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ABSTRACT Forecasting the traffic flow is greatly significant for traffic safety, energy conservation, and
environmental protection. However, in the face of many external uncertainties, making accurate predictions
about traffic volumes is a challenging issue. Many previous types of researche only explore the utility of a
single factor in their prediction and rarely conduct themulti-factor research. As for the traffic flow prediction,
many past types of researche focus primarily on the temporal distribution of the traffic flow on a single point
on the road, ignoring the spatial correlation. In terms of global forecasting, it was logically far-fetched to
mechanically view traffic as images. In this paper, considering the effects of many exogenous variables
and the interaction between monitor sites, we propose a hybrid model to simultaneously predict the traffic
flow in multiple positions by combining the layerwise structure and the Markov transition matrix (MTM).
More specifically, we employ the layerwise structure to capture the periodicity, trend, and nonlinearity
characteristics of traffic flow and, then, generate the MTM that captures the dynamics embodied in the
data and produces the corresponding distributions. Considering the spatial correlation of traffic data, the real
road network distance was thus introduced in our model. We apply the methodology on the real-world traffic
data from Xiamen, and the experimental results show that the satisfactory predictions can be achieved using
our model, which demonstrates the value of the transition matrix in traffic forecasts. In addition, we also
introduce the point of interest and analyze its impact on the prediction results.

INDEX TERMS Traffic flow forecast, layerwise structure, Markov transition matrix, point of interest.

I. INTRODUCTION
With the development of cities and the improvement of peo-
ple’s living standards, the excessive increase in the number of
motor vehicles is causing traffic congestion on urban roads.
This not only affects people’s travel experience, but also
reduces transportation efficiency, leading to the decline of
social productivity. However, if it were possible to accurately
predict future traffic conditions, positive measures could be
taken in advance to prevent traffic congestion and the nega-
tive effects associated with it. To tackle this problem, many
researchers have undertaken relevant researches by using
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approving it for publication was Feng Xia.

historical traffic data, which plays an important role in the
intelligent transportation system [1]–[7].

Anacleto et al. [8] extended the linear multi-regressive
dynamic model to solve the measurement error caused by
errors in data collection, and also demonstrated how close
the approximate forecasting limit is to the true forecasting
limit. The growing hierarchical self-organizing map model
was put forward by Chiou et al. [9] to help divide traffic
patterns into an appropriate number of clusters, and then
develop a genetic programming model for each cluster in
order to predict traffic flow characteristics. Besides, Polson
and Sokolov [10] developed a Bayesian particle filter to
track non-linear and discontinuous flows in flow dynamics.
Work et al. [11] used partial differential equation (PDE)
to make the model suitable for any highway network.
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TABLE 1. Abbreviation list used in this paper.

However, all these models do not work optimally when deal-
ing with large-scale data.

The traditional models that used to predict traffic flow
mainly include autoregressive integrated moving average
model (ARIMA) [12], support vector regression model
(SVR) [13] and random forest model (RF) [14]. Several
machine-learning methods for traffic prediction have also
been developed. For instance, Ripley [15] built a single
hidden layer efficient dynamic neural network based on a
resource allocation network (RAN) for traffic applications.
Additionally, Çetiner et al. [16] used the day of the week and
the time of the day as inputs for the neural network (NN).

Nowadays, convolution neural network (CNN) has helped
to successfully solve some problems in the field of com-
puter vision [17] and is now being applied in other areas.
Residual learning [18] allows deep networks to form a deeper
network layer. Recursive neural networks (RNN) can better
handle sequential learning tasks [19]. Long short-term mem-
ory (LSTM) allows RNN to learn about long-term temporal
dependencies. Recently, researchers have combined these
networks to develop a convolutional LSTM network [20]
which learns both spatial and temporal correlations.

