d) Top view of the feeding SIW.

FIGURE 2. Simulated results of the 2 × 2 subarray.

metal layers in the 2 × 2 subarray as defined in Fig. 1.
The 2 × 2 subarray consists of two open-ended TE210-mode
SICs loading, 2 × 2 radiating slots etched on the metal
layer 2, a TE340-mode feeding SIC, and a feeding SIW.
The SICs loading improves the impedance matching and the
gain of the slot antenna and the similar designs have been
presented in [16] and [17]. The simulated results of the 2 ×
2 subarray are shown in Fig. 2. The impedance bandwidth
(|S11| ≤ −10dB) of the 2 × 2 subarray is 11.95% from
130.6 to 147.2 GHz. The simulated peak gain is 10.93 dBi
at 136 GHz, and the gain is larger than 8.5 dBi within the
impedance bandwidth. The simulated radiation patterns of the
2 × 2 subarray are shown in Fig. 3. The cross-polarization
levels in both E (yoz)- and H (xoz)-planes are better than
−36 dB. The optimized dimensions of the 2 × 2 subarray
are listed in TABLE 1.

Fig. 4(a) shows the E-field distribution of TE340 mode
inside the SIC in substrate layers 3-4 at 140 GHz. Fig. 4(b)
shows that the four radiating slots etched on metal layer 2
have the same phase of the E-field which guarantees the
2 × 2 subarray good performance. The TE340-mode SIC of
the 2 × 2 subarray can be regarded as a four-way power
divider. Compared to the conventional TE10-mode SIW feed-
ing network, the proposed TE340-mode SIC design reduces
the number of vias and simplifies the antenna structure.
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FIGURE 3. Simulated radiation patterns of the 2 × 2 subarray.
(a) 131 GHz. (b) 135 GHz. (c) 140 GHz. (d) 147 GHz.

TABLE 1. Optimized dimensions of the 2 × 2 subarray (unit:mm).

Thus, the proposed high order TE340-mode SIC leads to lower
fabrication cost and lower transmission loss due to the feeding
network. The E-field distributions inside the top two loaded
SICs at 140 GHz are shown in Fig. 4(c). It can be seen that
TE210 modes are excited inside these two loaded SICs.

FIGURE 4. E-field distributions at 140 GHz. (a) Inside the TE340-mode SIC
in substrate layers 3-4. (b) On the 2 × 2 radiating slots on the metal
layer 2. (c) Inside the two TE210-mode SICs in substrate layers 1-2.

Three referenced antennas are designed for comparisons,
as shown in Fig. 5. The total sizes of the three referenced
antennas and the proposed 2 × 2 array are all 3.5 mm ×
3 mm. In referenced antenna 1, two layers of Ferro A6M
substrate are loaded atop of a TE10-mode SIW 2 × 2 slot
array as shown in Fig. 5(a). In referenced antenna 2,

FIGURE 5. Three referenced antennas. (a) Referenced antenna 1:
TE10-mode SIW slot antenna with two layers of Ferro A6M substrate
cover. (b) Referenced antenna 2: TE340-mode SIC slot antenna with two
layers of Ferro A6M substrate cover. (c) Referenced antenna 3: antenna
removed the matching posts from the TE340-mode SIC of the proposed
2 × 2 subarray. (d) TE10-mode SIW feeding network in substrate layers
of 3-4. (e) Proposed TE340-mode SIC feeding network in substrate layers
of 3-4.

FIGURE 6. Simulated results of the three referenced antennas and the
proposed 2 × 2 antenna array. (a) |S11|. (b) Gains. (c) Radiation
efficiencies.

