
Received January 30, 2019, accepted February 16, 2019, date of publication February 22, 2019, date of current version March 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2900939

IoTsafe, Decoupling Security From Applications
for a Safer IoT
JORGE DAVID DE HOZ DIEGO , (Member, IEEE), JOSE SALDANA , (Member, IEEE),
JULIÁN FERNÁNDEZ-NAVAJAS , AND JOSÉ RUIZ-MAS
I3A, University of Zaragoza, 50018 Zaragoza, Spain

Corresponding author: Jorge David de Hoz Diego (dhoz@unizar.es)

This work was supported in part by the Túneles Inteligentes y Seguros para Flujos IP con Baja Eficiencia Government of Spain under
Grant TIN2015-64770-R, in part by the Spanish Ministry of Economy, Industry and Competitiveness, European Development Fund under
Grant TIN2016-76770-R, in part by the Government of Aragon, in part by the Fondo Europeo de Desarrollo Regional Aragón Operative
Programme 2014-2020 ‘‘Building Europe from Aragon’’ (Research Group T31_17R), and in part by the Consejo Nacional de Ciencia y
Tecnología de México under Grant PEI 682/2014.

ABSTRACT The use of robust security solutions is a must for the Internet of Things (IoT) devices and
their applications: regulators in different countries are creating frameworks for certifying those devices
with an acceptable security level. However, even for already certified devices, security protocols have to
be updated when a breach is found or a certain version becomes obsolete. Many approaches for securing IoT
applications are nowadays based on the integration of a security layer [e.g., using transport layer security,
(TLS)], but this may result in difficulties when upgrading the security algorithms, as the whole application
has to be updated. This fact may shorten the life of IoT devices. As a way to overcome these difficulties,
this paper presents IoTsafe, a novel approach relying on secure socket shell (SSH), a feasible alternative
to secure communications in IoT applications based on hypertext transfer protocol (HTTP and HTTP/2).
In order to illustrate its advantages, a comparison between the traditional approach (HTTP with TLS) and
our scheme (HTTP with SSH) is performed over low-power wireless personal area networks (6loWPAN)
through 802.15.4 interfaces. The results show that the proposed approach not only provides amore robust and
easy-to-update solution, but it also brings an improvement to the overall performance in terms of goodput and
energy consumption. Core server stress tests are also presented, and the server performance is also analyzed
in terms of RAM consumption and escalation strategies.

INDEX TERMS SSH, IoT, TLS, HTTP, HTTP/2.

I. INTRODUCTION
In the last years, the emergence of Machine to Machine
communications has led to predictions talking of billions of
devices connected to the Internet of Things (IoT) [1]. The
main features traditionally considered when developing new
products for this field, i.e. functionality, cost and energy con-
sumption, have been surpassed by connectivity, and also by
security: the future development of the IoT may be compro-
mised if security is not seriously addressed. In fact, in recent
surveys carried out by the IEEE IoT Initiative [2], [3], security
was identified as the first concern between the developers of
IoT solutions. Indeed, the lack of security may incur hidden
costs that technology and software business have to face.

At present, as the amount of IoT devices is increasing
exponentially in time, they can easily become a useful tool

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaurav Somani.

for hackers to perform massive Distributed Denial of Ser-
vice (DDoS) attacks on sensible business facilities [4]. This
should force these devices to either get patched, disconnected
from the Internet or replaced by new ones, due to the impossi-
bility of upgrading them. However, this is unlikely to happen,
as their owners may not be noticing any side effect [5].
As a consequence, governments will be forced to legislate
in nearby future, as the lack of security in IoT devices may
represent a global threat [6]. Periodical software patching
should be mandatory, as well as the possibility of IoT devices
‘‘upgrading themselves on a regular basis, in a painless
manner, without all the fear and loathing that accompanies
software upgrades today’’ [7].

New disruptive threats as those compromising the sup-
ply security chain [8] can be rendered into huge exploits
particularly in servers. As an example, Python services can
become unsecure since their conception, as developers might
inadvertently use compromised libraries, or even include fake

29942
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7738-5517
https://orcid.org/0000-0002-6977-6363
https://orcid.org/0000-0002-5237-0447
https://orcid.org/0000-0003-4690-6089


J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

software packages into their designs through old techniques
such as typo squatting [9].

As a result, it is acknowledged that a major cause of
nowadays’ most common security flaws lies with user’s
and programmer’s lack of sensitivity towards security best
practices [10]. Mitigating this trend can be a difficult path.
Therefore, in addition to relieving the user’s responsibility
over security in IoT devices, it would be advisable to simplify
the work of the developers by means of security decoupling.
This would reduce software design requirements, leaving the
security supply chain out of consideration.

The implementation of preventive measures against secu-
rity breaches should become amajor concern, as TLS security
mitigations (or any other) cannot be easily deployed, partic-
ularly once elevated privileges are achieved in Linux servers
‘‘since they are at the same privilege level as the kernel, and
thus hard to defend against’’ [11]. Regarding SSH, ‘‘There
are no mitigating factors for this’’ either (see section 9.5.1.
End Point Security of [12]).
Concerning IoT devices security, it is clear that highly con-

strained hardware has the advantage of its difficulty of being
hacked, as optimized hardware cannot be a target of generic
automated attacks. However, communication data might still
be compromised: a recent publication by the National Insti-
tute of Standards and Technology (NIST) [13] states that a
product life cycle may be limited by the weakness of its secu-
rity protocols and algorithms, forcing to upgrade hardware
before its deadline or to perform software updating proce-
dures which might be tedious and expensive. This is mainly
because hardware is usually deeply optimized to accomplish
its original designed functionality, in order to save costs in
mass production and to extend batteries’ life. However, this
fact limits software updating capabilities, forcing end users
to acquire new up-to-date products.

In addition, certain regulation trends in Europe such as
General Data Protection Regulation (GDPR) [14], require
systems providing ‘‘privacy by design’’, which inherently
requires the ‘‘security by design’’ approach stated in the
‘‘Baseline Security Recommendations for IoT’’ addressed by
the European Union Agency for Network and Information
Security [15]. This could make unfeasible the use of highly
constrained devices in some scenarios, as they are usually
impossible to be upgraded with enough flexibility. In the next
section we include a summary of ongoing regulation efforts
aimed at providing security to the Internet of Things.

According to different surveys [2], [3], it can be deduced
that the development time for IoT devices is shortening as
a business policy. The most demanded application proto-
cols are currently HTTP (Hypertext Transfer Protocol) and
MQTT (Message Queue Telemetry Transport), as they are
long standing and easy to handle. Multipurpose hardware
is also the prefered alternative whenever possible, as it is
less constrained and allows more flexibility when energy
consumption is not the most relevant feature. These pieces of
hardware allow to use solutions based on generic POSIX (e.g.
Operating Systems fulfilling certain standards compliance for

compatibility such as Linux), rather than baremetal, and this
alternative is becoming dominant too [2].

However, all these features make it easier for hackers to
take control of IoT devices. This can happen if security and
updating are not addressed carefully, as multipurpose hard-
ware and software can be used to run arbitrary applications,
including malicious ones. Therefore, unkown vulnerabilities
also become quickly widespread, and hacking into them in
an automated fashion becomes feasible. Although new vul-
nerabilities in communication and security protocols might
be rapidly disclosed, urgent updatings are difficult to deploy,
even if they become mandatory. Furthermore, options as
replacing entire devices or depending on the final user should
be better avoided.

In this context, an approach based on decoupling the secu-
rity of IoT devices from applications can expedite progress
towards the achievement of the following goals:
• Reduced development costs and maintenance during
product life cycle.

• Easier ‘‘security-by-design’’ implementations.
• Scalability and interoperability in cross-domain IoT
environments.

• An easier and inexpensive way to certificate device com-
pliance to security regulation.

• A simpler security market: hackers love complexity.
• A reusable security pattern not limiting the traditional
design of vertical solutions: it is possible incorporate
IoTsafe into already deployed projects with no changes
in IoT devices’ software design.

• Reduced human interaction when upgrading software.
Neither the interaction with the original software devel-
opment team (usually no longer available), nor with the
final user are required, as upgrades can happen on an
automated fashion.

All in all, the contribution of the present paper can be
summarized as:
• The proposal of IoTsafe, an approach relying on SSH,
able to decouple security from core IoT applications in
IoT devices, allowing a set of security improvements in
IoT environments based on HTTP.

• In order to illustrate its advantages, a comparison
between the traditional approach (HTTP with TLS) and
our scheme (HTTP with SSH) is performed over Low-
power Wireless Personal Area Networks (6loWPAN)
through 802.15.4 interfaces.

• An important element, namely the IoT Host Server,
is analyzed by means of stress tests related to RAM
consumption and escalation strategies.

The remainder of the article is organized as follows: in the
next section we summarize the status of the ongoing regula-
tion efforts in Europe and the United States, as we consider
it a major contextual factor required to be considered when
pondering the problems addressed by IoTsafe. Section III
summarizes the Related Work; the Proposed Framework is
explained in section IV, and section V details the Test Sce-
narios. The results concerning IoT devices are presented in

VOLUME 7, 2019 29943



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

section VI and the ones related to IoT Host Servers are
detailed in section VII. The paper ends with the Conclusions.

II. ONGOING REGULATION EFFORTS FOR IOT SECURITY
Many regulation efforts are in place, encouraging IoT busi-
ness to seriously address security into their projects, products
and services, to overcome previous limitations of current soft-
ware and devices. This behavior will result into a productivity
increase in the mid and long term, both for IoT developers
and clients, henceforth transforming security into a major
market differentiator. Two examples of this trend are found
in the European Union and the United States of America;
particularly the former is strongly pushing this paradigm
change through regulations, as mere competition in market
could not be enough.

In order tackle these challenges, the European Commis-
sion has brought forward a proposal of regulation known
as the ‘‘Cybersecurity Act’’ [16] to establish a European
Cybersecurity Certification Framework for Information and
Communication Technology (ICT) products and services.1

The European Cybersecurity organization members on the
EU Certification Framework have already presented some
ideas [17] that may outline future regulations. In order to
provide guidance and help to fulfill future certifications and
regulations, the European Union Agency for Network and
Information Security (ENISA) has also published a set of
baseline security recommendations for IoT [15].

In the United States, new possible regulations are being
proposed in the IoT Cybersecurity Improvement Act [18]
and would require IoT vendors to certify vital features as
the ability of IoT devices to get patched whenever security
updates are available.

These certifications will improve surveillance on IoT
devices and the use they are intended for. If cybersecurity is
not governed, it will add further uncertainty which may pre-
vent users from trusting devices, and investors from including
these technologies into their business [17].

These regulations might derivate in liability responsi-
bilities under a cybersecurity breach. It is unclear how
extra-contractual and contractual liability could flow from a
cybersecurity attack to the software vendor. It is clear such
liability between main parties: the attacker (final responsible)
and the end user as the victim. Alas, once the software vendor
is required to be certified, it will have to perform further
actions than the ones addressed today if its device or software
was actually put into market with unknown vulnerabilities.

However, in our view, these efforts for enforcing cyberse-
curity certification are not enough: one problem with static
certification of products is that its validity ends as soon
as new unpatched vulnerabilities are disclosed. Therefore,
certification schemes need to be more flexible [17], and to
take into account the management of software patches during
a product life cycle.

1https://www.enisa.europa.eu/news/enisa-news/towards-the-emerging-
eu-framework-on-certification

Thus, it is imperative to search for disruptive approaches
that allow to address these issues on a standard way. This
would enable the emergence of effective and reliable solu-
tions with low complexity, able to prevent security flaws
from being overseen, and rendered into exploits by hackers.
It should be taken into account that simpler approaches tend
to gather less design vulnerabilities and help to improve
security [19].