Further, the efficiency of deep learning for traffic predic-
tion has been demonstrated by Lv et al. [21]. Ma et al. [22]
also took traffic flow as an image and used CNN meth-
ods to predict large-scale network-wide traffic speeds. This
method included two consecutive steps: abstract traffic fea-
ture extraction and network range of traffic speed prediction.
Huang et al. [23] proposed a grouping method based on
top-level weights, which makes full use of weight sharing
in deep architectures, to make multi-task learning more
effective. Ma et al. [24] proposed a traffic-flow-prediction
architecture with long short-term memory network, which
is suitable for processing sequential tasks. In 2012,
Kamarianakis et al. [25] made use of spatiotemporal cor-
relation to forecast traffic volumes. Moreover, a stacked
automatic encoder model has been used to learn traffic
flow characteristics and also trained in a greedy hierarchical
manner [21]. Additionally, Polson and Sokolov [26] devel-
oped a short-term traffic flow prediction architecture which

uses a linear model that combines L1 regularization and
tanh layer sequence fitting. Further, Yu et al. [27] proposed
a Mixture Deep LSTM model that can forecast peak-hour
traffic. There are also somemethods that apply CNN in traffic
flow forecasting put forward by both Wu and Tan [28] and
Yang et al. [29], and which fuse the spatio-temporal features
captured by CNN and LSTM models to predict short-term
traffic flow. In addition, Yu et al. [30] proposed a convolution-
based spatiotemporal recurrent network to predict traffic
flow.

In this paper, we propose a novel model, which is a type of
an ensemble of deep architectures, combined with statistical
methods to forecast traffic volumes. Our research makes four
important contributions: (1) Instead of basing the research on
a straight-line distance, a real road network distance is intro-
duced to capture the spatial correlation in traffic forecasts;
(2) A hybrid model that combines the layerwise structure and
MTM is used to forecast traffic flow, and the cost function
is constructed based on its own characteristics; (3) The pro-
posed model achieves promising results, which are beyond
the reported baselines, and the positive effect of the MTM on
traffic prediction is also proved; (4) In our model, we include
not just the weather, temperature and holidays, but also the
POI, and we proceed to analyze its impact on the model
prediction results.

The rest of this paper is structured as follows. Section II
presents some important and relevant data used in this paper.
The conventional methodologies are reviewed in Section III.
Section IV describes the details of model. Section V gives the
experimental results and analyses. Section VI summarizes the
paper.

II. LITERATURE REVIEW
Traffic flow forecasting has been studied for several decades
now in the design of intelligent transportation systems (ITS).
The general traffic forecasting model captures the spatial-
temporal correlation by taking historical traffic data, current
traffic data and exogenous variables as inputs to predict the
traffic flow. Considering the spatial characteristics of traffic
data, the topology of the road network is taken into account
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in the construction of the model. For exogenous variables,
some researchers tried to improve the prediction performance
of the model by taking into account factors such as POI and
weather [31]–[33].

By estimating the temporal correlation between the future
and current inflow populations, Chen et al. [34] established
a time-dependent population forecasting model, and used
artificial neural network to model the spatial correlation of
the population. Similarly, a spatiotemporal graph convolu-
tional network (STGCN) [35] was recommended to solve the
time-series prediction problem in the field of transportation.
The problem was presented on a graph and, by modeling
the multi-scale traffic network, the comprehensive spa-
tiotemporal correlation was obtained effectively. Further,
a Recurrent-Censored Regression (RCR) model [36] solved
the key challenge of the scarcity of check-in data. To be
more specific, RCR used recursive neural networks to learn
potential representations from the historical recordings of
actual and potential visitors, and then combined them with
review regression for prediction purposes. Using the large,
sparse GPS trajectory obtained from taxis, Tang et al. [37]
created a spatiotemporal model of the city’s travel time esti-
mation based on tensor analysis. The model not only contains
the spatial correlation between different sections, but also
synthesizes the deviation between different traffic conditions,
and has been applied to the case study of the road network
in Beijing, China. Deep Multi-View Spatial-Temporal Net-
work (DMVST-NET) framework [38] has been used to suc-
cessfully model spatiotemporal relationships. Specifically,
the model consists of three views: a time view, a spatial view,
and a semantic view. By using the Spatio-Temporal Resid-
ual Networks (ST-RESNET), Zhang et al. [39] predicted
the inflow and outflow of people from each region of the
city. Based on the unique characteristics of spatiotemporal
data, they used the residual neural network framework to
simulate the cycle and trend characteristics of human traffic,
and included the weather, date and other external factors
in the model. A cross-city transfer learning method [40]
effectively extracted the regional representation for space-
time predictions, and then the authors utilized an optimization
algorithm to transfer the learned features from the source city
to the target city by using the regional matching function.
Furthermore, a mobile gated mechanism [41] was created
to learn the dynamic similarity between different locations,
while a periodic transfermechanismwas also designed to deal
with long-term periodicity.

