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ABSTRACT Unlike graded data of common semiconductor test results storing in relational databases,
log data in the standard test data format (STDF) contain millions of test data entries. In a semiconductor
packaging and testing factory, a semiconductor wafer or integrated circuit tests generate thousands of
STDF files each day; therefore, how to store these massive databases is a crucial topic. Different products
correspond to different test items and STDF content; if a relational database is used to store all forms of
data, the practical operation becomes challenging. This paper used a NoSQL document-oriented database
collocated with a Docker container to build a system, named the scalable STDF data (SSD) framework,
for storing semiconductor test data. According to semiconductor test operations, the SSD framework first
converts STDF files into an open standard format for data transmission and subsequently transfers them
to the database. The use of NoSQL databases allows for flexibility of specifications of STDF content, and
a Docker container exhibits features such as rapid deployment and high scalability. The SSD framework
meets the requirements of semiconductor testing for throughput, latency, and parallel experimental projects;
possesses excellent execution efficiency; and provides flexible data storage services in a semiconductor
testing environment where processing a large quantity of data is required. From our simulation results,
the major performance of the proposed system depends on the hardware properties. The higher hardware
distribution degree provides better performance. Docker container provides more connections and the
scalability of storage, but higher software distribution contributes limited performance enhancement.

INDEX TERMS Flexible data storage, scalable STDF data, semiconductor testing, standard test data format.

I. INTRODUCTION
Themanufacturing process of an integrated circuit starts from
a circuit layout. Through hundreds of repeated complex pro-
cedures (e.g., exposure, development, ion implantation, and
etching), dozens of layers of circuits are accurately formed
on a thin and round disk-like wafer before it undergoes final
testing and packaging. The semiconductor packaging test is
the final stage of semiconductor manufacturing. Test items
are enumerated for wafer or chip characteristics and tested
individually. During the test, the results for each item are
recorded in a file of a specific format. The score directly
affects the value of a wafer.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chin-Feng Lai.

Recently, advancement in semiconductor manufacturing
has substantially enhanced the functions of integrated cir-
cuits; therefore, the unit price of each wafer is escalating,
and the number of test items to verify the functions of chips
is increasing. Hundreds of items are tested to verify wafer
operation; after each test, a test data STDF file is gener-
ated. STDF files exhibit a particular structure. Appropriately
preserving STDF files is helpful for engineers to conduct
subsequent analysis, such as tracing problems encountered in
the manufacturing process.

STDF files are simple and flexible files that can store
data logs for millions of test items. The storage environ-
ment must be capable of storing vast quantities of test data
at all times [13]; in such storage settings, users should be
able to quickly find the required data in a massive database.
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Conventional relational databases can improve data through-
put using a clustered architecture when processing large data;
however, they are ineffective for STDF files because of the
diversity in wafer test data.

Based on the Docker program and MongoDB, this study
developed the SSD framework to elastically store test data for
wafer fabrication. Used mainframes and equipment, which
have been replaced during renovation but still have com-
puting and storage capabilities, can be used as the primary
hardware to reduce system construction costs and turn passive
assets into active assets. MongoDB is an open-source NoSQL
database; it features high performance, high reliability, and
automatic expansion that satisfies the short response time,
long operating time, and scale-out in data acquisition required
by the semiconductor industry.

The test cases used in the experiment were divided into five
categories to highlight the context of actions such as reading,
updating, and adding. Data throughput, latency, and response
time are discussed separately. The performance of the SSD
framework introduced in this paper exceeded the data storage
requirements of a test package. Notably, in the large-scale
writing of data, the SSD framework was able to respond
quicker than the time estimated according to the linear growth
rate of data.

In this paper, we aim at saving semiconductor testing data
log, and the contributions are listed as follows:
• Implement a high throughput data log platform for sav-
ing semiconductor testing data.

• Build up the scale-out data-save service to increase the
storage volume with small effort.

• Provide a solution for the reactivation of useful but not
main force equipment.