According to Gartner Inc. [20], security has frequently
been implemented mostly in an ad-hoc manner for each
vertical project at the business-unit level. Besides, no coor-
dination via a common architecture or a consistent security
strategy has usually been defined, thus difficulting reuse and
interoperability. However, developing different verticals for
every project would skyrocket the security resources required
in nearby future.

IoT security components in the industry are only now just
starting to be addressed across established IT security stan-
dards bodies, consortium organizations and vendor alliances.
This leads to a scenario in which, by 2021, regulatory compli-
ance will become the prime influence for IoT security uptake,
increasing security budget by 240% since 2016 [20].

All in all, this investment could be further profitable or
even cut down if products and software are designed not only
to fulfil certification at a certain moment. The inclusion of
a procedure for automatic and mandatory updating, based
on security decoupling, could be put in place. This would
increase the reliability at different levels: software, product,
clients and the rest of the Internet. Thus, mandatory updates
on security should not affect existing certifications, service
contracts, and the functionality on the rest of the software,
sensibly reducing software maintenance cost in the mid and
long term, and allowing devices to have longer life cycles.

III. RELATED WORK
A. DECOUPLING SECURITY FROM APPLICATIONS
Security decoupling techniques have usually been addressed
with complementary specific hardware [21]. This approach
barely constrains any design or requirement of main soft-
ware or hardware. Likewise, it also sidesteps possible main
hardware and software limitations, particularly in security
features. One example of the use of specific hardware for
securing sensible procedures is credit card payment, which
can be performed throughPayment Card Industry - Pin Trans-
action Security (PCI–PTS) approved payment devices [22].
This technology has become the general rule in points of sale
where credit card payment is required. Besides, an approved
PTS integrated in points of sale facilities is most welcome by
businesses required for a GDPR regulation compliance.

The use of a more integrated solution has also been
achieved through cryptographic Physical Unclonable Func-
tions (PUF) exploiting each circuit’s specific uncopiable and
unique hardware features of unpredictable (but repeatable)
response [23]. Cryptographic PUF functions require less
hardware and energy than traditional algorithms, and their

29944 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

reliability is based on the unpredictability of some features
every single chip has. Decoupling security from applications,
using this hardware-based technology, has been proposed as
a solution for IoT environments [24] and particularly for
firmware update procedures [25].

However, some studies have shown that the major feature
of these functions (the inability of being copied) can be
overridden under specific circumstances [26]. In many cases,
the equipment and tools required for this feat is not worth the
hacking success [27], but this fact demonstrates that certain
implementations only based on this technology might not be
secure enough in all possible scenarios. In this regard, recent
research has provided important results in straightforward
cloning when XOR PUF functions are used in RFID technol-
ogy using inexpensive generic hardware and software (and
just in milliseconds) [28]. Nevertheless, PUF should be con-
sidered a highly promising technology, currently under heavy
development, that will overcome such limitations, particu-
larly in conjunction with nanotechnology [29] and machine
learning [30].

A network level approach aimed at decoupling security
for applications has also been addressed, to a certain extent,
through Software Defined Network’s (SDN) configurations.
A reactive and coordinated response to certain attacks can
be automated, providing a successful response when mitigat-
ing them in IoT environments, and protecting other devices
before imminent attacks may happen [31].

Decoupling security and applications using just software
is also feasible, but it requires the use of powerful enough
IoT devices so as to handle a non bare-metal solution: almost
any device able to run an OS suffices, even the most con-
strained ones. This solution should be able to run stand-alone
complimentary security software/firmware. Alas, this would
irremediably require less constrained devices withmore hard-
ware features, mainly RAM, ROM, and also demanding more
energy.

IoT middleware solutions [32] offer hardware abstrac-
tion in order to increase interoperability and improve secu-
rity [33]. These approaches help to decouple security from
software design [34]. However, as the abstraction layer is
embedded into the IoT device, it eventually holds together
(in common/related binaries) the implementations and con-
figurations of the security protocols (generally based on
TLS/DTLS). Therefore, a security upgrade also requires a
middleware update so as to incorporate these changes into
the embedded IoT device layer. A feature that could be desir-
able for a better security decoupling solution should be the
ability of upgrading them without requiring an update in IoT
middleware.

Such security decoupling approach is possible in these
kind of middlewares, if device abstraction software and Core
IoT application are embedded in different binaries (Fig. 1).
In this case, a successful security decoupling can be achieved
whenever an upgrade in the middleware platform concerning
security only applies to device abstraction binaries, and does
not change the internal API that the Core IoT application

FIGURE 1. IoT middleware structure.

requires to communicate through the device abstraction layer.
Anyhow, a security decoupling for the IoTmiddleware would
still be advisory in order to reduce patching times and to
simplify the middleware architecture. Otherwise, the security
decoupling problem would have just been moved towards
middleware software implementation.

The hardware of IoT devices sets a limitation for the
software they can run. In many cases, microcontrollers have
been widely used as hardware platforms when developing
IoT devices, due to their low power consumption and reduced
price. Additionally, new protocols especially tailored for IoT
traffic, able to run in constrained nodes and networks, have
been developed, as e.g. the Constrained Application Protocol
(CoAP) [35], a REpresentational State Transfer (REST) pro-
tocol to be used in low-power and loss-prone environments.
Due, the restricted capabilities of these microcontrollers may
lead to insecure implementations [36], and to the impossibil-
ity of future and remote updating [37]. This may be the case
when the changes needed in core cryptographic functions
involve different mathematical operators: for example, recent
vulnerabilities discovered on the standardDiffie-Hellman key
exchange algorithm require major changes in the transition to
elliptic curves [38].

However, not all IoT pieces of hardware are so limited in
terms of processing power. In fact, many of them do have
processors capable of advanced computations, as e.g. System
on a Chip (SoC) devices [39]. Therefore, in a significant num-
ber of cases, more mature security solutions can be employed
where decoupling security is feasible, as the use of these
emerging hardware architectures with higher capabilities is
appropriate, whilst energy consumption and pricing can be
maintained in reasonable levels.

The scheme proposed in this document represents a con-
tribution to resolve the security problems of IoT devices with
a certain level of processing capacity (e.g. SoC devices).

VOLUME 7, 2019 29945



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

In these cases, those potential vulnerabilities could be
resolved by just upgrading this modular security software
remotely.

Some examples of companies developing SoC/SoM
devices where this approach is feasible are Emcraft,
Pengutronix and Beck-ipc, among many others. Some rel-
evant technical IoT examples where this scheme could be
implemented are: a) ARM9 Linux-based embedded devices
for industrial purposes [40]; b) FPGAs hosting small IoT
Linux-based platforms [41]; c) approaches based on embed-
ded Linux OS in wireless microcontroller chips [42].

B. LIMITATIONS OF TLS/DTLS
Software security solutions are frequently provided by means
of TLS/DTLS (Transport Layer Security / Datagram Trans-
port Layer Security) [43], but these techniques alone may
not be so practical for the kind of constrained environments
addressed in IoT projects. For example, TLS may easily suf-
fer from man-in-the-middle attacks if certificate authorities
are not properly validated by the IoT devices [44], [45],
thus requiring some sort of complimentary authentication
procedures [46].

Besides, TLS has to be linked to IoT core applications’
binaries, leading to difficult security updates as it is shown
in Fig. 2. In this context, SSH may represent a valid alterna-
tive to TLS in scenarios using TCP and higher layer protocols
like HTTP. It should be taken into account that mature and
largely tested implementations of SSH (e.g. OpenSSH, Drop-
Bear) are available. Additionally, man-in-the-middle attacks
can be easily mitigated2 in SSH through public/private key
authentication (different for each device) without requiring
further development.

FIGURE 2. Upgrading TLS on an IoT Core Application of an IoT device.

The processing requirements of SSH can be comparable to
those of TLS when running key exchange algorithms, ciphers
and message authentication codes, as they share many of
these algorithms. But the main advantage of using SSH is
the simplification in the upgrading procedures, particularly
when a security flaw is detected or a feature becomes obsolete
or unsecure, as SSH implementations can work standalone
in POSIX-like environments. As shown in Fig. 3, in these
cases SSH is not a part of the firmware or the core IoT
application itself, but another software element that can be
updated without modifying the core IoT application. This can
be considered as a major advantage with respect to standard

2https://www.ssh.com/attack/man-in-the-middle

FIGURE 3. Upgrading IoTsafe on an IoT device.

TLS deployment, which is usually deeply integrated within
the core IoT application or its firmware.

The fact of TLS being part of the core IoT application
itself slows down the upgrading process of devices, exposing
vulnerabilities during moderate periods of time, as highly
constrained devices usually require manually flashing the
new firmware, or even renewing the hardware. As an exam-
ple, TLS prior to version 1.1 was already proven to be inse-
cure [38] and therefore all Android devices prior to version
5 are unable to use TLS 1.2 unless a full upgrade of the oper-
ating system is performed [47]. Anyhow, current Android
applications are able to use third-party security libraries to
overcome this problem. However, insecurity persists in time
once a vulnerability is discovered. As an example, the use
of RC4 ciphers in TLS Android communications apps took
nearly a year to drop its usage to 50% after that cipher was
announced vulnerable [48].

Therefore, protocols and network infrastructure should
provide the required features to fulfill previous require-
ments and mostly in an expedited and automated fashion
on whichever platform, IoT device technology or software
version. In this context, the novelty of the proposed frame-
work is to use SSH as a valid alternative to TLS for proto-
cols such as HTTP and HTTP/2 to transparently establish a
secure bidirectional communication between IoT devices and
platforms, acting as a complementary independent security
interface from IoT software architecture. This includes:

• The proposal of a proxy-like scheme called IoTsafe,
which decouples security from core IoT applications,
making security independent from the firmware libraries
and IoT software. It is based on stand-alone SSH proto-
col embodiments instead of integrating TLS into the IoT
software.

• This approach allows TCP-based application protocols
such as HTTP and HTTP/2 to work securely with new
low-powered interfaces, even with high MTU and data
transfer rate constraints.

• The proposed solution satisfies the security require-
ments of portability and upgradeability. The results of
different tests are presented in next sections so as to
support this statement.

IV. PROPOSED FRAMEWORK: IOTSAFE
In this section we explain in detail the proposed framework
for IoT security. We first include a subsection (A) in which
the concept of socket proxification is presented. The next
one (B) includes a detailed explaining of our proposal; then,

29946 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

the included protocols and tools are specified (C), and the
characteristics of the system are explained (D).

A. SOCKET PROXIFICATION
The proposed security scheme is intended to be modular and
stand-alone, relying on the benefits provided by both Linux-
based operating systems and SSH protocol. Its main goal is
to grant the highest security level, in the simplest way and
transparently.

To achieve these features, its communication scheme is
based on proxifying sockets in operating systems: proxifica-
tion consists on forwarding the traffic involving one socket
to another socket that can be local or placed in a remote
machine. In SSH literature this is usually referred as port
forwarding (see Section 7 of RFC 4254) [49].

In this paper, we will refer to the new socket resulting
from this action as a ‘‘proxification of the original socket’’
as, for all intents and purposes, it acts in lieu of the original
socket. Proxifications can benefit from privilege separation
and network packet features as internal marking and filter-
ing. POSIX-like operating systems and many Linux families
include these features by default, and they have been deeply
implemented and used all over the years.

B. DETAILED DESCRIPTION OF THE PROPOSED METHOD
The families of IoT devices addressed in this article (those
using TCP and HTTP) are usually based on trustworthy
low-powered hardware that works on a robust but simple
operating system/firmware, able to run a single application
based on HTML5 content.