Additionally, there are also some studies which have
focused on distance and travel time between two points.
For example, Cebecauer et al. [42] put forward a method
of comprehensive prediction of travel time based on low-
frequency probe vehicle data. The framework integrated the
receiving method of probe data flow, map matching and path
reasoning, real-time calibration of predictive model parame-
ters and network travel time prediction, etc., which provided
high prediction accuracy for peak and off-peak traffic con-
ditions. By integrating geographic information into classical

convolution, the geographic convolution operation [43] was
able to capture spatial dependencies and directly estimate the
travel time of the entire path. Conversely, Jiang and Fei [44]
first used the neural network model based on historical traf-
fic data to predict the average traffic speed of a section of
a road, and then used the Hidden Markov model (HMM)
to describe the statistical relationship between the speed of
individual vehicles and the speed of traffic. The forward-
backward algorithm was applied to the HMM and the pre-
diction of vehicle speeds was realized. Tang et al. [45]
proposed a model which includes two steps: first, it uses the
K-means method to divide the input samples into different
clusters; second, the parameters of linear function in the
fuzzy rule of Takagi-Sugeno type are optimized by weighted
recursive least squares estimation method. This model pro-
duced better prediction accuracy than traditional methods
such as back propagation neural network (BPNN) and vector
autoregression (VAR). In addition, Li et al. [46] designed a
diffusion convolution recursive neural network which could
capture space-time relationships. Specifically, bi-directional
diagrams were utilized to randomly navigate and simulate
spatial dependencies.

In view of the above models, this research tends to add
some external factors to enrich the input information, which
can improve the prediction accuracy. There are some existing
studies which have tried to explore the effects of POI on traf-
fic flow prediction. For instance, Zeng et al. [32] described
how visualization can be used to explore the relationship
between human motion and the distribution of activities char-
acterized by points of interest.What’smore, the attractiveness
of the urban area was defined in three dimensions: the total
number of incoming trips, the spatial dispersion of the origins
of the trips, and the distribution of distances traveled by
visitors to reach the destination district [33]. The authors
also found three points of interest in Riyadh City based on
morning liquidity dynamics: global attraction, the attraction
of the city center, business-based places like firms, shopping
areas and service places.

III. DATABASE
A. TRAFFIC DATA
The traffic data for this experiment was collected from the
detectors distributed at intersections and different lanes in the
city. Technologies such as advanced photoelectric image pro-
cessing and pattern recognition were utilized to preprocess
the real-time data of passing vehicles. Then, more valuable
information regarding traffic flow forecast, such as time,
lane and speed, was obtained after analysis. Since license
plate recognition (LPR) technology is relatively mature in
recent years, we can take the statistical result as an approx-
imate estimation of traffic flow. In practical applications,
the amount of detectors may be increased by urban devel-
opment or reduced by damage. In this experiment, however,
only the equipment that worked stably was selected. Figure 1
shows the distribution of partial detectors after screening in
Xiamen.

26004 VOLUME 7, 2019



S. Zhang et al.: Hybrid Model for Forecasting Traffic Flow: Using Layerwise Structure and MTM

FIGURE 1. Locations in Xiamen.

B. EXTERNAL FACTORS
From the perspective of spatiality in traffic flow data’s spatio-
temporal correlation, two detectors with a short straight-line
distance are not always reachable within a defined time on
account of unavoidable factors, such as mountains and rivers.
In addition, the navigational distance of B from A may differ
with that of A from B, probably due to human factors, such
as a one-way street. To avoid this problem, the real road
network distance acquired from the Baidu’s Route Matrix
API service was introduced in our model. Events such as
weather condition may have less impact on vehicles than
bicycles, but it is also undeniably one of the important factors
that might affect traffic flow forecast. The weather conditions
and temperatures, which take most concern before traveling,
were obtained through the network interface provided by the
Bureau of Meteorology. As for holidays, they were referred
from the documents promulgated by the General Office of the
State Council.

TABLE 2. POI Categories discussed in this paper.

C. POI
As the core data of location-based services, each POI has a
specific impact area and focus group. However, there is low
public awareness about some types of POIs, such as conve-
nience stores and small restaurants, which should thus not be
used as prominent landmarks in cities. Therefore, only well-
known POIs that could influence traffic flow prediction are
discussed in this study. As shown in the Table 2, 216,622 POI

data in Xiamen City, which includes types (such as shopping
and education) and geo-location information in the forms of
latitude-longitude, was held in our database. After the data
pre-processing, we identified 36 important POIs, which were
then incorporated in the experiment.