II. RELATED WORKS
A. NoSQL DATABASE
STDF files generated by wafer tests exhibit a distinct
structure. Although the organization of the files has a
particular specification, the diversity in the content of
STDF files induced by wafer characteristics hinders data
normalization [17]. To support such file-oriented data, devel-
opers have begun to provide solutions for most conventional
relational databases [18], [19]. NoSQL developed using the
consistency, availability, and partition tolerance (CAP) theo-
rem can satisfy the characteristics of STDF files and provide
optimized data access [1], [6]. Barbierato et al. (year) found
that using NoSQL to store or query data was superior to
using relational databases [5]. Current NoSQL databases are
divided into the following four categories:

1) Key-Value databases: These break the schema of
relational databases; in the database, each datum is
independent, and the system has high horizontal scal-
ability. Typical kits include BigTable, Hadoop HBase,
and Apache Cassandra.

2) In-memory databases: To increase the reading speed,
these database storage operations rely only on memory.
These are suitable for use on cached pages, reducing

the number of readings of a hard disk. Prominent
in-memory databases are Redis, Tuple Space, and
Velocity.

3) Document databases: These are used to store loosely
structured or unstructured data; in common unstruc-
tured data, such as HTML pages, each tag paragraph
can contain text, images, or music. Common examples
are CouchDB, MongoDB, and Riak.

4) Graph databases: These use graph structures to store
data in the forms of nodes, edges, and properties. Com-
mon graph databases are Neo4j and InfoGrid.

In a series of test reports, The Software and Information
Industry Association noted that when accessing documents
such as STDF files, MongoDB has superior scalability and
execution performance to other NoSQL databases. Practi-
cal implementations, such as accessing electronic medical
records or processing turbine operation data at wind power
plants, require working with data exhibiting high heterogene-
ity, uncertainty, and scalability; in this regard, MongoDB
provides reliable services.

Except for in particular circumstances, semiconductor
production lines do not stop. Therefore, hardware devices
responsible for STDF data storage must have a low failure
rate. Current solutions for hardware failure are as follows:
• Data cutting: The effect of failure can be minimized, and
reading andwriting of data can be distributed to different
nodes to increase speed. In events of data loss, partial
data can still be retained.

• Multiple copies: Most NoSQL implementations are
based on a hot backup of data to ensure high data
reliability.

• Dynamic scaling: In response to a high data growth rate,
NoSQL can expand capacity without shutting down the
system.

• Query support: Data stored in document databases are
in the form of binary large objects (BLOBs). Using
correlation between keywords and a list of attributes,
the operation of the schema key is no longer restricted.

To handle huge amount of data and a board range of
data types, NoSQL database is the popular solution for data
scientists. NoSQL database considers schemaless to meet the
requirements of elastic applications. Rational databases apply
well defined structure to specific the data access rule, so pro-
grammers access the rational database via a common inter-
face, e.g. structure query language (SQL). The property of
well-defined structure increases the data access performance
of rational database, but it restricts the model of accept-
able data. Therefore, the schemaless is the major reason
for NoSQL considered in a wide range of applications [30].
However, NoSQL database is not appropriate for all kinds of
applications. We study some implementation issues that are
arranged as follows to discuss the NoSQL database.
• Schemaless: NoSQL does not consider data structure,
so it can be applied to wide a range of applications.
Since the NoSQL is schemaless, programmers have
to develop the interfaces for database access services.
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Thus, the efficiency of database access depends on the
service interface [29].

• Application latency: writing data into NoSQL database
is more efficient than that in rational database [31].
Given a specific query order, NoSQL may not provide
better performance than rational database. The major
reason is that the runtime overhead results in the latency
especially web applications [29].

• ACID properties (Atomicity, Consistency, Isolation
and Durability): rational databases provide ACID but
NoSQL databases consider Basically Available, Soft
State, Eventual consistency (BASE) properties [33].
BASE is not as reliable as ACID. So some special appli-
cations require ACID rather than BASE e.g. banking
industries.