This application may ideally run on a lightweight web
server with server-side scripting, as e.g. Golang, Node.js,
Python or PHP. It may also serve as a front-end interface, with
touch capabilities if needed.

FIGURE 4. IoT communication scheme using TLS.

Fig. 4 shows the traditional approach, based on TLS
libraries. In this case, the security features are set during
the software development stage, and are included into the
binary code during the linking process. The resulting binary
is highly efficient, but limited in the possibility of upgrading
core security features or configurations as, most of the times,
it would be necessary to recompile the whole code after
modifying the specific parts implementing the new security
features.

In contrast, Fig. 5 illustrates IoTsafe, our proposed scheme
using SSH, where the security layer is provided by a proxy
entity. It works transparently for the IoT application, making

FIGURE 5. IoTsafe communication scheme: IoT devices using protocols
such as HTTP or MQTT through SSH secured channels.

the IoT software independent from the employed security
technology and its configuration.

IoTsafe provides two pieces of software: SecurePX,
installed in the IoT device, and ServerPX, which consists of a
set of software scripts, binaries and configurations installed
in the IoT Host Server. In this scenario, the IoT applica-
tion should run inside a ‘‘network sandbox’’ provided by
the Linux kernel NetFilter framework,3 by means of local
IPv4/IPv6 policies, such as forbidding all incoming/outgoing
traffic except for responses to specific requests.

IoT devices can establish SSH communications with an
IoT Host Server through SecurePX, therefore proxifying IoT
communications. As shell access is never used, this scheme
only relies on SSH forwarding features. This IoTHost Server
can act as an IoT Gateway or as a host for an IoT Platform to
provide end user services.

All the information requested by the IoT Host Server is
exchanged through those SSH connections previously estab-
lished and thus, the communications between the IoT Plat-
form and the Core IoT Application become transparent and
secured through SSH bidirectional channels. These commu-
nications are handled by ServerPX at the IoT Host Server,
which grants transparent access to local forwarded sockets
exploiting Linux user system structure and privilege separa-
tion features for security purposes.
PortPX and Fireshell are two pieces of software belonging

to ServerPX, which handle specific aspects of communi-
cation: PortPX assigns and registers the sockets forwarded
to IoT devices, and also monitors incoming communica-
tions, whilst FireShell is in charge of handling those incom-
ing/outgoing communications, allowed or denied upon con-
figurations and privileges stored in PXdatabase.
Following this scheme, the IoT Platforms do not have to

handle any of these security concerns, and may be designed
and programmed assuming all the IoT devices were accessi-
ble locally and securely. Besides, neither the SSH server nor
the client require any modification, because standard SSH

3http://www.netfilter.org

VOLUME 7, 2019 29947



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

FIGURE 6. Conceptual diagram of an IoT infrastructure based on HTTP and secured with SSH trough IoTsafe.

embodiments are usually flexible enough so as to provide
and also to limit the scope of all the features required for
this scheme. Another advantage is that several communi-
cation channels (proxified sockets) can be multiplexed and
compressed into a single SSH session. Furthermore, if bursty
communications are avoided [50], as it usually happens in
IoT environments, the default OpenSSH code will maintain
latency in low levels.

The IoTHost Server should also be able to allow all incom-
ing remote communications from web browsers or specific
applications mostly used by the staff in charge of monitoring
and surveillance of the IoT infrastructure, as detailed in Fig. 6.

In these cases, a direct bidirectional connection can be
established with any IoT device using TLS: this is allowed
when communications established from external applications
are addressed through the IoT Host Server. All these incom-
ing connections are secured using a dynamic hierarchical sub-
domain structure, together with a wildcard SSL certificate.

The IoT device numbers (In) and the IoT Application Port
Name (ApPortNameq) are mapped through dynamic subdo-
mains from each request to the IoT device addressee. This
allows a remote client to easily access any IoT resource,
if the necessary privileges are available. These virtual sub-
domains allow the redirection of any HTTPS request through
ServerPX scripts, as all requests can be protected by a sin-
gle wildcard certificate. Every HTTP request is parsed and
redirected into the TesPX proxy scripts by means of generic
Apache rewriting policies, transparent to theHTTP exchange.
TesPX acts as a transparent proxy entity towards local sockets
(IoT forwarded resources called FwPorts) allowing transpar-
ent communication to IoT devices.

A local IoT Platform, hosted in the IoT Host Server itself,
can also connect directly to all those FwPorts, but it must first
authenticate itself against TesPX to gain access to those local
sockets. All FwPorts are protected through FireShell and
NetFilter, and also by the Linux user structure and privileges.
In order to connect to any of these local sockets, access must
be first granted to the local Linux user of the application by
means of system calls or HTTP requests performed towards
TesPX.

C. INCLUDED TOOLS AND PROTOCOLS
It can be observed that the whole scheme is based on well-
known technologies and deeply tested and maintained soft-
ware as the Linux Kernel, NetFilter framework, Apache web
server, PHP engine, MySQL/Maria DB and SSH protocol, all
of them common in most server deployments nowadays.

Installing and configuring ServerPX into an IoT Host
Server does not require patching any default software, and
it is designed to be able to securely coexist with other exist-
ing Linux services. This scheme can also be implemented
into other technologies such as NGINX, Node.js or GoLang,
improving its performance when several local interfaces have
to be used to handle a large number of IoT devices and
connections, overriding port limitation range.

It should be noted that this modular scheme is based on
proxification rather than on tunneling. For a tunnel to be
established, there must be a full encapsulation of incoming
traffic. In contrast, the proposed scheme uses proxification
and security contexts, providing end to end secure commu-
nication between Core IoT Application and IoT Platform by
means of three communication segments:

29948 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

FIGURE 7. Example of NetFilter rules usage in an external transparent access to an IoT device resource.

1) The proxification itself in the SSH session, in charge of
securing communications between IoT devices and the
IoT Host Server. It is secured through the proxifying
application and its secure protocol. In Fig. 5, this seg-
ment corresponds to the SSH channel in the SSH ses-
sion between SecurePX and ServerPX and represented
with ‘‘1’’.

2) The second one communicates the core IoT applica-
tion and SecurePX. In Fig. 5 it is represented with
‘‘2’’. Please be noted there are two of them because
as two example communications presented (HTTP and
MQTT).

3) The last one covers the segment between the other end
of the proxification (in ServerPX) and the IoTPlatform.
In Fig. 5 it is represented with a ‘‘3’’

These last two segments (2 and 3) are secured by means of
security contexts defined by filtering and marking IP packets
rules, allowing the scheme to control access and outgoing
traffic from proxifications. In the case of an IoT device,
the security context may consist of the entire device itself
if there is no privilege separation. Regarding the IoT Host
Server, each security context comprises an operating system
user account and a destination local socket. In order to elab-
orate on the communication scheme proposed, specific key
concepts are next presented in detail.

1) PROTECTED SOCKETS
In this security scheme, in an IoT Host Server, a protected
socket is considered as such when its IP address belongs to
a set of local ones reserved to this security scheme. All these
local IP addresses are handled and protected by default with
several filtering/marking rules. In Linux systems, these rules

are applied by NetFilter kernel framework and configured by
system calls from a privileged user. Default rules defined in
the proposed scheme state three general policies as depicted
in Fig. 7:
• Default rule 1. (Type: FILTERING): All incoming pack-
ets from external IPs and all outgoing packets to external
IPs should be discarded if either the source or destination
of the communication comprises a protected local IP.

• Default rule 2. (Type: MARKING): All local traffic
should have its TOS (Type Of Service) field reset to
zero when both origin and destiny comprises a local IP
belonging to the protected local IP addresses.

• Default rule 3. (Type: FILTERING): All local traffic
should be discarded if both origin and destiny comprise
a local IP address belonging to the protected IP address
pool but TOS field is set to zero.

Filtering and marking packets happens at different moments
of the communication, particularly when packets enter or
leave the Linux kernel space. This allows marking pack-
ets (from applications), being unable to override the third
default rule, but only with another specific marking rule that
overrides the second default rule. NetFilter processes rules
for each packet linearly in a special way, as it may only
apply a single rule for each packet in a given chain of rules.
Thus, should a marking rule apply to a packet, no more
rules will be applied to that specific packet as it would
be already marked. This same behavior applies to filtering
policies likewise. Based on this principle, specific marking
rules may be defined to override the second general rule and
thus, to allow communication at will. As NetFilter provides
a stateful firewall service, this marking rule will also apply
to responses unless something else is specified, allowing a
bidirectional communication.

VOLUME 7, 2019 29949



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

In the unlikely case a local program might try to mark
packets by itself, it would not succeed in this attempt of auto-
granting access to a protected socket, as marking rules cannot
be overridden that way. Its markingwill not be considered and
discarded by the second default rule.

These policies may apply for both the IoT Host Server and
the IoT device. However, if the Linux implementation of the
IoT device does not provide privilege separation (as it may
happen in certain low-cost devices with highly constrained
Linux embedded systems), it should be dealt as a single
user/application device and the second and third rule would
not apply.

2) PERMISSIONS
In this security scheme, user and group permissions are used.
The first ones allow processes from aLinux system to access a
protected socket. The second ones also grant the same access
but to an entire group of users. Each permission comprises the
security socket whose access is to be granted and either the
UserID or GroupID whose process are to be granted access.

3) SECURITY CONTEXTS
This concept consists of a set of marking and filtering rules
for network traffic that help the operating system to define
and identify traffic flows in an automated and simple fashion,
allowing to extend security from the proxification to the
source or destination of the communication.

This security context does not require extra overhead in
communications and it is only applicable to local traffic.
A set of rules required for a security context to be defined
comprises the general ones needed to secure local sockets
and an extra specific priority marking rule defined to override
the second default rule.

The objective of this security scheme is to enable traf-
fic filtering according to permissions. Permissions thereby
comprise user accounts (which map IoT devices, groups of
devices and also IoT Platforms or other entities) and desti-
nation sockets. However, filtering policies would only allow
to take into consideration traffic features. Thus, when access
is granted to a user for a socket, a connection_ID is defined
and thereby marked into the TOS field, to be able to pass
through the filtering of NetFilter. Hence by, a security context
is defined, wherein any process from the permission’s user
account is able to freely communicate towards the protected
socket whose access has been granted.

These connection_IDs are assigned to traffic from pro-
cesses whose users are allowed to access the specific pro-
tected socket thanks to a user or a group permission. When
access is granted, a connection_ID is generated and also its
marking rule is put into action to mark traffic from this Linux
user account to that specific local protected socket. However,
as the IPv4 field used for this security scheme is TOS, only
255 valid connection_IDs can be generated for each protected
socket.

Local IoT protected sockets would usually be set for
proxifications of core IoT application sockets (ApPort) from

the IoT devices. These applications are not meant to allow
huge numbers of simultaneous connections. Usually, only the
Linux user account of the IoT Platform is the one which con-
nects to that kind of socket. However, if the Core IoT Appli-
cation requires to connect to a remote socket in the IoT Host
Server (Port_A) through a reverse proxification (RtPort), this
Port_A should have to accept the requests from all IoT devices
and thus, the number of accesses granted would easily surpass
255. On these scenarios, a group permission should be used
to arrange all similar IoT devices with common features into
a single group and grant their Linux user accounts at IoTHost
Server an access to Port_A through a permission granted to
their Linux Group_ID. Thereby, a security context is defined
by the User_ID or Group ID of the operating system and the
connection_ID assigned.

When the security contexts comprise a User_ID and a
connection_ID, this is mostly intended to grant access to a
specific proxification of an IoT device, and thus it is referred
as a strict security context. Conversely, if the security context
is defined by a Group_ID instead, it is referred as a wide
security context, as the related marking rule applies to all
Linux users’ traffic to the local protected socket to which the
context refers.