TABLE 3. Datasets.

In this paper, we conducted experiments on road sensor
data, the details of which are shown in Table 3.
• LPRXM: Traffic data are collected from the LPR sys-
tem in Xiamen from April 1, 2016 to August 31, 2016.
We have already described the data utilized in this exper-
iment, such as weather conditions and road network
distance, in the previous subsection. Among the data,
data collected in the last month is used as the test data,
while the other data is used as training data.

IV. PRELIMINARIES
A. TRANSITION MATRIX
There is a basic assumption that the transition of each state
depends only on its previous state in the first-order Markov
model, the core part of which is the Markov transition matrix
[47]–[49]. This matrix is widely used for data analysis in
different kinds of fields [50]–[53]. Each entity of the matrix is
a non-negative real number representing the probability from
state i to state j during a single-time step, as shown in Figure 2.

FIGURE 2. General transition matrix.

The distribution at a time t is denoted as n × 1 vector
Dt , where n is the number of states. In this paper, each state
represents traffic situation under various conditions on the
distribution of traffic flow. Let T to be the n × n Markov
transition matrix that controls the transformation of Dt to
Dt+1 (distribution at time t + 1) so that we have

Dt+1 = T ′ · Dt . (1)
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FIGURE 3. State transition diagram of the graph-structured traffic data.

Assuming that n is equal to 3, for instance, the MTM can be
visually expressed as

T =

e11 e12 e13
e21 e22 e23
e31 e32 e33

, (2)

Each element ejk of the matrix indicates the transition prob-
ability of state k from the state j. Supposing that the MTM
remains unchanged over time, we can repeat the Eq.(2)
s times to get the distribution after the s period:

Dt+s =
(
T s
)′
· Dt . (3)

In the case of certain regularity, the distribution converges
to the steady state distribution D with s approaching infinity.
Thus we have:

Dt+s =
(
T s
)′
· Dt

s→∞
→ D̄. (4)

The steady state distribution of the system, which is given by
the eigenvector of theMTM, remains the same throughout the
iteration. Therefore, a closed-form solution of the model is
derived. In retrospect, multiplying a matrix by its eigenvector
yields a vector, which is also regarded as the eigenvector of
the matrix. In other words,

D̄ = T ′ · D̄. (5)

Once this state of the model is reached, it does not change
thereafter. The general transition matrix is described above.
In this study, the MTM is used to analyze the possibility
of a vehicle moving from one monitor site to another at
determined intervals, such as 15 minutes, 30 minutes and
60 minutes. Assuming that the number of detectors is n,
the transition matrix T is an n × n square matrix, which
contains the transition process of the traffic volume between
monitor sites. Figure 3 shows the state transition diagram
of the graph-structured traffic data. Within the time interval
(t, t + 1), Tij represents the impact of transition of traffic flow
frommonitor site i to j in the transition matrix. V t

i ·Tji denotes
the diverted traffic volume from monitor site i to j. The traffic
flow of the monitor site j at time interval t + 1 is denoted
as
∑n

i=1 V
t
i · Tji, which reflects the sum of the effects of

all monitor sites on the monitor site j. The transition matrix

during the t-th time interval T t is forecast by a layerwise
structure with traffic data at the current time t , the historical
data at time t − 1, t − 2, · · · and other exogenous variables,
such as weather, temperature, holidays, road network dis-
tance and point of interest, as inputs. The previous prediction
results are taken as observed values in the next prediction
phase of the model, and the traffic volume at time n + a is
denoted as

V n+a
= V a

× T a × T a+1 × · · · × T n+a

= V a
×

a+n∏
j=a

T j

= V a
× T(a,a+n) (6)

where × is matrix product and T(a,a+n) is the total transition
matrix of n+1 consecutive time interval from time a to a+n.
Considering the complexity of traffic systems, the element
values of the transition matrix are not strictly limited to the
range of 0 to 1, and the negative value indicates the traffic
attraction of one monitor site to another. All the element
values of the transition matrix can be learned by the neural
network.