two layers of Ferro A6M substrate are loaded atop of a
TE340-mode SIC 2 × 2 slot array as shown in Fig. 5(b).
All the dimensions of the feeding network in referenced
antenna 2 have the same values with those in the proposed
2 × 2 subarray. In referenced antenna 3, the two matching
posts inside the TE340-mode SIC are removed from the pro-
posed 2 × 2 subarray as shown in Fig. 5(c). The simulated
results of the three referenced antennas and the proposed
2× 2 subarray are shown in Fig. 6. The impedance bandwidth
(|S11| ≤ −10 dB) of the referenced antennas 1, 2 and 3
are 5.9% (134.7-142.9 GHz), 12.8% (129.9-147.6 GHz) and
9.9% (130.7-144.3 GHz), respectively. The peak gains of the
referenced antennas 1, 2 and 3 are 10.7 dBi, 10.7 dBi and
10.95 dBi, respectively. It can be seen that the impedance
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matching gets better by adopting TE340-mode SIC feeding
network and TE210-mode SICs loading. The two matching
posts in the TE340-mode SIC of the proposed 2 × 2 subar-
ray improve the impedance matching at higher frequencies
(higher than 139GHz). The TE10-mode SIW feeding network
and the proposedTE340-mode SIC feeding network are shown
in Figs. 5(d) and (e), respectively. The sizes of the two feeding
networks are 2.57 mm × 2.2 mm and 2.22 mm × 2.01 mm,
respectively.Miniaturized feeding network has been achieved
by adopting high order mode SIC. The numbers of the vias
in the TE10-mode SIW feeding network and the TE340-mode
SIC feeding network are 54 and 36, respectively. 33% reduc-
tion in vias numbers has been achieved by using high order
mode SICwhich leads to lower fabrication cost. The radiation
efficiencies of the four antennas are shown in Fig. 6(c). The
radiation efficiencies of the three TE340-mode SIC based
antennas are higher than that of the TE10-mode SIW based
array within the operating bandwidth. It is noted that the only
difference between referenced antennas 1 and 2 is the feeding
networks in substrate layers of 3-4. It can be concluded that
the TE340-mode SIC feeding network has lower insertion loss
compared to the TE10-mode SIW feeding network.

FIGURE 7. Geometry of the 8 × 8 antenna array. (a) 3-D exploded view of
the 8 × 8 antenna array. (b) Top view of the 4 × 8 TE210-mode SICs
loading (substrate layers 1-2). (c) Top view of the 8 × 8 radiating slots
excited by TE340-mode SICs (substrate layers 3-4). (d) Top view of the SIW
power divider (substrate layers 5-6). (e) Top view of the air-filled feeding
aperture (substrate layers 7-8).

III. 8 × 8 ANTENNA ARRAY
Using the 2 × 2 subarray described above, an 8 × 8 antenna
array is designed as shown in Fig. 7. The spacings between

FIGURE 8. Geometry of two types of H-junctions in the SIW power
divider. (a) H-junction 1. (b) H-junction 2.

FIGURE 9. Simulated results of the two H-junctions. (a) H-junction 1.
(b) H-junction 2.

TABLE 2. Detailed dimensions of the H-Junctions 1 and 2 (unit: mm).

adjacent subarray along x- and y-directions are
2.26 mm (1.032 λ0) and 2.47 mm (1.128 λ0), respectively,
where λ0 is the wavelength at 137 GHz in free space. There
are two types of H-junctions in the SIW power divider of
the 8 × 8 antenna array, as shown in Fig. 7(d). The perfor-
mances of these two H-junctions are crucial to the overall
reflection coefficient performance of the 8× 8 antenna array.
The simulated models of these two H-junctions are shown
in Fig. 8 and the simulated results are shown in Fig. 9.
The impedance bandwidth (|S11| ≤ −15 dB) of the
H-junction 1 and H-junction 2 are 18.5% (123.4-148.6 GHz)
and 17.8% (124.2-148.4 GHz), respectively. Detailed dimen-
sions of the two H-junctions are given in TABLE 2. For the
purpose of measurement, a metallic waveguideWR-6 to SIW
transition is designed. As shown in Fig. 10, the transition has
a bandwidth from 130.7 to 146.5 GHz for |S11| ≤ −20 dB
and an insertion loss of less than 0.4 dB in the operating band.

IV. EXPERIMENTS AND DISCUSSIONS
The proposed 8 × 8 antenna array is fabricated using
the LTCC process. The photograph of the fabricated 8 ×
8 antenna array is shown in Fig. 11(a). The overall size of the
fabricated antenna array is 32 mm × 20 mm × 0.818 mm.
The size of the effective radiating aperture is 9.6 mm ×
8.6 mm. The simulated and measured |S11| and gains of the
8 × 8 antenna array are shown in Fig. 12. The simulated
and measured bandwidth (|S11| ≤ −10 dB) are 11.4% from
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FIGURE 10. Simulated results of the proposed WR-6 waveguide to SIW
transition.