4) PROXIFIED COMMUNICATION
A process can request to communicate with another process
through a local proxified communication involving protected
sockets. This can only be done once a resolution of the
proxified socket has been addressed. The process may know
the ID of the device and the alias of the socket it needs
to connect to, but the value of the proxified socket is yet
unknown. Hence, it should be resolved through a resolution
query against Pxdatabase.

5) RESOLUTION QUERY
A resolution query has to be performed before any proxified
communication can start. Through this query, a process aim-
ing to communicate to a proxified socket can obtain the value
of the local proxification that leads to the remote process
socket. The resolution query is addressed to a local software
module called ServerPX. This module checks the user Linux
account from which this resolution request was issued and
verifies whether it has permission. Once this permission is
validated, the user account is granted an access permission as
a connection_ID that it is translated into a marking rule. This
rule applies only when communicating with that protected
socket, and allows the process to override general marking
rule 2 in that specific case.

6) KEY MANAGEMENT
A key management protocol does not have to be defined
in this scheme, as local processes do not require keys to
communicate with IoT devices. Access to proxified ports is
gained through permissions and its handling is performed
through NetFilter rules. However, it is required as a part of
the upgrading procedure of IoTsafe.

29950 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

7) CONFIGURATION PROFILES
There are two kinds of configuration profiles in the proposed
security scheme. An IoTProfile, which consists of the creden-
tials and configurations that an SSH client at an IoT device
should use to connect successfully to an IoTHost Server. This
IoTProfile consists of some configuration options such as the
required proxifying sockets, both direct and reverse. Those
options are to be validated at IoT Host Server and cannot be
overridden. Connection limits specified for those parameters
include:
• Maximum number of concurrent connections per IoT
device.

• Maximum number of proxifications (reverse or direct).
In case an IoT device is compromised or hacked, it should

not be able to perform any kind of hacking attempt to the
IoT Host Server or other IoT devices. This level of security is
provided through to the versatility of current SSH implemen-
tations, single key using for each IoT device, separation privi-
leges of Linux operating system families and filtering rules of
NetFilter. This network framework can log specific hacking
attempts derived from rule matching and enable the network
manager and third party applications to take action disabling
henceforth compromised keys.HostProfile is another config-
uration profile which defines specific aspects of SSH server
configurations and supporting applications. These include the
reserved local IP addresses pool, and the privileged local
Linux account configurations in which IoTsafe binaries and
scripts are run.

D. CHARACTERISTICS OF THE SYSTEM
After the detailed description, in this subsection we summa-
rize and discuss the main characteristics of the system.

1) SECURE BY DESIGN
The proposed scheme considers several scenarios where pos-
sible vulnerabilities might appear. As stated before, its secu-
rity mainly relies upon the SSH protocol and privilege sepa-
ration of Linux operating systems. Thus, vulnerabilities may
arise mostly for escalation privileges, denial of services, and
SSH key compromising.

Despite all these potential dangers, SSH has been safely
and successfully deployed in all sort of devices and servers
over the years. It is however plain that servers particularly
require secure and reliable Linux implementations to work
securely. To achieve a better grade of security in Linux
servers andmitigation procedures to endure potential security
breaches, Linux kernel provides an API called Linux Security
Modules (LSM), intended to enhance security (double) pro-
tecting sensible operations carried out at kernel level.

The LSM API can be used by a defined and configured
computer security model as AppArmor4 or SELinux.5 Any
of these approaches contribute to increase the security of the
system helping to address possible unknown threats related

4https://gitlab.com/apparmor/apparmor/wikis/home/
5http://selinuxproject.org/page/Main_Page

to poor security planning, configurations or overseen flaws
in the system that could be rendered into exploits [51].
These complimentary features are considered standard in pro-
duction environments, particularly to prevent root privilege
escalation.

It is however clear that, no matter whichever security tech-
nology is used (particularly in server deployments), once an
IoT Host Server able to address automated updates towards
IoT devices is compromised to root level, it is only a matter of
time that the whole IoT network it handles gets compromised
likewise.

Keeping IoTsafe scheme this simple might not clearly
present a barrier for hackers achieving this, but it actually
makes the process of hacking the server a more challenging
task: IoTsafe minimalist design relies solely on standard
and well-known security technology, being straightforward
to implement a security-by-design scheme, and in case of
security breach, much easier to detect and mitigate it using
standard procedures.

All the actors involved in IoT communications through an
IoTsafe implementation are shown in Fig. 8, and how they
interact through IoTsafe. The security provided by IoTsafe is
present in different parts of the whole communication process
and it is gained through standard Linux features identified in
the figure with letters a, b, c and d featuring the following:

a) IoT device protection: IoT device communications are
meant to be addressed through an IoTsafe encrypted
session with the IoT Host server. Any other communi-
cation is discarded.

b) Communications between IoT devices and IoT Host
servers are encrypted through SSH sessions.

c) All local communications addressed in the IoT Host
server are managed (and thereby protected) by Net-
filter, whose rules involving IoT traffic are defined by
IoTsafe software and security contexts.

d) A strict surveillance over Linux accounts and privi-
leges is handled by a correctly configured and deployed

FIGURE 8. Example of NetFilter rules usage in an external transparent
access to an IoT device resource.

VOLUME 7, 2019 29951



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

Computer Security Model such as SELinux or AppAr-
mor. These features are supported by the Linux Secu-
rity Modules (LSM) framework at kernel level since
2.5 version. A Computer Security Model is also able
to control Netfilter and can work complimentary with
IoTsafe to detect unexpected behaviors from IoT
accounts. This can be particularly achieved monitoring
Netfilter logs.

It is important to note that SELinux and AppArmor are
considered standard tools already enabled by default in cer-
tain Linux server deployments (CentOS/Redhat and Ubuntu)
and can be considered also well-known features by Linux sys-
tems administrators or security engineers. Thereby, a suitable
security configuration required by IoTsafe to work can easily
be deployed.

In the event an IoT server is comprised to root level
through an unknown vulnerability, the options for mitiga-
tion are slim as it was previously stated. However, a true
diversification effort into the network would provide real
and measurable resilience: a positive K-Zero Day Safetymet-
ric [52]. A physical diversification effort is achieved manag-
ing all IoT devices comprising the IoT network through small
Gateways, which gather communications towards IoT Host
Servers. Nevertheless, a true diversification able to contain
the threat (even in the IoT Host Server) would further require
suitable account permissions, SSH configurations and keys
management (example 5.1 [52]) to be set up into Gateways
and IoT Host Servers.

2) KEY COMPROMISING
In order to allow a wider flexibility in its deployment, IoTsafe
does not suggest any specific algorithm to handle SSH keys.
Nevertheless, key management is required less frequently
than usual, as neither users nor processes have to access to
SSH keys: their connections are handled through permissions
and security contexts and this prevents keys from being
misused.

Anyhow, in case an IoT device is compromised, the SSH
server would only allow a use of the key according the
configuration profile corresponding to that specific device,
and only whence it works similarly before being comprised
it would be unnoticed. Thereby, any comprised device and
key would be formally detected and tainted whenever it is
detected an attempt to:
• Proxify more connections than allowed.
• Proxify connections using different protected sockets.
• Proxify connections to access other IoT Server socket or
remote sockets.

In all these cases, the requests would either way be denied
byNetFilter rules previously explained. If the scheme embod-
iment considers it appropriate, NetFilter logs could be pro-
cessed so as to identify these infractions, making it able to
take the corresponding measures: disabling IoT keys from
those devices working strangely as they are subject of having
being compromised.

In the event of compromised keys being used to generate
multiple parallel connections, they would also be ignored and
discarded according to the IoTProfile which IoT Host Server
also validates.

3) TRANSPARENT COMMUNICATION
In most cases, IoT devices’ communications are managed
by the IoT Platform but in some specific scenarios a final
application or a final user might require to directly com-
municate with one of these IoT devices e.g. to activate a
relay, to trigger an asynchronous sensors’ measure, to connect
to a video/audio secure camera feed, etc. In these cases,
the IoT devices are required to be accessed by final users
transparently.
This communication is accomplished using an inner proxy

as a middleware that transparently translates the secure ver-
sion of the IoT final user application protocol (HTTP Secure,
HTTPS) to the unsecure version of that protocol used by the
Core IoTApplication (HTTP). This inner proxy authenticates
the user credentials against ServerPX or IoT Platform records
in database.

In this second case, the inner proxy should instance
itself on the IoT Platform account to have suitable permis-
sions granted and be able to access to the required pro-
tected proxified socket. Such proxy can be programmed in
multiple languages. The proxy belonging to TesPX scripts
(shown in Fig 5) can be easily deployed using a PHP client
(e.g. Guzzle6).

V. TEST SCENARIOS
This section includes the description of the test environments
that have been created in order to measure and validate the
presented proposal. SSH performance is studied in an IoT
Host Server using a Linux operating system. These are the
two core components in any deployment of IoTsafe and they
are thus analyzed in this paper. The other modules, databases
and scripts can be implemented in multiple languages and
their required level of optimization depends of the scope of
the project they are intended to address. Therefore, the per-
formance of these modules will not be studied here.

Two different scenarios are presented. The first one is
designed to measure SSH performance in IoT devices and to
compare it with the use of TLS in HTTPS. This is the sce-
nario proposed to obtain the results presented in Section VI.
The second one focuses in Host Servers and aims to validate
the scalability and the RAM resources required when a high
number of connections or channels are to be handled (the
results will be presented in Section VII).

A. SCENARIO FOR COMPARING SSH WITH
TLS IN IOT DEVICES
The first test scenario, depicted in Fig. 9, comprises two IoT
devices able to support HTTP, TLS and SSH. Thus, we have
used two Raspberry Pi equipped with 802.15.4 Openlabs

6http://docs.guzzlephp.org/en/stable/

29952 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

FIGURE 9. IoT device test diagram to compare SSH vs. TLS performance in HTTP communications.

interfaces (based on the at86rf23 Amtel transceiver). Com-
munications are established between the two Raspberries
overWPAN: the first one acts as an IoT device, and the second
one as an IoT Gateway/Relay. The transmission is conducted
on channel 13 (2415 MHz), and the virtual LoWPAN inter-
face is configured on both devices to fragment packets when
needed: IPv6 requires a minimumMTU of 1280 bytes, whilst
the 802.15.4’s MTU is 127 bytes (working with LoWPAN
fragmentation, it only offers 96 bytes of payload). Linux ker-
nel 4.7.4 is used, which includes a stable IEEE 802.15.4 LoW-
PAN implementation. The transfer rate of this device is set to
250 kbps, i.e. the maximum specified in the 802.15.4 stan-
dard. The TLS vs SSH comparison will be performed using
HTTP versions 1.1 and 2: we compare HTTPS (HTTP using
TLS) vs. HTTP tunneled through a secured SSH channel.
Similar algorithms, able to provide an acceptable degree of
security, have been selected in both cases.

HTTPS is provided by Caddy, a portable web server [53]
which also supports TLS 1.2. During the tests, we use the
‘TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384’
algorithm, one of those recommended B CLASS in the
National Security Agency (NSA) suite for TLS [54]. This
suite implements Elliptic-curve Diffie-Hellman Ephemeral
key exchange, using the Elliptic-curve Digital Signature
Algorithm (ECDSA), with AES-256 as the block cipher, and
SHA-384 for the hash message authentication code (HMAC).

SSH is provided by OpenSSH, configured to work with the
same algorithms to establish connection: it uses curve25519-
sha256 as an ECDSAkey exchange algorithm, aes256-gcm as
block cypher and hmac-512 as HMAC (this last algorithm is
stronger than the one used in TLS because hmac-sha384 is no
longer available as an HMAC algorithm in current OpenSSH
default implementations). SSH compression is provided by
ZLIB library [55] and can be activated by default editing the
ssh_config file.