V. HYBRID MODEL
Based on bulk LPR data, external factors, such as weather,
temperature, holidays and real road network distance, were
introduced in our model and then pretreatment and fusion of
these raw heterogeneous datawas carried out. Finally, we pro-
pose a hybrid model to forecast traffic flow at different posi-
tions simultaneously by combining the layerwise structure
with theMTM. Figure 4 shows the hybrid architecture model,
which consists of three components (inputs, preprocessing,
and model training). The input data has been described in
the previous section. In the pre-processing stage, which is at
the middle of Figure 4, the data normalization technology is
used to eliminate the dimension between different data, which
is convenient for comparison purposes. Furthermore, data
normalization can also speed up the convergence of training
networks. In this paper, the impact of external factors on
the prediction result is negligible compared with large traffic
volumes. Normalizationmakes different features numerically
comparable, which improves the prediction accuracy. More
specifically, the Min-Max scaler module in the Scikit-learn
API is utilized to pre-process different types of data and
rescale the predicted values to normal values. In the last
phase, the pre-processed data was combined to form inputs of
the layerwise structure composed of multiple NNs according
to the requirements. Three different MTMs are produced by
three different NNs, and then weighted fusion is carried out
on the MTMs. There is a basic assumption that the patterns
of traffic changes in the past are generally consistent with
future trends. It is thus possible to forecast traffic flow in the
future through the discovery of the trend of traffic changes
in the past. Finally, the model was trained by using back
propagation algorithm.
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FIGURE 4. Deep model for traffic flow prediction.

FIGURE 5. Layerwise structure.

A. LAYERWISE STRUCTURE
In recent years, NN has developed rapidly and applied in
many fields because it can approximate linear and non-
linear functions of any capacity with arbitrary precision.
More specifically, LSTM has been successfully applied in the
field of machine translation [54]–[58], speech recognition
[59]–[63], image annotation [64]–[68], and so on. multi-
layer perceptron (MLP) and stacked autoencoder (SAE) are
also widely used due to their remarkable feature-extraction
ability [69]–[75]. Taking into account the characteristics of
traffic data, we introduce the layerwise structure that is
comprised of long-term, medium-term, and short-term NNs
(LSTM, SAE, orMLP). Let NN be LSTM, there are two time-
steps both in medium-term and long- term LSTM. The same
network structure is shared by the two LSTMs which reveal
periodicity on a weekly basis and the daily periodicity of
the driver’s travel habits, respectively. Different from the two
LSTMs, there is only one time-step in the short-term LSTM,
which helps capture numeric variation trends of traffic flow.
Different parts of MTM are forecasted separately by NNs
representing different trends, and then weighted fusion is per-
formed to obtain the predictedMTM. The layerwise structure
of our model is shown in Figure 5.

B. FUSION
In this subsection, we describe how the predicted flow of the
model was formed. We first fused the outputs of different

components and then split the combined results into three
separate parts to forecast traffic, before finally introducing the
cost function to optimize the model. The layerwise structure
consists of three component networks: long-term, medium-
term and short-term, which reflect the weekly trend, daily
periodicity and numeric variation dependence, respectively.
Supposing that the comprehensive effect of component net-
works on traffic flow can be simply approximated as a linear
combination of independent effects, more complex relation-
ships can be considered in future work. Supposing that the
number of POIs and detectors are denoted as M and N ,
respectively, the size of the MTM and navigation distance
matrix are both N ∗ (N + M ). The dimension of the vector
forecasted by components is N ∗(N+M )+M , and the fusion
process is described by the following equation:

Vres = αVl + βVm + γVs (7)

where α, β and γ are learnable parameters that adjust the
influence degree of components. The outputs of the three
different NNs are denoted as Vl , Vm and Vs, respectively.
Vres is the combined vector and is split into three parts: the
MTM between detectors (N ∗ N ) denoted as Mdd , the MTM
between detectors and POIs (N ∗ M ) denoted as Mdp, and
traffic volumes caused by POIs (M∗1) denoted asVtp. By tak-
ing the point of interest (POI) as the pseudo-monitoring site,
the resulting traffic flow is the sum of the traffic transferred
from the monitoring site and the pseudo-monitoring site.

Finally, the predicted flow at the moment t is defined as

X̂t = Mdd ∗ Xt−1 +Mdp ∗ Vtp. (8)

Based on the current situation, the following cost function is
put forward to optimize the model:

Jcost =
∥∥Xt − X̂t∥∥2F + λR (Mdd )+ µR

(
Mdp

)
(9)

where Xt is the observed value at the moment t , and λ
and µ are the regular term coefficients for Mdd and Mdp,
respectively.
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In addition, the above elements still apply in the special
case where M = 0, which is an indication that the POI has
not been considered in the model.