LourenÃğo et al. [32] study current popular NoSQL
databases, and figure out that the MongoDB provides reliable
data access services. Even if we have alternative choices for
better data read and write performance, the performance of
MongoDB can be improved via data shard.

B. DOCKER
For system operations, a means to rapidly reconstruct the
execution environment in the event of a hardware failure is
crucial to prevent catastrophic consequences. In the past, high
reliability was achieved through hardware virtualization tech-
nologies and virtual machines. However, the slow response
of the setting caused the deployment of virtual machines
to be time consuming, and the copying of physical files
was the primary time cost. To solve this problem, Docker
provides Linux containers, which use Linux to package the
core libraries and codes to create the execution environment
required by users. The difference from conventional virtu-
alizations is that Docker implements virtualization at the
operating system (OS) level and uses the native OS directly;
the conventional approach is implemented at the hardware
level. Figure 2.3 shows the operation of conventional virtu-
alization. Conventionally, a guest OS must be built, which
is time- and hardware-intensive; however, Docker does not
need this. Therefore, the performance of Docker is as simple
and convenient as a fast and lightweight virtual machine. The
execution efficiency of Docker is high; the startup of the
container completes within seconds. Docker does not con-
sume extra system resources, except when executing built-in
applications; therefore, the usage rate of the system is high,
and it is helpful for companies that provide semiconductor
testing.

Docker technologies share Linux kernel to provide mul-
tiple containers. However, the security issue is a criti-
cal consideration. Since containers use the same kernel,
it implies the container user may access the information
of other users. To keep the security, we have three major
solutions: isolation, host hardening, network security, and
jail [20]–[22]. In these solutions, isolation is a common
solution to enhance the container security [21], [23], [24].
Managers can apply the identifiers to realize the isolation,

FIGURE 1. The operation of conventional virtualization.

e.g. containers’ namespaces, groups and mandatory access
control [24]. Moreover, Bacis et al. [24] propose a docker
file configuration to Security-Enhanced Linux policy, so that
the container security can be improved. According to the
study of Dua et al., isolation provides higher security [22].
Although isolation suffers a short board effect, Lin et al.
propose a defense mechanism for the identified privilege
escalation attacks [22]. For network security, to enhance the
container security provides the access control in terms of the
communication level. Manu et al. [25] design the balanced
multilateral security prototype. The proposed architecture
applied OSI/TCP/IP model to the cloud service structure.
In the proposed architecture, physical layer, data link layer
and network layer are rearranged in a service, i.e. infras-
tructure as a service. So that each communication can be
controlled, and the security can be managed.

III. PROBLEM DEFINITION
Considering a semiconductor manufacturing, the test process
will generate a lot of manufacturing information, includ-
ing manufacturing parameters, equipment status, workpiece
feedback, etc. The gateway will collect the manufacturing
information and output the data in the STDF format. The
STDF data will be sent to a data center for further process.
In this paper, we focus on developing and implementing the
data center to gather the testing record. Production managers
will follow the testing record to determine the production
quality is passed or not. The data center should provide
following abilities.

1) High throughput: higher throughput indicates that more
data can be received. Since the test processes will gen-
erate a lot of data, the semiconductor test data center
must have the ability to receive grate amount data in a
specific time period.

2) Low update latency: update is an important process
for semiconductor test. The process should change the
status according to the test result. The data center must
provide low update latency so that the further process
can be launched as early as possible.

3) Low insertion time: the major work of processing the
test data is the data insertion. The data center must
have the ability to receive the test data and write them
into the storage. Therefore, the performance of the data
insertion is a critical issue of the proposed data center.
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IV. THE PROPOSED SOLUTION - SCALABLE
SEMICONDUCTOR DATA LOGGER
Items are tested individually, and the tests generate STDF
files in the direct-mounted NAS space. The SSD framework
provides a resident program to continuously monitor the
space. When an STDF file is generated, the AP uses STDF4j
and Google GSON to convert the STDF file to JSON format
and then writes the JSON data to MongoDB through a Java
MongoDB driver. The test engineers query the test results
through the SSD framework’s graphical user interface (GUI).
The usage scenario is shown in Figure 2.