B. SCENARIO FOR CHARACTERIZING THE
PERFORMANCE OF THE IOT SERVER
The second scenario is designed to characterize the major
limitations of SSH in IoT Host Servers and the penalty in
performance and resources consumption the system suffers
according the number of established proxifications, active
proxifications and SSH embodiment.

The testbed for this second scenario is depicted
in Fig. 10 and comprises two IoT Host Servers able to
run multiple communications in parallel. They are virtual
servers based on Kernel Virtual Machine (KVM)7 provided
by Linode cloud platform8. Each virtual machine is a Linode
16 GB, comprising Centos 7 operating system, 16 GB of
RAM memory, 6 virtual cores Intel(R) Xeon(R) CPU E5-
2680 v3 2.50 GHz (single thread, single core each) and a local
average connection of 1 Gbps between them. The first server
(Server_A) is used for running a number of SSH clients, and
the second server (Server_B) generates multiple SSH proxifi-
cations and sessions to model incoming communications into
Server_A.
If Server_B requires to relay proxifications to another

server, it would actually play the role of a Server_A generat-
ing all the required instances of SSH clients to forward those
proxifications. Thereby, the testbed proposed constantlymea-
sures the worst-case of the two scenarios (a server receiving
multiple IoT proxifications, but also a server relaying multi-
ple proxifications to another server). This testbed should be
considered legit, as a full-fledged IoT Host Server should be
able to relay those proxifications to third party servers too.

Other variables are taken into consideration such as
active/established proxifications and established SSH ses-
sions to clarify its dependence and the relation between

7https://www.linux-kvm.org/page/Main_Page
8https://www.linode.com/

VOLUME 7, 2019 29953



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

FIGURE 10. IoT device test diagram to compare SSH vs. TLS performance in HTTP communications.

them all to suggest an optimized combination to maximize
performance.

VI. IOT DEVICE RESULTS
In this section we present the results obtained with the first
test scenario, comprising two IoT devices. The main param-
eters to be measured are the achieved throughput, and also
execution times, so as to compute and compare performance
and efficiency. Herein, four scenarios are compared for both
HTTP and HTTP/2:

a) HTTP: plain HTTP connections without security;
b) HTTPS: HTTP with security provided by TLS1.2;
c) HTTP SSH: HTTP secured over SSH; and
d) HTTP ZSSH: HTTP secured over SSH with payload

compression by ZLIB.

The tests consist of performing HTTPGET requests of text
files of different sizes, ranging from 4 bytes to 262 Kbytes,
simulating shorter and longer connections. This is useful in
order to compare different scenarios: short communications
are common in querying specific sensor data, whereas longer
ones arise in certain telemetry and firmware upgrading sce-
narios. For each test, 100 files of the same size but random
content are sequentially transferred, and the average results
are calculated and presented. Note that all the figures in this
section use non-linear scales on both axes.

For HTTP, ab9 benchmarking tool is employed, whilst
hdload10 benchmark tool is used for HTTP/2. Caddy
server is proxied through nghttpx11 to provide support for
an HTTP/2 connection through h2c upgrade token and
HTTPS/2 connection through h2 upgrade token.12 Caddy
server does provide native support for HTTPS/2 but not for
just HTTP/2 and thus nghttpx tool is required.

9http://httpd.apache.org/docs/2.2/programs/ab.htm
10https://nghttp2.org/documentation/h2load-howto.html
11https://nghttp2.org/documentation/nghttpx-howto.html
12https://tools.ietf.org/html/rfc7540

FIGURE 11. Channel usage efficiency of tested protocols.

Fig. 11 shows the efficiency in terms of goodput / through-
put rate (the goodput is calculated by the benchmarking tools
using the size of the file and the transfer time). It can be
observed that HTTPS presents the worst performance for
every file size, but particularly for smaller ones. The reason
is that the overhead at low rate transmissions is high: when
the connection is established, the certificates of each of the
100 requests that compose each series of tests have to be
verified.

However, this is not necessary in the HTTP SSH case,
as it keeps open a communication channel requiring only one
verification. As an example, the efficiency when transferring
256 bytes is 0.3 forHTTP SSH, and only 0.13 forHTTPS. The
impact of this issue is reduced when the file size is increased,
but the performance of HTTP SSH is always better.
Some reasons can be adduced for explaining this differ-

ence: HTTP connections through uncompressed SSH (HTTP
SSH) are handled through channels created inside an SSH ses-
sion. These channels are flow-controlled, so the information
contained in several TCP packets can be multiplexed and sent

29954 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

at once through the secure channel. However, this alone does
not explain its better performance when the payload is small.

The reason behind this is that the Core IoT application only
has to connect to the local SSH proxy, which will be in charge
of connecting it to the remote destination socket. During
TCP connection handshake and release, several TCP packets
are exchanged to configure both sides of the connection,
without carrying any part of the test files. However, when
using SSH, all these packets are sent locally between the IoT
application and the SSH local proxy, so they do not have to
be transmitted through the 802.15.4 interface. This saves at
least 3 RTT times for each HTTP request together with the
task of certificate validation. In this respect, the keep_alive
feature [56] can be used to overcome the TLS limitation
of having to check certificates after every single handshake
request. Nevertheless, this is not a transparent feature, as it
requires a valid heartbeat request to be first coded and per-
formed from IoT applications.

Finally, the saving is even higher when HTTP SSH Com-
pressed is used, thanks to the high compressibility of the SSH
payload: HTTP datagrams and their own IoT payload are
usually plain text with semantic-based descriptions [57].

HTTP/2 incorporates some of the features already pro-
vided by SSH, and this results into a performance boost. The
benchmark tool hdloadmakes use of the streaming feature of
HTTP/2, allowing this protocol to reuse existing TCP connec-
tions. This fact, together with its binary compressed header,
fully optimizes its transmissions. Nevertheless, the provi-
sion of decoupled security through SSH with compression
will still result in a better performance when comparing to
HTTPS/2.

FIGURE 12. Goodput comparison among tested protocols.

In Fig. 12, the achieved goodput is compared between
protocols. This chart is congruent with the previous one,
showing again a performance boost on SSH tunneled com-
munications for HTTP, which results higher in the scenario
using compression, particularly when the payload is moder-
ate. When testing HTTP/2, this performance increase only
happens when compression features of SSH are enabled, and
this improves as the file size increases.

FIGURE 13. CPU energy consumption increment taking HTTP as reference.

FIGURE 14. Energy saving on wireless interface taking HTTP as reference.

In Fig. 13, the impact of using security on CPU energy con-
sumption is shown. The measurements take as a reference the
plain HTTP requests. Increases in CPU energy consumption
are considered to be proportional to the CPU time needed for
these requests to go [58]. CPU time is computed using the
‘‘time’’13 Linux tool on benchmarking programs and also on
SSH when tunneling is used.

In Fig. 14, the impact of each option on the energy con-
sumption of the 802.15.4 interface is presented. It is also
considered to be proportional to the time a communication
needs to use the interface. On both figures, an increment in
energy saving when using SSH to secure HTTP communica-
tions can be observed, wereas a regression when small files
are used appears when using HTTP/2. This is due to the extra
complexity of establishing tunnels when using SSH. How-
ever, as this only happens once, this effect is minimized when
enabling compression and once the payload size increases or
the number of transmissions between each tunnel establish-
ment is higher.

VII. IOT HOST SERVER RESULTS
The aim of the tests presented in this section is to gauge the
performance of the IoT Host Server, mainly in terms of scal-
ability. Thus, potential limitations inherent to the proposed

13https://linux.die.net/man/1/time

VOLUME 7, 2019 29955



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

SSH-based security decoupling solution are studied and char-
acterized when a high number of devices are to be managed
by a single server. Two implementations of SSH will be used
in the tests, namely OpenSSH and Dropbear.

The first parameter to be measured is RAM consumption.
In addition, execution time will be evaluated in different
tests, so as to characterize its dependence with the SSH
embodiment, the payload requests, and the distribution of
proxifications in SSH parallel sessions. These results would
help to outline other possible SSH limitations, related to
the number of established sessions’ channels and concurrent
proxifications sharing a single SSH session. This scenario
includes two servers:
• Server_A, using Centos7, hosts both SSH server
implementations. The first one is DropBear 2018.76,
built in Ubuntu 14.04.5 LTS as stand-alone (portable
version and in debug mode). This build is made
using a modified version of eglibc v3.10.0 where
FD_SETSIZE has been increased to override select()
POSIX legacy limitation of 1,024 file descriptors. Drop-
Bear was also modified to increase that limit, and
also others as MAX_LISTENERS, MAX_CMD_LEN
and MAX_CHANNELS. The second one is standard
OpenSSH_7.4p1 with OpenSSL 1.0.2k-fips, included in
Centos7 by default.

• Server_B, also using Centos7, is a traffic generator gath-
ering both SSH client implementations. DropBear client
has been built using the same features and characteristics
as DropBear server used in Server_A.

A. RAM CONSUMPTION CHARACTERIZATION
The RAM consumption of SSH servers is the first aspect to
be analyzed, as the number of established and active proxifi-
cations is mainly constrained by the total RAM consumption.

To proceed into this analysis, each SSH client instance
in Server_A, emulating an IoT device, should establish its
own session towards Server_B and therefore, the number of
sessions between servers would represent IoT devices’ SSH
connections. Each session gathers one communication chan-
nel through which a direct proxification can be established.
This is a usual case whence IoT devices need to communicate
periodically with the IoT platform in the IoT Host Server.

This test aims to evaluate the RAM consumption of every
single proxification related to every IoT device a IoT Host
Server is managing, when each IoT device requires just one
proxification. Proxifications are gathered together in SSH
sessions as follows: let S be the total number of SSH sessions
the IoT Host Server manages, and P the total number of
proxifications per session. In this case P = 1 and S is equal
to the number of total proxifications to be established (total
number of IoT devices); all according to Fig. 10.
The test also allows a comparison between OpenSSH and

Dropbear. In each measurement, either OpenSSH or Drop-
Bear are used both as client and server, i.e., each SSH session
is established using either DropBear client and server or
OpenSSH client and server.

As IoTHost Servers also may relay proxifications between
them, particularly when a small IoT Host Server acts as a
gateway, this configuration (namely ‘‘aggregated’’) is also
studied and compared here. In this other case, a single SSH
session is established from Server_B to Server_A with mul-
tiple proxifications on that very single SSH session and thus,
S = 1 and P is equal to the number of proxifications to be
established, again according to Fig. 10.

FIGURE 15. RAM required per SSH proxification.

The results of this first test (Fig. 15) show the RAM
consumption per proxification when they are aggregated into
a single SSH session. Once SSH sessions and proxifica-
tions are established, each of them is tested via an HTTP
request of 1Kbyte payload. This request is performed through
every single proxification in parallel, using a simple client
programmed in Golang named ‘‘Concurrent’’ in Server_B.
Server_A is hostingCaddyweb server and it is reached locally
from the proxification. Caddy is also programmed in Golang.

The RAM measuring process is performed globally using
the ‘‘ free14’’ Linux command through the entire system.
Server_A is used exclusively for this testing and free RAM
is continuously monitored during the whole process. Its max-
imum value is measured for three different phases through
each test: i) before starting the test (and after ‘‘ sync15’’),
ii) once all SSH sessions have just been established and iii)
during the HTTP scheduled requests are performed through
proxifications.