VI. EXPERIMENTAL RESULTS
A. SETTINGS
1) BASELINES
The hybrid model is compared with the following baselines:
• SVR: Due to the non-linear and time-variant characteris-
tics of the traffic volume, we used support vector regres-
sion (SVR) with radial basis function (RBF) kernel to
forecast traffic flow.

• RF: RF is an ensemble learning method with good
prediction performance which is unlikely to cause over-
fitting and is insensitive to multi-collinearity.

• GBRT: Gradient boost regression tree (GBRT) is a pre-
dictive model with strong robustness to outliers, and it is
very suitable for heterogeneous data processing.

• DTR: A predictive model based on decision tree regres-
sion (DTR) is usually employed to extract decision rules
from traffic data, and can be used for forecasting short-
term traffic volumes.

• ADABOOST: Adaptive boosting (AdaBoost) is an
ensemble algorithm which can reduce the bias of the
model, and it can learn an effective combination of base
predictors.

• LSTM [24]: As a commonly-used method in time series
prediction, it takes the traffic of the first k moments as
input for forecasting the traffic at the next moment.

• MLP: MLP is a non-linear network structure that pre-
dicts traffic flow by mapping input vectors to output
vectors.

• SAE [21]: SAE is a neural network that not only learns
useful feature representations from the input, but also
resists noise.

• DCNN [22]: The spatial-temporal correlation of traffic
flow is described as a two-dimensional image matrix,
which is processed by deep convolutional neural net-
work (DCNN) to predict traffic volume.

• ConvLSTM [29]: Convolutional long short-term mem-
ory (ConvLSTM) that combines the advantage of CNN
and LSTM is employed to forecast the state of future
short-term traffic.

2) SETUP
In this study, all experiments were carried out under the con-
figuration of Ubuntu Server 16.06 (CPU: Intel i5, Memory:
64G, GPU: 2 * Titan X 12G), in which Python (Version 2.7)
and TensorFlowTM (Version 1.3.0 GPU) have been installed.
In the experiments, 90% of the training data was ran-
domly selected to train the model, while the remaining 10%
was used as validation set to control early stopping. The
Adam optimizer was used to train our model. Referring to
other researches, the parameters used in these models were

set as follows:

Hidden units = 70,

Learning rate = 0.0001,

Keep probility = 0.4,

Iteration times = 100000,

Batch size = 64,

L2 regularization coefficient = 0.002.

3) EVALUATION METRIC
The forecasting performance of the model was evaluated
using two widely-used error measures: MAE and RMSE,
which are respectively defined in Eq. 10 and 11. The MAE
was applied to measure the difference between the predicted
values and the ground truth. The RMSE is an indicator of the
prediction precision of model.

MAE =
1
N

N∑
i=1

|ti − pi| (10)

RMSE =

√√√√ 1
N

N∑
i=1

(ti − pi)2 (11)

where pi = predicted traffic flow; ti = observed value; N =
the number of predictions.

B. RESULTS ON LPRXM
Table 4 gives the prediction results of different methods,
which are used to forecast 15-min traffic flow, 30-min traffic
flow and 60-min traffic flow on LPRXM. It can be seen
that the NNs brings about higher accuracy than traditional
methods as SVR and GBRT are relative effective methods
in short-term prediction of traffic. More specifically, for
the 15-min traffic flow prediction, the MAE of the SAE is
70.25, which is under 23.21 compared with the SVR, under
26.76 compared with the GBRT and under 43.86 compared
with ADABOOST. For the DCNN, the performance of the
model is close to that of the SAE in 30 minutes and layerwise
MLP (LMLP) in 60 minutes. Despite its good prediction per-
formance, it has poor interpretability in the spatial correlation
of traffic data. As a variant of LSTM, the prediction results
of ConvLSTM are to some extent reduced in terms of mean
absolute error (MAE) and root mean square error (RMSE).
Compared with the DCNN model, ConvLSTM produces a
small performance boost in traffic prediction, but requires
larger graphic processing unit (GPU) memory and slower
training speed. Based on the analyses of the four groups
of layerwise networks without the MTM, it is obvious that
LLSTM performs as well as or a little better than layerwise
gated recurrent unit (LGRU). In practice, however, the train-
ing speed of LGUR is faster due to existence of fewer param-
eters. Then, LSAE in 15 minutes and 30 minutes, and LMLP
in 60 minutes, can achieve the best forecast accuracy. For
all the experiments, the LSAE-MTM achieves the best out-
come compared with the reported methods on the 15-min and

26008 VOLUME 7, 2019



S. Zhang et al.: Hybrid Model for Forecasting Traffic Flow: Using Layerwise Structure and MTM

TABLE 4. The results of models and baselines without POIs.