FIGURE 2. The scenario applied in the semiconductor test process.

FIGURE 3. The structure of the proposed solution.

Figure 3 shows the architecture of the solutions proposed
in this paper. An STDF file is converted to JSON data, and
the data are transferred to Mongos of MongoDB through
the MongoDB client. Subsequently, the internal algorithm of
MongoDB writes the data to MongoDB for storage, and a
MongoDB configuration server records the location of the
data. The software architecture is shown in Figure 4.

Figure 5 illustrates the operation of a semiconductor test.
Semiconductor tests can usually be divided into two types:
chip probing and final testing.

FIGURE 4. The software structure of the proposed solution.

• Chip probing: The crystal grains on the wafer are exam-
ined for defects by a test probe according to the electrical
specifications of the design. The test is conducted on the
wafer level; therefore, chip probing is also called wafer
sorting. If the yield rate is too low, it means that problems
occurred during the wafer manufacturing process. This
information must be quickly reflected in adjustments to
the production process.

• Final testing: This test, also known as a product test,
is performed using an electrical needle on packaged
products. This test ensures that products meet the design
specifications after packaging.

Understanding the STDF file organization structure is
necessary when converting files to or from STDF format.
An STDF file is a binary file composed of different data.
Each data record contains a header and the data itself. The
header includes the data length, type, and subtype. In the
header, the data type and subtype are integers appearing in
pairs. The meaning of this data record can be found using the
combination of REC_TYPE + REC_SUB.
The primary data record in an STDF file is the master

information record, which is used to identify each STDF
file. This record stores information about the tests, including
lot information, start and end times, machine used, program
used, production equipment code, and operators.

Themajority of STDF records is stored as a Parametric Test
Record 3.6 (PTR). Tens of thousands of wafer data entries
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FIGURE 5. The operations of a semiconductor test.

are stored in STDF files. Each wafer has hundreds of PTRs;
therefore, a file contains millions of PTRs. Preset values for
the test (e.g., limits, units, and value ranges) are stored when
the PTR first appears in an STDF file.

The transferred JSON data are shown in Figure 6. This
experiment first transferred the PTRs, which were the major-
ity in the STDF files, to MongoDB. Therefore, the JSON
schema of the test data only stored theMIR/PTR records. The
number of PTRs was n, and n depends on the quantity of test
data in an STDF file.

FIGURE 6. A sample of transferred JSON data.

Security is a key issue for sharing Linux kernel.
There are some techniques that we can use to increase
the container security, e.g. isolation or communication
control [22], [24], [25]. In this paper, we focus on providing
the scalable log data saving service for semiconductor testing.
Our major mission is to scale out the storage volume and the
connection ability of saving testing data rather than providing
multiple services in different containers. So that the infras-
tructure requirement of saving testing data is simpler than that
required by the multi-purpose service.

V. SIMULATIONS
The experimental environment is shown in Figure 7. During
the experiment, the user executed the command Shell Script,
and specified through parameters the workload and interface
to be used. The system subsequently wrote the data into the
test database and began testing. After each test, the system
automatically cleared the remaining data and re-entered the
test data to ensure the fairness of each test.

FIGURE 7. The experimental environment for semiconductor test.

TABLE 1. The test benchmark including read, update insertion
operations.

We consider five test scenarios based on the combinations
of data read, update, and insertion. The test scenarios are
listed in Table 1. According to the operations in each scenario,
we have five workloads including full insertion, most update,
major read, most read, and full read.