As observed from the figure, the consumption of RAM per
proxification both in Dropbear and OpenSSH when a single
SSH connection handles a single proxification is remarkably
high. This is mainly due to the fact that every incoming SSH
connection handled by Server_A, instances a completely new
SSH server process, which consumes a large amount of RAM.
DropBear’s consumption doubles OpenSSH’s one, as it is

14http://man7.org/linux/man-pages/man1/free.1.html
15http://man7.org/linux/man-pages/man1/sync.1.html

29956 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

stand-alone and every required library is statically linked.
Besides, it is built with debug functionalities, which increases
its RAM footage even further.

Despite this result can be dramatically improved through
severe optimizations in both SSH implementations, it would
not easily reach similar figures to those of TLS (tens of
Kbytes per session). This is mainly caused by the process
instancing for every different incoming SSH session. To mit-
igate this effect, the proposed scheme can benefit from the
current trend in IoT deployment: it is usually required an IoT
Gateway to be installed between IoT devices and IoT Host
Servers.
This IoT Gateway would act as a small IoT Host Server

which gathers small numbers of local IoT devices performing
an intermediary role. This approach can be easily rendered
using SSH and its proxification aggregation features.

In this case, each proxification between the IoT Gateway
and the IoT Host Server requires much less RAM allowing
this two-level structure to dramatically reduce the IoT Host
Server RAM requirements.
The scenario is now used to run another test, aimed at

measuring the dependence of RAM footage per proxification
in the server, versus the payload of each HTTP request to be
forwarded. In this test, a set of 1,000 active proxifications
(handling an HTTP request each) are processed in two differ-
ent ways: a) each one through its very own SSH session and
b) all of them aggregated together into just one SSH session.
Different payloads are tested to feature a possible dependence
with RAM footage.

FIGURE 16. Dependency of RAM required per proxification with the HTTP
request’s payload the proxification handles.

Fig. 16 shows the results of these tests. RAM footage has
little dependence with payload when direct connections from
IoT devices are forwarded to the IoT Gateway. However,
in an aggregated scenario whence an IoT Gateway forwards
proxifications towards an IoT Server, it is clear that OpenSSH
renders much worse than DropBear. This is mainly due to

FIGURE 17. Normalized performance of 1000 active proxifications
according the total established proxifications, the HTTP request’s payload
to process per proxification and the SSH embodiment used.

its internal handling of SSH channels’ buffers, as its win-
dow communication channel, i.e. for each proxification. This
explains the linear dependence of the RAM footage required
per aggregated proxification with the payload of the HTTP
request.

Another test is proposed in the second scenario in order
to study the possible performance penalty an SSH instance
has to face when coexisting with inactive proxifications, and
its possible dependence with payload size. This test only
deals with aggregated SSH sessions. Each SSH session has
1000 active proxifications (P = 1000) and each of them
processes a single HTTP request of different payloads (64kb,
128kb and 256kb).

The required time for completing each test is measured
by the script ‘‘Concurrent’’. This HTTP client starts all
scheduled requests at once and measures both total pay-
load responses and total time to complete all HTTP parallel
requests. ‘‘Concurrent’’ is launched once all parallel SSH ses-
sions and proxifications have successfully been established.
A total of 25 tests of each series are performed and the results
averaged and presented in Fig. 17.

The results show a penalty performance suffered simply
dividing the time required to process 1000 parallel requests on
each case (T_trans) by the time it is required when there are
only 1000 proxifications aggregated in total with no inactive
proxifications (T_trans1000). Please note that each test series
has its own T_trans1000.

These results show little dependence with the payload size,
but a strong one with inactive proxifications in the same SSH
session. This exponential dependence has to do with the way
the implementations of SSH handle every communication
channel. Though they are inactive, they seem to penalty the
overall performance despite no extra work seems to have
been done. The main cause for this performance degradation
is the way process’ opened sockets are handled: This poor

VOLUME 7, 2019 29957



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

performance is related to the legacy I/O framework used by
both SSH implementations, which is not intended for pro-
cesses with a large amount of sockets (descriptors) to handle.

Table 1 is computed from a testbed data of 100,000 ran-
domly monitoring operations across N contiguous descrip-
tors [59]. The table presents the performance degradation in
monitoring N descriptors experienced by select() and poll()
compared to the performance when N = 10. This perfor-
mance is computed dividing the time required to monitor N
descriptors by the time required to monitor just 10.

TABLE 1. Performance degradation of different I/O frameworks when
monitoring 100,000 operations among N descriptors.

Both select() and poll() are system calls from a multi-
plexing driven I/O framework, whose performance penalty
behaves exponentially with the total number of descriptors
able of beingmonitored in the process. This is mainly because
‘‘On each call to select() or poll(), the kernel must check all of
the specified file descriptors (handled by the process) to see if
(the required descriptors) are ready.’’ [59]. The Linux kernel,
under this I/O frameworks behavior, must always check all
descriptors the process has opened, independently of which
ones actually require to query.

On the other hand, the performance penalty suffered by
epoll() is much lower because it embodies a signal driven I/O
API whence the demanding process is sent a signal by the
Kernel once I/O is possible on the very specific file descriptor
that signal refers to. Furthermore, this smaller performance
penalty can be even lowered as it heavily depends on hard-
ware features. In [59], the author states regarding epoll() that
‘‘the small decline in performance as N increases is possibly
a result of reaching CPU caching limits on the test system’’.
Due to the limitations of SSH implementations, a session

is not able to handle large amounts of sockets. On the other
hand, using a session per proxification may not be feasible
in all circumstances, as RAM footage is high. In the next
tests, we evaluate the slower degradation of having multiple
parallel SSH sessions with 128 established proxifications
each. However, only 64 sessions out of the total would be
active processing each one’s proxifications a HTTP request
of 64 Kbytes adding up a total of 8192 requests for each test.
Again, every test series is performed 25 times and averaged.

As shown in Fig. 18, as the amount of processes grows,
the kernel would have to split the CPU resources between
them, leading to an inefficient scenario: a performance
penalty is noticed even though no further requests are pro-
cessed. However, this degradation trend is much slower than
the previous one suffered by processes themselves.

FIGURE 18. Normalized performance of 64 parallel SSH sessions (S = 64)
each one with 128 active proxifications (P = 128), handling a HTTP
request of 64 Kbytes payload each, with the increasing number of
established parallel SSH sessions with 128 established (and unused)
proxifications each.

A performance comparison between both approaches
(Fig 17. and Fig.18) is summed up in Table 2. In this table,
‘‘N’’ features the amount of unused proxifications (estab-
lished – used). The tests presented in Fig. 17 were per-
formed having 1,000 active proxifications whereas the tests
in Fig. 18 had 8,192.

Please be noted that only a degradation of 25-32% is
suffered once (1024 ∗ 128) − 8192 = 122, 880 unused
proxifications are set distributed in SSH sessions (Fig. 18),
whereas degradations of 290% to 400% were suffered when
only 9, 000 − 1, 000 = 8, 000 unused proxifications were
established through a same SSH session process (Fig. 17).
Thereby, a possible solution for escalation could be this
trade-off between SSH sessions and proxifications per SSH
session.

B. ESTIMATION OF THE OPTIMAL RELATIONSHIP
BETWEEN P AND S
The next test is presented to calculate the optimal relation
between these two parameters: Proxifications per session and
number of sessions. In this test 10,000 active proxifications
are to be handled in different configurations.

Each configuration will have increased the total number of
SSH sessions (S) among which all proxifications (P) have to
be distributed into, provided that

P ∗ (S− 1) <= 10, 000

and

P ∗ S >= 10, 000

and leaving the extra proxifications unused. The time com-
puted to finish a HTTP request of 64 Kbytes through each one
of the 10,000 active proxification is noted as T_trans. Y-axis
represents the performance comparison calculated as the time
required for each test, against the time required by the optimal
configuration found referred to as T_transmin. This optimal
time is reckoned as the one having the lowest T_trans of the

29958 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

TABLE 2. Performance penalty (%) of different SSH configurations with N unused proxifications.

entire series and thereby, a penalty in performance is suffered
in any test wherein T_trans/T_transmin is higher than 1. Both
OpenSSH and DropBear test series have each one its own
T_transmin. Please be noted that this figure uses non-linear
scales on both axes.

FIGURE 19. Normalized performance of parallel SSH sessions with
different P and S configurations to achieve 10,000 active proxifications
(SSH sessions with all proxifications active handling a HTTP request
of 64 Kbytes payload each).

According to the results displayed in Fig.19, a reasonable
reference ratio between proxifications per SSH session and
SSH sessions seems to be P/S = 79/128, for both OpenSSH
and Dropbear. This result is, however, only applicable for this
scenario, where 6 virtual cores (single thread) are available in
the IoT Host Server. The amount of sessions in the previous
relation is likely to change if the number of cores differs.
Thus, in virtual machines with different number of virtual
cores the grade of dependency on the number of cores should
be computed to correct this ratio.

Once this optimization has been devised, a comparison
between SSH proxification scheme and direct HTTPS con-
nection is of paramount importance for testing the feasibil-
ity of the proposed scheme. Therefore, our final test will
compare the time spent by each approach, allowing us to
compute the Request Per Second (RPS) metric: it represents
the amount of HTTP requests of 1Kbyte that can be processed
in parallel in just one second by the IoTHost Server. The aim
of this test is to measure the server performance according to
the approach chosen to establish each communication with

the IoT devices. Thereby, several specific conditions are to
be met:
• Each HTTPS direct request from the concurrent client
in Server_B to Caddy server in Server_A has to be
performed independently. Thus, HTTPS/2 will not be
able to use its multiplexing features. Tests are per-
formed this way as these multiplexing features are
only available when a single client performs multiple
requests in parallel (e.g.: loading a website with mul-
tiple objects), whereas the present test aims to compare
independent communications: one per IoT device, where
HTTPS/2 multiplexing cannot easily apply mainly
because their origins are different IoT devices.

• HTTPS requests are performed without validating SSL
certificates. This task is intended to be done by the client
alone and would slow down every HTTPS request as
a result. As the aim of the test is to measure the per-
formance of the server, the time for HTTPS certificate
validation for each request does not apply this time.

• DNS resolutions are avoided, so as to prevent an unfair
performance penalty to HTTPS and HTTPS/2. Each
DNS resolution (or even cache query) would increase
the time required for each request and would penalize
server performance measure as explained through pre-
vious point and thus, it is left out of consideration.

• Several kernel and system optimizations are included in
this test to overcome security limitations of the operating
system.16 These modifications are mainly intended for
avoiding the wrong assumption of an ongoing DDoS
attack17 to the IoT Host Server, which would unfairly
penalize much more HTTPS and HTTPS/2 requests.

• HTTP requests secured through proxifications provided
by OpenSSH and DropBear are performed as in pre-
vious tests. This particularly refers to the fact all SSH
sessions and proxifications will already be established
before the proper test is run and the measuring time
starts to compute. This is scheduled this way because
the scheme presented handles persistent SSH sessions
from IoT devices to the IoT Host Server. Therefore,
when an HTTP request is required from the IoT device,
there should be no need in establishing any further SSH
session and proxification as they are already established

16https://www.kernel.org/doc/Documentation/networking/nf_conntrack-
sysctl.txt

17https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

VOLUME 7, 2019 29959



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

(this is a major advantage of the proposed SSH-based
scheme of IoTsafe).

Each test series is performed 25 times and the results
are averaged. Results of these test series are shown
in Fig. 20 using non-linear scales on both axes.

FIGURE 20. Time required to perform different parallel HTTP requests
of 1Kbyte through studied protocols. SSH proxifications are established
using P/S optimized values.

TABLE 3. Averaged requests per second (rps) and performance
improvement (1P).