TABLE 5. The results of models with POIs.

30-min traffic flow prediction, as does the LLSTM-MTM on
the 60-min traffic flow prediction. However, the small dif-
ference between the MAE of the LSAE-MTM (103.04) and
the LLSTM-MTM (102.02) indicates that the LSAE-MTM
method is more promising and robust for traffic flow predic-
tion. Comparing the four groups of experiments: LLSTM-
MTM and LLSTM; LSAE-MTM and LSAE; LGRU-MTM
and LGRU; and LMLP-MTM and LMLP, the role of MTM
in the traffic flow forecast can be clearly seen. It is evident that
the satisfactory results can always be achieved by the model
incorporating MTM, which has a low MAE value. A model
which incorporates MTM is not necessarily better than
another model without MTM, but it is definitely better than
the current model without MTM. For instance, the prediction
performance of LLSTM-MTM is worse than LSAE, but bet-
ter than that of LLSTM on the 15-min traffic flow prediction.

Let LSAE-MTMbe analyzed model. For the 15-min traffic
flow prediction, a visual display of this model performance,
which presents the density distribution between traffic vol-
umes andMAE, is shown in Figure 6. The greater the density,
the darker the color. In particular, the red color in the Figure
indicates high-density areas. The statistical results of the
detector in 15 minutes are generally less than 1,000 vehicles,
the largest of which is slightly above 3,500 vehicles. The
hybrid model of traffic flow prediction is practical since
the MAE concentrated in a span of 10−1 to 102 is small,
acceptable and comparable with larger traffic volumes.
Effects of POI: For the purpose of intuitively understanding

the effect of POIs on the predictive capability of the model,
the absolute error of the model with POI or not is given

FIGURE 6. The density map between MAE and observed traffic volumes.

in Figure 7. In view of better visualization, we only show
the traffic forecasts of 35 positions under different models at
30 minutes and 60 minutes. Since the performance of LGRU-
MTM is always similar to that of LLSTM-MTM, only one
of the two methods is displayed in the figure. The numerical
results of the experiments are given in Table 5. As you can
see from Figure 7, for the 30-min traffic flow prediction,
the absolute error of the experiments with POIs is less than
those without the POIs, which indicates that the consideration
of POIs can improve the performance of model prediction
to some extent. For instance, the MAE of the LSAE-MTM
with POIs is reduced by 9.32 compared with those without
POIs. However, this has little or no impact on 60-min traffic
flow prediction. More specifically, there is little difference
between the LLSTM-MTM with POIs and those without.
Coupled with the results of Table 4 and 5, we can conclude
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FIGURE 7. Forecasting results of different models with and without POIs. (a) 30-min traffic flow prediction by LMLP-MTM. (b) 60-min traffic flow
prediction by LMLP-MTM. (c) 30-min traffic flow prediction by LLSTM-MTM. (d) 60-min traffic flow prediction by LLSTM-MTM. (e) 30-min traffic flow
prediction by LSAE-MTM. (f) 60-min traffic flow prediction by LSAE-MTM.

that the prediction accuracy can be increased by properly
using POI since the traffic volumes from detectors that are in
an unreachable location within a given time can’t be affected
by the POIs, since there are distinct features on the distri-
bution of important POIs, which are usually concentrated in
the bustling city center and far from the detectors. For the
purposes of this article, the 30-minute interval is probably a
better choice when POIs are considered in the model.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel hybrid model to simulta-
neously predict the traffic volume of multiple locations from
the historical traffic patterns. Taking the temporal and spatial
characteristics of traffic data into account, external factors,
such as weather, temperature, holidays and real road network
distance, are introduced in the proposed model, which com-
bines the layerwise structure and theMTM. Experiments con-
ducted on real-world sensor data achieved promising results,
which were beyond the reported baselines. It was also estab-
lished that the proper use of POIs and MTM will benefit the
improvement of model performance. By comparing various
models in terms of prediction error, it was found that the
LSAE-MTMmethod is more promising and robust for traffic
flow prediction. Future work will focus on improving the
layerwise structure, trying different public open traffic data
sets and, if possible, exploring the impact of road conditions
and social events on traffic volume prediction.
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