This study used the Yahoo! Cloud Serving Bench-
mark (YCSB) as a test data source. The YCSB is a benchmark
framework designed by Yahoo! for a variety of databases to
compare performance between different databases. Although
the data characteristics presented in practical applications
are different, the design of the benchmark is based on the
following three:
• A large amount of data traffic: Data traffic is increasing
with the speed of Internet service and the transformation
of service applications.

• Flexibility in increasing nodes: This allows administra-
tors to effortlessly increase the number of serving nodes
to provide more storage.

• Fault tolerance: Software and hardware troubleshooting
is undertaken for all possible hosts or networks.

The YCSB uses the following four levels to determine the
benchmark:
• Performance: Use gradually increased loading to detect
if an exception has occurred or if the performance is as
expected.

• Scaling: Increase the number of service nodes, but also
increase loadings in the same proportions to compare the
extent of changes.

• Availability: Test the burden to performance when hard-
ware or network problems occur.

• Replication: Individually adjust the number of service
nodes provided by the database.

In this paper, our major goal is to provide a scalable data
storage service for saving semiconductor testing data. Since
the server replacement rate in the semiconductor industry is
higher than other industries, some servers still have the ability
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to provide storage service even if the computation power is
not high enough for some processes. So that we consider three
hardware levels:
• Low level environment means that the storage unit
has low computing power but the storage service is
still enough. We use a notebook to simulate low level
environment.

• Single server means that the server provides high
enough computing power and we would like to insert
data to single server, and the server may provide some
computation in the further process.

• Two servers means that the system can accept heavy
data insertion process, so that we may use distributed
structure to increase the storage performance.

To scale out the storage, we have two implementations:
1) hardware distribution strategy which means increasing
the number of servers, and 2) software distribution strategy
which means increasing the number of MongoDB shards.
Therefore, we will discuss the performance of the proposed
service in terms of the hardware and software distribution
strategies.

A. THROUGHPUT
This study first tested the execution performance of versions
2.6.9 and 3.0.2 of MongoDB to determine the settings for
subsequent experiments. We consider three environments in
this experiment: low level environment, single server, and
two servers. The simulation results are shown in Figure 8, 9,
and 10 respectively.

The result of low level computing unit execution is shown
in Figure 8. The horizontal axis is the test case; the verti-
cal axis is throughput. In each data set, version 3.0.3 out-
performed version 2.6.9; in the execution environment of
Native VM, consistent results were also obtained (Figure 9).
On two servers of Native VM in the same hardware and
software environment, this study conducted comparison tests
on the throughput of eight shard servers. The result of the
execution is shown in Figure 10. The performance of version
3.0.2 was superior to that of 2.6.9. Therefore, the throughput
performance of version 3.0.2 was superior to 2.6.9 for both
single-machine and distributed execution.

FIGURE 8. The throughput evaluation of a single server.

FIGURE 9. The throughput evaluation of Native VM.

FIGURE 10. The throughput evaluation of Native VM with two servers.

FIGURE 11. The throughput improvement comparing between single
server and two servers.

The marginal performance between single server and two
servers is illustrated in Figure 11 while the improvement
in percentage is shown in Figure 12. The performance of
insertion is similar to that of update but more powerful than
that of pure read process. However, in the full read case
(WorkloadE), version 2.69 has better performance the version
3.02. Therefore, considering hybrid database engine may be
a performance optimization issue. For the compression in
percentage, we get similar results than that of Figure 11.
The result shows that increasing the hardware distribution
degree provides major improvements in WorkloadC (major
read case), but the improvement is not only about 13% in
other cases.
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FIGURE 12. The throughput improvement percentage comparing between
single server and two servers.

From above results, the system throughput depends on
the computing power, but not on the hardware distribution
degree. From Figure 12, the marginal throughput obtained
by increasing the hardware distribution degree comes from
WorkloadC, which includes hybrid processes. In other cases,
which indicate a single process, the hardware distribution
degree provides limited improvement of throughput. Espe-
cially in WorkloadE with pure read process, MongoDB
with version 2.69 provides better performance than that of
version 3.02.