The linear behavior of each test series with respect to the
amount of parallel HTTP requests shows a stable rate of RPS
processed by the IoT Host Server. Should the amount of
requests increase any further, some connections would have
to be discarded and the effective RPS would decrease due
to congestion. Plain HTTP insecure processed requests are
displayed as reference.

As a summary, a comparison in terms of RPS and per-
formance has been computed (see Table 3). A significant
improvement in the performance of IoT Host Server can
be observed for both SSH implementations with respect to
HTTPS and HTTPS/2: OpenSSH and DropBear. As an exam-
ple, OpenSSH outperforms HTTPS by a factor of 3 in terms
of RPS.

VIII. CONCLUSIONS
This paper has presented IoTsafe, a novel communication
scheme based on SSH for IoT environments using HTTP
or HTTP/2 that fits the security requirements of portabil-
ity and upgradeability when integrating into IoT devices.
It also provides performance improvements in both energy
savings and goodput with respect to a TLS scheme, when
HTTP is used. Regarding HTTP/2, a performance boost in

channel usage and goodput is achieved, in exchange for an
increase in energy consumption, but only when small files
are transferred and proxifications are to be set frequently. The
proposed SSH-based approach allows HTTP and HTTP/2 to
work with new low-powered interfaces with high constrains
in MTU size and data transfer rates. This is achieved thanks
to a proxy-like scheme that makes security independent from
the firmware libraries and IoT software. In addition, SSH
provides compressing features.

The results show that IoTsafe is a viable alternative in IoT
projects. As it relies onwell-known protocols and Linux long-
term supported technology, it can benefit from its features
allowing simpler IoT RESTful applications to be designed as
security is decoupled from core IoT software.

IoTsafe allows simpler upgrading procedures, reducing
software maintenance costs and extending IoT devices lifes-
pan whilst their security algorithms can easily be kept up to
date. This feat is easily achieved as SSH canwork stand-alone
in IoT devices allowing its upgrading procedure to be inde-
pendent from the rest of the IoT device’s pieces of software.
The analysis of SSH performance in the IoT Host Server

concludes that SSH current implementations are suited for
both small and medium IoT environments and are able to
scale to larger ones using a three level scheme: IoT device,
IoT Gateway and IoT Host Server. In the proposed scheme,
each IoT Gateway could host and communicate simultane-
ously with more than 1,000 IoT devices each, with a RAM
consumption of 5GB using the stand-alone debug version
of DropBear. Anyhow, IoT devices’ communications aggre-
gated into IoT gateways towards an IoT Host Server would
allow to gather into a single server a far larger number of
proxifications than in a plain gateway. A server with 16 Gb of
RAM and 6 virtual cores could accept more than 262K estab-
lished proxifications (262K IoT devices if each one requires
just 1 proxification). This implementation could reach a rate
of 2,542 RPS with DropBear stand-alone embodiment and
this figure could improve up to 3,857 RPS with OpenSSH,
in both cases managing HTTP requests of 1Kbyte payload
each secured through used proxification.

As future work, the performance could be further boosted
if a more efficient SSH embodiment was devised: removing
unused SSH functionalities and using a more efficient I/O
framework. A promising alternative would stand in Golang.
This language provides high performance in those required
features (as it uses epoll()18) and also presents an encour-
aging SSH package19 which simplifies the development
of highly efficient SSH servers and clients. Anyhow, IoT-
safe implementations are able to proceed with current SSH
embodiments, and in a nearby future, thanks to its unique
features in decoupling security from the rest of the software,
a straightforward update will be possible just replacing SSH
binaries and related IoTsafe configuration files and scripts

18https://github.com/golang/go/blob/
91c9b0d568e41449f26858d88eb2fd085eaf306d/src/runtime/netpoll_
epoll.go

19https://godoc.org/golang.org/x/crypto/ssh

29960 VOLUME 7, 2019



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

only. This would extend IoT devices life cycle and cut costs
in maintaining its firmware and features updated in terms of
security.
ACKNOWLDEGMENT
A preliminary version of this article, titled "SSH as an Alter-
native to TLS in IoT Environments using HTTP," was pre-
sented at Global Internet of Things Summit (GIoTS), Bilbao,
Spain, 2018, pp. 1-6. doi: 10.1109/GIOTS.2018.

REFERENCES
[1] C. Visual, The Zettabyte Era: Trends and Analysis. San Jose, CA, USA:

Networking Index, 2014.
[2] Eclipse IoTWorking Group, IEEE IoT, AGILE IoT. (2017). IoT Developer

Survey. https://ianskerrett.wordpress.com//iot-developer-trends-edition/
[3] Eclipse IoT Working Group, IEEE IoT, AGILE IoT. (2016). IoT Devel-

oper Survey. [Online]. Available: http://iot.ieee.org/images/files/pdf/iot-
developer-survey-report-final.pdf

[4] Flashpoint-intel. Mirai Botnet Linked to Dyn DNS DDoS Attacks.
Accessed: Oct. 21, 2016. [Online]. Available: https://www.flashpoint-
intel.com/mirai-botnet-linked-dyn-dns-ddos-attacks/

[5] D. Fitzgerald, ‘‘Hackers infect army of cameras, DVRs for mas-
sive Internet attacks,’’ Wall Street J., Sep. 2016. [Online]. Avail-
able: https://www.wsj.com/articles/hackers-infect-army-of-cameras-dvrs-
for-massive-internet-attacks-1475179428

[6] C. Stupp. Commission Plans Cybersecurity Rules for Internet-
Connected Machines. Accessed: Oct. 4, 2016. [Online]. Available:
https://www.euractiv.com/section/innovation-industry/news/commission-
plans-cybersecurity-rules-for-internet-connected-machines/

[7] S. Ray, A. Basak, and S. Bhunia, ‘‘The patchable Internet of things,’’ IEEE
Spectr., vol. 54, no. 11, pp. 30–35, Nov. 2017.

[8] V. Bourne. (2018). Seizing Control of Software Supply Chain
Security. [Online]. Available: https://go.crowdstrike.com/rs/281-OBQ-
266/images/ReportSupplyChain.pdf

[9] C. S. I. R. T. S. (CSIRT.SK), Security Advisory Skcsirt-sa-20170909-
Pypi-Malicious-Code. Accessed: Apr. 4, 2018. [Online]. Available:
https://www.sk-cert.sk/wp-content/uploads/2018/04/skcsirt-sa-20170909-
pypi-malicious-code.pdf

[10] P. Anand, ‘‘Overview of root causes of software vulnerabilities—Technical
and user-side perspectives,’’ in Proc. Int. Conf. Softw. Secur. Assurance
(ICSSA). St. Polten, Austria, Aug. 2016, pp. 70–74.

[11] W. Qiang, J. Yang, H. Jin, and X. Shi, ‘PrivGuard: Protecting sensi-
tive kernel data from privilege escalation attacks,’’ IEEE Access, vol. 6,
pp. 46584–46594, 2018.

[12] T. Y. C. Ylonen Lonvick, The Secure Shell (SSH) Protocol Architecture,
document RFC 4251, Internet Engineering Task Force, Jan. 2006. [Online].
Available: https://tools.ietf.org/html/rfc4251

[13] NIST,Recommendation for Key Management. Gaithersburg, MD, USA:
Elaine Barker, 2016.

[14] The European Parliment and the Council of the European
Union. General Data Protection Regulation. Accessed:
Apr. 27, 2016. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

[15] European Union Agency for Network and Information Security (ENISA).
Baseline Security Recommendations for IoT. Accessed: Nov. 7, 2017.
[Online]. Available: https://www.enisa.europa.eu/publications/baseline-
security-recommendations-for-iot

[16] Directorate-General for Communications Networks,
Content and Technology, Cybersecurity Act. Accessed:
Sep. 27. 2017. [Online]. Available: https://eur-lex.europa.eu/
legal-content/EN/ALL/?uri=COM:2017:477:FIN

[17] E. C. Organisation. (Oct. 2017). Elements from ECSO members on
the EU Certification Framework. [Online]. Available: http://www.ecs-
org.eu/documents/uploads/elements-from-ecso-members-on-the-eu-
certification-framework.pdf

[18] M. Warner, C. Gardner, and R. Y. Wyden, S. Daines,
‘‘Internet of Things (IoT) Cybersecurity Improvement Act,’’
in Proc. 115th Congr., 2017, pp. 1–20. [Online]. Available:
https://www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf

[19] L. Singaravelu et al., ‘‘Reducing TCB complexity for security-sensitive
applications: Three case studies,’’ ACM SIGOPS Operating Syst. Rev.,
vol. 40, no. 4, pp. 161–174, Apr. 2006.

[20] Gartner Inc, Gartner Says Worldwide IoT Security Spending Will Reach
1.5 Billion in 2018. Accessed: Mar. 21, 2018. [Online]. Available:
https://www.gartner.com/newsroom/id/3869181

[21] J. Y. G. Camacho Macía, ‘‘Device, system and method for the secure
exchange of sensitive information over a communication network,’’
World Patent WO2015128523 Spanish, Mar. 9, 2015. [Online]. Available:
https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2015128523

[22] PIN Transaction Security (PTS) Device Testing and Approval. Mastercard,
American: PCI Security Standards Council, 2018.

[23] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, ‘‘Physical unclon-
able functions and applications: A tutorial,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1126–1141, Aug. 2014.

[24] M. Vai et al., ‘‘Physical unclonable functions for IoT security,’’ in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC). Waltham, MA,
USA, Aug. 2015, pp. 1–5.

[25] M. A. Prada-Delgado, A. Y. I. Vázquez-Reyes and I. Baturone, ‘‘Trustwor-
thy firmware update for Internet-of-thing devices using physical unclon-
able functions,’’ in Proc. Global Internet Things Summit (GIoTS). Geneva,
Switzerland, Jun. 2017, pp. 1–5.

[26] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert, ‘‘Cloning phys-
ically unclonable functions,’’ in Proc. IEEE Int. Symp. Hardw.-Oriented
Secur. Trust (HOST). Austin, TX, USA, Jun. 2013, pp. 1–6.

[27] U. Rührmair, U. Schlichtmann, and W. Burleson, ‘‘Special session: How
secure are PUFs really? On the reach and limits of recent PUF attacks,’’
in Proc. Design, Automat. Test Europe Conf. Exhib. (DATE). Dresden,
Germany, Mar. 2014, pp. 1–4.

[28] G. T. Becker, ‘‘The gap between promise and reality: On the insecurity of
XOR arbiter PUFs,’’ in Proc. Conf. Cryptograph. Hardw. Embedded Syst.
(CHES). Saint Malo, France, Sep. 2015, pp. 535–555.

[29] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbot,
‘‘Emerging physical unclonable functions with nanotechnology,’’ IEEE
Access, vol. 4, pp. 61–80, 2016.

[30] Y. Wen and Y. Lao, ‘‘Enhancing PUF reliability by machine learning,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS). Baltimore, MD, USA,
May 2017, pp. 1–4.

[31] G. Grigoryan, Y. Liu, L. Njilla, C. Kamhoua, and K. Kwiat, ‘‘Enabling
cooperative IoT security via software defined networks (SDN),’’ in Proc.
IEEE Int. Conf. Commun. (ICC). Kansas City, MO, USA, May 2018,
pp. 1–6.

[32] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke , ‘‘Mid-
dleware for Internet of things: A survey,’’ IEEE Internet Things J., vol. 3,
no. 1, pp. 70–95, Feb. 2016.

[33] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, ‘‘IoT
middleware: A survey on issues and enabling technologies,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 1–20, Feb. 2017.

[34] R. T. Tiburski, L. A. Amaral, E. D. Matos, and F. Hessel, ‘‘The importance
of a standard securit y archit ecture for SOA-based iot middleware,’’ IEEE
Commun. Mag., vol. 53, no. 12, pp. 20–26, Dec. 2015.