FIGURE 11. (a) Photograph of the fabricated 8 × 8 antenna array
(left: top view, right: bottom view). (b) The fabricated 8 × 8 antenna
array under test.

FIGURE 12. Simulated and measured |S11| and gains of the 8 ×
8 antenna array.

128.8 to 144.4 GHz and 10.7% from 130.3 to 145 GHz,
respectively. The simulated and measured peak gains of the
8 × 8 antenna array are 21.1 dBi at 137 GHz and 20.5 dBi
at 138 GHz, respectively. The simulated radiation efficiency
of the antenna array is above 61% within the bandwidth.
The simulated peak radiation efficiency of the antenna array
is 68% at 139 GHz. The measured radiation efficiency can
be calculated by comparing the simulated directivity and the
measured gain. Then the measured radiation efficiency of the
antenna array is 59.2% at 138 GHz. The aperture area of
the 8 × 8 antenna array is defined as 9.6 mm × 8.6 mm.
The aperture efficiency, η, can be calculated by the following
equation [22]

η =
Gλ2

4πS
(1)

FIGURE 13. Simulated and measured radiation patterns for the proposed
8 × 8 antenna array. (a) 131 GHz. (b) 135 GHz. (c) 140 GHz. (d) 144 GHz.

where G and S are the measured gain and the effective radi-
ating aperture of the antenna, respectively. Then, the aperture
efficiency of the 8 × 8 antenna array can be calculated as
51.1% at 138 GHz.

The comparisons of the simulated and measured radi-
ation patterns in E (yoz)- and H (xoz)-planes are shown
in Fig. 13 for frequencies are 131, 135, 140, and 144 GHz.
Due to the limitations of the measurement facilities, only
the radiation patterns from −90◦ to 50◦ in the xoz-plane
are obtained. Broadside and stable radiation patterns are
observed. The measured first sidelobe levels of the radiation
patterns are lower than −10.5 dB. The discrepancy between
the measured and simulated first sidelobe levels is mainly
resulted from the fabrication tolerance and the influence of
the feeding setup near the antenna in measurement. The
measured cross-polarization levels are lower than −25 dB
within the bandwidth in both planes. Grating lobes which
degrade the antenna efficiency and gain can be observed in
the radiation patterns especially in the H-planes due to the
large spacings between two adjacent subarrays. The spacings
along x- and y- directions between two 2 × 2 subarrays can
be reduced by making them share one row of via fence.
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TABLE 3. Comparison between the proposed and reported millimeter-wave antenna arrays.

Structural characteristics and performances of different
kinds of 140-GHz antenna arrays are listed in Table 3 for a
comparison with our work. It can be seen that the proposed
8 × 8 array has the smallest effective radiating aperture
electrical size (4.41λ × 3.95λ × 0.38λ) among those 8 ×
8 millimeter-wave arrays due to the use of TE340-mode SICs
based feeding network. Compared to the 32 × 32 array
in [7] and the 16 × 16 array in [8], it can be inferred that
larger arrays expanded from the proposed 8 × 8 array will
achieve smaller effective radiating aperture electrical size.
It is observed that the proposed design features the advantages
of compact size, high gain, and high efficiency among the
millimeter-wave LTCC antenna arrays.

V. CONCLUSION
A TE340-mode SICs based 8 × 8 slot antenna array with
TE210-mode SICs loading has been presented at 140 GHz.
The proposed 8× 8 antenna array is composed of sixteen 2×
2 subarrays. 2 × 2 radiating slots in each subarray are fed by
a TE340-mode SIC. The simplified and miniaturized feeding
TE340-mode SICs not only reduce the feeding network loss
but also reduce the fabrication cost. 4 × 8 TE210-mode SICs
are loaded atop of the 8 × 8 radiating slots to improve the
performance of the array. It is demonstrated that the proposed
antenna array can be a promising candidate for the D-band
communication systems.
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