B. UPDATE LATENCY
The execution efficiency of updating the test data is an essen-
tial reference indicator. The architecture with high execution
efficiency provides low latency. This experiment compared
the latency of versions 2.6.9 and 3.0.2 to understand the
response speed of the solutions described in this paper. The
update performance depends on the computational power
of the server. We consider the simulation platforms with a
single server and two servers. Since the low level environment
provides less computation power than single server and two
servers, we do not consider the low level environment in
this simulation. Moreover, case WorkloadA includes pure
insertion processes, so we only consider the cases fromWork-
loadB to WorkloadE.

The experimental results of a single server are shown
in Figure 13. The horizontal axis is the test case, and the
vertical axis is latency. The unit is ms. Version 3.0.2 had lower
latency. Overall, the latency of version 3.0.2 was approxi-
mately 80% of the update latency of version 2.6.9. Particu-
larly, in the experimental scenario of WorkloadC, MongoDB
3.0.2 substantially improved throughput and provided users
favorable feedback.

In the execution environment of two nodes, the overall
latency was reduced by clustered operations that distributed
data traffic (Figure 14). Although lower latency was obtained
in all test cases, the ratio was consistent with the results
obtained with a single server.

To obtain the overall result, we compute the latency
improvement in time and in the percentage, and the results are
shown in figure 15 and 16 respectively. From figure 16, it is

FIGURE 13. The update latency of a single server.

FIGURE 14. The update latency of two servers.

FIGURE 15. The update latency improvement between single server and
two servers.

clear that the hardware distribution degree helps to improve
the update latency in the cases with the read process including
from WorkloadC to WorkloadE. Moreover, we obtain the
improvement sequence is WorkloadE > WorkloadD > Work-
loadC. It means the hardware distribution degree contributes
the latency improvement for the read process.

C. THROUGHPUT IN VARIOUS SHARD
In this experiment, we focus on discussing the performance
of the degree of software distribution. The degree of software
distribution means the number of MongoDB shards. The
degree of software distribution is directly related to through-
put. Theoretically, the higher degree of software distribution
is, the higher the throughput is. This experiment tested the
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FIGURE 16. The update latency improvement between single server and
two servers in percentage.

throughput performance of different numbers of shard in
different scenarios.

Figure 17 shows the experimental results of four shard
servers in different test scenarios captured in the low level
environment. Figure 18 is captured from the single server
environment. The horizontal axis is the degree of software
distribution; the vertical axis is throughput. This experiment
added a set of test environments with two servers and four
shard servers to compare the effects of the number of shard
servers on throughput.

FIGURE 17. The throughput evaluations with various number of shards in
low level environment.

When reading data was the primary work content, the num-
ber of shard servers was positively correlated to throughput
as presented by WorkloadD; however, if only considering
reading behavior, the performances of different numbers of
shard servers were not notably different, as WorkloadE pre-
sented. For other updating or inserting actions, the throughput
performance slightly improved with the number of shard
servers.

To evaluate the benefit of the software distribution degree,
we calculate the improvement of single server environment
compared to the low level environment. Figure 19 is the
enhancement of throughput while File 20 is the benefit in
percentage. Increasing software distribution degree provides
stable benefits, but the benefit is not proportional to the
degree of software distribution. It indicates that increasing the
hardware distribution generates higher benefit than increas-
ing the software distribution.

FIGURE 18. The throughput evaluations with various number of shards
capture from the single server environment.

FIGURE 19. The evaluation of the throughput gap between that in Fig. 17
and Fig. 18.

FIGURE 20. The evaluation of the throughput gap between that in Fig. 17
and Fig. 18 in percentage.

To verify our observation, we consider a comparison in
4 MongoDB shards and the simulation results are captured in
single server and two servers. The result is shown in Figure 21
and Table 2. The updating and insertion performance of two
servers was superior to that of a single server. However, for
the test scenario emphasizing the reading of data, the through-
put of two servers was not substantially different from that
of a single server. Therefore, parallel operations benefit the
updating and insertion of STDF files. However, intensive
data reading prevented the subsequent data analysis from
achieving high operational performance.