[35] Z. Shelby. (2012). Constrained RESTful Environments (CoRE)
Link Format, Internet Engineering Task Force. [Online]. Available:
https://tools.ietf.org/html/rfc7252

[36] T. Grance and J. Voas, ‘‘The Internet of things: Epic changes to follow,’’ in
Proc. CSA Congr., 2015, pp. 25–28.

[37] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, ‘‘DRAFT NIST
IR 8114: Report on Lightweight Cryptography,’’ Nat. Inst. Standards Tech-
nol., Gaithersburg, MD, USA, Tech. Rep., Aug. 2016. [Online]. Available:
https://doi.org/10.6028/NIST.IR.8114

[38] D. Adrian et al., ‘‘Imperfect forward secrecy: How diffie-hellman fails
in practice,’’ in Proc. ACM Conf. Comput. Commun. Secur., Oct. 2015,
pp. 5–17.

[39] S. J. Johnston, M. Apetroaie-Cristea, and Y. Scott, ‘‘Applicability of com-
modity, low cost, single board computers for Internet of things devices,’’ in
Proc. IEEE 3rd World Forum Internet Things (WF-IoT). Reston, VA, USA,
Dec. 2016, pp. 141–146.

[40] C. Duan et al., ‘‘Design of an ARM9-based embedded industrial,’’ in
Proc. IEEE Conf. Ind. Electron. Appl. Hangzhou, China, Jun. 2014,
pp. 1932–1935.

[41] A. S. Haron, M. S. A. Talip, A. S. M. Khairuddin, and T. F. Tengku,
‘‘Internet of things platform on ARM/FPGA using embedded linux,’’
in Proc. Int. Conf. Adv. Comput. Appl. (ACOMP). Ho Chi Minh City,
Vietnam, Dec. 2017, pp. 99–104.

[42] K. Yangjian, ‘‘Development of ralink’s wireless network interface card
based on uclinux,’’ in Proc. Chin. Automat. Congr. (CAC). Jinan, China,
Oct. 2017, pp. 3278–3281.

VOLUME 7, 2019 29961



J. D. de Hoz Diego et al.: IoTsafe, Decoupling Security From Applications for a Safer IoT

[43] S. Deshmukh and S. S. Sonavane, ‘‘Security protocols for Internet of
Things: A survey,’’ in Proc. Int. Conf. Nextgen Electron. Technol. Silicon
Softw. (ICNETS2), Mar. 2017. pp. 71–74.

[44] M. Conti, N. Dragoni, and V. Lesyk, ‘‘A survey of man in the middle
attacks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2027–2051, 3rd
Quart., 2016.

[45] B. Visan, J. Lee, B. Yang, A. H. Smith, and E. T. Matson, ‘‘Vulnerabilities
in hub architecture IoT devices,’’ in Proc. IEEE Annu. Consum. Commun.
Netw. Conf.(CCNC). Las Vegas, NV, USA, Jan. 2017, pp. 83–88.

[46] O. Salman, S. Abdallah, I. H. Elhajj, A. Chehab, and A. Kayssi,
‘‘Identity-based authentication scheme for the Internet of Things,’’ in
Proc. IEEE Symp. Comput. Commun. (ISCC). Messina, Italy, Jun. 2016,
pp. 1109–1111.

[47] AndroidOpen Soure Project, SSLSocket Android Developers. Accessed:
Jan. 23, 2018. [Online]. Available: http://developer.android.com/intl/zh-
cn/reference/
javax/net/ssl/SSLSocket.html

[48] A. Razaghpanah et al. ‘‘Studying TLS usage in android Apps,’’ inProc. Int.
Conf. Emerg. Netw. Exp. Technol. Seoul/Incheon, South Korea, Nov. 2017,
pp. 350–362.

[49] T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection Protocol,
document RFC 4254, Internet Engineering Task Force, 2006. [Online].
Available: http://tools.ietf.org/html/rfc4254

[50] J. D. de Hoz Diego et al., ‘‘Leveraging on Digital Signage Networks to
Bring Connectivity to IoT Devices,’’in TELCON UNI, Lima, 2015.

[51] R. Zhang, G. Liu, X. Yuan, S. Ji, and G. Zhang, ‘‘ANew intrusion detection
mechanism in SELinux,’’ in Proc. Int. Symp. Syst. Softw. Rel. (ISSSR).
Shanghai, China, Oct. 2016, pp. 532–58.

[52] L. Wang, J. Sushil, S. Anoop, P.Cheng, and S. Noel, ‘‘k-zero day safety:
A network security metric for measuring the risk of unknown vulnerabili-
ties,’’ IEEE Trans. Dependable Secure Comput., vol. 11, no. 1, pp. 30–44,
Feb. 2013.

[53] (2016). Caddy—The HTTP/2 Web Server with Fully Managed TLS.
[Online]. Available: https://caddyserver.com/

[54] NSA: Information Assurance Directorate. (2017). Directorate of Capa-
bilities Mobile Access Capability Package Version 2.0. [Online]. Avail-
able: https://www.nsa.gov/Portals/70/documents/resources/everyone/csfc/
capability-packages/MA_CP_v2.0.pdf

[55] T. Ylonen and C. Lonvick, The Secure Shell (SSH) Transport Layer Pro-
tocol, document RFC 42, Internet Engineering Task Force, Jan. 2006.
[Online]. Available: https://tools.ietf.org/html/rfc42

[56] R. Seggelmann, M. Tuexen, and M. Williams. (2012). Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS) Heart-
beat Extension, Internet Engineering Task Force. [Online]. Available:
https://tools.ietf.org/html/rfc6520

[57] S. Kanti Datta and C. Bonnet, ‘‘Describing things in the internet of things.
From CoRE link format to semantic based descriptions,’’ inProc. Int. Conf.
Consum. Electron., Aug. 2016, pp. 18–25.

[58] F. Kaup, P. Gottschling, and D. Hausheer, ‘‘PowerPi: Measuring and mod-
eling the power,’’ in Proc. IEEE 39th Conf. Local Comput. Netw. (LCN),
Sep. 2014, pp. 1–6.

[59] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System
ProgrammingHandbook. San Francisco, CA, USA:No Starch Press, 2010.

JORGE DAVID DE HOZ DIEGO was born in
Valladolid, Spain, in 1983. He received the degree
in telecommunications engineering from the Uni-
versity of Valladolid, in 2008, and the M.S. degree
from the University of Zaragoza, Spain, in 2013,
where he is currently pursuing the Ph.D. degree in
information technologies and communications in
mobile networks.

He was with FURIA Government Consortium,
from 2008 to 2009. He focused on researching

and the validation of DVB-H/DVB-SH standards and involved technologies.
He has actively participated developing digital signage technology at Servi-
cios de TI de Durango, Spain and Mexico. He has also lead several research
projects related to the IoT environments partially funded by the National
Council of Science and Technology of Mexico (CONACY).

JOSE SALDANA (M’11) was born in San
Sebastián, Spain, in 1974. He received the B.S.
andM.S. degrees in telecommunications engineer-
ing in 1998 and 2008, respectively, and the Ph.D.
degree in information technologies from the Uni-
versity of Zaragoza (UZ), in 2011.

He is currently a Senior Postdoctoral Researcher
with the Department of Engineering and Com-
munications, UZ. His research interests include
quality of service in real-timemultimedia services,

as VoIP and networked online games, traffic optimization, and resource
management in wireless LANs.

Dr. Saldana is a member of the Internet Society. He currently serves as
an Editor of the IEEE ACCESS, and as an Area Editor of KSII Transactions
on Internet and Information Services. For several years, he served on the
Organization Committee of the IEEE Consumer Communications and Net-
working Conference, and in the Technical ProgramCommittee of many other
conferences as, e.g., IEEE ICC and IEEE GLOBECOM.

JULIÁN FERNÁNDEZ-NAVAJAS was born in
Alfaro, La Rioja, Spain, in 1969. He received
the degree from the Universidad Politécnica de
Valencia, Spain, in 1993, and the Ph.D. degree
from the University of Zaragoza (UZ), in 2000, all
in telecommunications engineering.

From 1994 to 2002, he was an Assistant Pro-
fessor with EINA, when he became an Associate
Professor. He is currently with the Department
of Electronics Engineering and Communications,

Higher Engineering and Architecture School, UZ. He is a member of the
Aragón Institute of Engineering Research (I3A). Since 1995, he has been a
co-investigator of research grants fromEUResearch Projects, theMinistry of
Science and Technology, the Sanitary Research Funds, and the Government
of Aragón, Spain, in distributed multimedia system and wireless networks.
Major industrial and mobile companies in wireless communications also
support his work. He is also a co-investigator of several research projects
supported by companies as Telefónica. His current research interests include
communication networks with special emphasis on wireless networks, dis-
tributed multimedia systems, quality of service, and quality of experience.

JOSÉ RUIZ-MAS was born in Lorca, Murcia,
Spain, in 1965. He received the degree from
the Universitat Politécnica de Catalunya, Spain,
in 1991, and the Ph.D. degree from the University
of Zaragoza (UZ), in 2001, all in telecommunica-
tions engineering.

He was a Software Engineer at the company
TAO Open Systems, from 1992 to 1994. From
1994 to 2003, he was an Assistant Professor with
EINA, when he became an Associate Professor.

He was the Director of Telefonica Chair with the University of Zaragoza,
from 2004 to 2008, and a Coordinator of master in information technol-
ogy and mobile communications, from 2007 to 2009. He is currently with
the Department of Electronics Engineering and Communications, Higher
Engineering and Architecture School, UZ. He is a member of the Aragón
Institute of Engineering Research. Since 1995, he has been a co-investigator
of research grants from EU Research Projects, the Ministry of Science
and Technology, the Sanitary Research Funds, and the Government of
Aragon, Spain, in distributed multimedia system and wireless networks.
Major industrial and mobile companies in wireless communications also
support his work. He is also a co-investigator of several research projects
supported by companies as Telefónica and Teltronic. His current research
interests include communication networks with special emphasis on wireless
networks, distributed multimedia systems, quality of service, and quality of
experience.

29962 VOLUME 7, 2019


	INTRODUCTION
	ONGOING REGULATION EFFORTS FOR IOT SECURITY
	RELATED WORK
	DECOUPLING SECURITY FROM APPLICATIONS
	LIMITATIONS OF TLS/DTLS

	PROPOSED FRAMEWORK: IOTSAFE
	SOCKET PROXIFICATION
	DETAILED DESCRIPTION OF THE PROPOSED METHOD
	INCLUDED TOOLS AND PROTOCOLS
	PROTECTED SOCKETS
	PERMISSIONS
	SECURITY CONTEXTS
	PROXIFIED COMMUNICATION
	RESOLUTION QUERY
	KEY MANAGEMENT
	CONFIGURATION PROFILES

	CHARACTERISTICS OF THE SYSTEM
	SECURE BY DESIGN
	KEY COMPROMISING
	TRANSPARENT COMMUNICATION


	TEST SCENARIOS
	SCENARIO FOR COMPARING SSH WITH TLS IN IOT DEVICES
	SCENARIO FOR CHARACTERIZING THE PERFORMANCE OF THE IOT SERVER

	IOT DEVICE RESULTS
	IOT HOST SERVER RESULTS
	RAM CONSUMPTION CHARACTERIZATION
	ESTIMATION OF THE OPTIMAL RELATIONSHIP BETWEEN P AND S

	CONCLUSIONS
	REFERENCES
	Biographies
	JORGE DAVID DE HOZ DIEGO
	JOSE SALDANA
	JULIÁN FERNÁNDEZ-NAVAJAS
	JOSÉ RUIZ-MAS