On the other hand, comparing the results in Figure 21 and
Figure 21 confirms our observation in the above. Increasing
the hardware distribution degree provides higher throughput
performance than increasing the software distribution degree.
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FIGURE 21. The throughput comparison in single server and two servers
where each server considers four shards.

TABLE 2. The throughput improvement captured in Fig. 21.

FIGURE 22. The performance of STDF data insertion.

For the scale out storage consideration, both strategies
achieve the purposes.

D. INSERTING STDF DATA TO MongoDB
To capture the real world performance, we measure the
total CPU time that the proposed system required to process
various testing data. This experiment evaluated the efficiency
of insert actions. The experimental results are shown in
Figure 22. The number of insertions on the horizontal axis
shows exponential growth with base 2; the vertical axis shows
the time spent in execution, in seconds.

When inserting less than 2 million STDF data entries,
the processing time grew in multiples of 2. However, when
the data reached 4 million entries, the execution time was
only slightly longer than the original 40.24%, but the data
growth was 10 times greater than the original rate. Therefore,
for semiconductor testing, the solution proposed in this paper
effectively assists the production line to save test result data.

VI. CONCLUSION AND DISCUSSION
With the continuous advancement of processing technology,
the quantity of data generated by semiconductor manufac-
turing and testing is a challenge for enterprises. These data

can be used to not only grasp the quality of production but
also trace possible flaws in the process. This study provided
an STDF data storage environment for semiconductor test
data that can consist of a small storage system or an idle
device in the factory. This study used a Docker container and
MongoDB to build a storage environment that substantially
improved the response time to hardware failure. A shard
server environment to build the system is recommended to the
stability and security considerations of the system to provide
stable access to data for an enterprise.

Semiconductor test data can be used for more than STDF
files. In the future, other production-related data can also be
stored in the cloud storage system. Appropriately selecting
a sharding key for data sharding can conveniently divide the
large quantity of data; data query could directly correspond
to the required shard to enhance query speed. The direction
of experimentation in the future will be as follows:
• The application integration: the saved testing data can be
applied to various processes and applications. For exam-
ple, production manager tracks the equipment health
via the prognostics and health management (PHM)
system. The MongoDB not only needs to save test-
ing data but also outputs the specific data for further
applications. So that the resource management is nec-
essary. To manage and dispatch jobs in docker plat-
form, Kubernetes provided by Google is a candidate
solution [26]–[28]. Kubernetes provides some conve-
nient properties in terms of managing docker resources,
e.g. rapidly deploying resources and elastic applications.
To integrate applications, Kubernetes is a candidate for
resource management.

• The data visualization: we will try to visualize the
selected query results to indicate the information pro-
vided by the semiconductor test data. To realize this
issue, we have to handle the JOIN process in NoSQL
database. Since NoSQL database, e.g. MongoDB, does
not consider schema, the JOIN operator is not sup-
ported. There are alternatives to merge the data from
two collections, e.g. lookup and aggregate functions.
However, the major problem is the performance. Even if
the JOIN processes can be realized between several col-
lections, the performance should be optimized in terms
of throughput and latency.

• The track of equipment health: the equipment health
determines the product quality. This implies that the
quality check staff can use the test data to track the
equipment health. Therefore, the production manager
can apply the testing data to design prognostics and
health management system. On the other hand, the test-
ing data should also be revised to keep track the equip-
ment health. For example, we have to consider data of
the life cycle time of the device (e.g., the data of the
probe card) to obtain the effects of the gradual deteri-
oration of the production equipment on the test results.
Thus, the model of equipment health can be derived.
For the performance optimization, the hybrid database
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structure is a possible solution. For example, we may
consider rational database and in-memory database to
handle the cross-collection processes and large scale
read-write analysis respectively.
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