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ABSTRACT With the development of advanced metering infrastructure, massive smart meter readings
are generated and stored in smart grids, which makes it possible for detecting of tremendous social value
embedded in load data. The majority of the existing load data mining works are performed on the daily time
scale without adequate consideration of load information between the days. To better describe the power
consumption characteristics of users, a data mining approach based on the weekly load curves is proposed
in this paper. First, the piecewise aggregate approximation technique is utilized to reduce the dimensions
of the raw weekly load data. Then, a Davies–Bouldin index-based adaptive k-means algorithm is proposed
to cluster the studied users into several groups. Finally, a hidden Markov model describing the probabilistic
transitions of different load levels is established for each cluster to extract the representative dynamic weekly
load features. A feasible tool based on dynamic characteristics of load patterns is invented to evaluate the
short-term load forecasting methods, which realizes the pre-check for the forecasting results without future
real measurements in the forecasting horizon. Case studies on a real dataset demonstrate that the proposed
method is capable of extracting weekly load characteristics of users.

INDEX TERMS Weekly load profiles, dimension reduction, clustering, hidden Markov model evaluation.

I. INTRODUCTION
A. BACKGROUND
With the development of smart grids, smart meters, the basic
terminal equipment of Advanced Metering Infrastructure
(AMI), has gained increasing popularity worldwide. For
instance, in the US, the quantity of smart meters installed
has reached 70 million by the end of 2016 [1]; while in
China, more than 500 million smart meters will be installed
during the 13th Five-Year Plan period (2016-2020) [1]. Con-
sequently, massive load data is generated and stored. With a
temporal measurement of 15 minutes, the annual amount of
smart meter readings for China reaches 117TB.

Except for the traditional electricity billing, hidden value
of the massive smart meter readings is detected by a series
of data mining approaches. Typical load data mining proce-
dure includes steps of data cleaning, compression, clustering,
forecasting and so on [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Qilian Liang.

B. LITERATURE REVIEW
Among the mentioned load data mining models, load data
clustering is considered as the fundamental step for further
application of smart meter readings. Classification provides a
straightforward recognition about loads, which should assign
the loads in the same class sharing similar patterns, while
loads in different classes illustrate significant differences.
Based on the classification, differentiated mechanisms are
designed. Specifically, different Real-time Pricing (RTP),
Time-of-use (ToU), or Critical Peak Pricing (CPP) levels
are carried out to promote demand response (DR) for dif-
ferent user classes [2]. Researches have been conducted for
load data classification or customer segmentation. In general,
loads can be clustered through unsupervised and supervised
ways. Unsupervised methods such as k-means, hierarchi-
cal clustering, and Self- Organizing Map (SOM) classify
loads based on the Euclidean distance, density, or other data
features [3]. While supervised methods identify unknown
loads by learning the existing load classification statistical
rules. Typical supervised methods include the support vector
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machines (SVM) [4], the decision tree (DT) [5], the logistic
regression (LR) [6], [7] and the naive Bayes (NB) classi-
fier [8]. However, with the increasing volume and dimension
of load data, traditional clustering methods are difficult to be
implemented in a reasonable time. Among these clustering
algorithms, the k-means algorithm is more versatile, but the
biggest disadvantage of the traditional k-means algorithm is
that the cluster number is necessary to be given in advance.

Another important mining procedure for load data is the
forecasting. Forecasting results for different time scales have
different applications. The long-term forecast mainly pro-
vides suggestions for network planning. The medium-term
forecast (more than one month) mainly provides a refer-
ence for futures trading, reservoir scheduling, overhaul, and
fuel plan. The short-term forecast is the basis of the spot
transaction. And the very short-term forecast is mainly for
real-time scheduling, real-time price forecasting. Generally
speaking, load forecasting techniques are mainly divided
into statistical models and artificial intelligence models [9].
Statistical models include regression analysis, exponential
smoothing and random Time Series. Artificial intelligence
models mainly include support vector machine (SVM),
artificial neural network (ANN), gray system, and wavelet
analysis [10]. However, at present, there are currently no
effective evaluation methods to pre-check the forecasting
results, thus the planners generally determine the specific
utilized forecasting methods subjectively.

Furthermore, the dimension of the original load data needs
to be reduced. The dimensionality reduction techniques can
be divided into supervised and unsupervised methods. Super-
vised methods mainly include linear discriminant analysis
(LDA) [11] and neural network (NN) [12]. Unsupervised
methods include principal component analysis (PCA) [12],
independent component analysis (ICA) [13], single value
decomposition (SVD) [14], kernel principal component anal-
ysis (KPCA) [15] and Fourier analysis (FA) [16]. Besides, for
time series data, piecewise aggregate approximation (PAA)
can reduce the dimensionality of the original time series while
maintaining the original shape.

Besides, the hiddenMarkov model (HMM) is often used to
model the dynamic behavior. In reference [17] the application
of HMM in dynamic detection of transmission line outages is
introduced; Reference [18] reported a framework of stochas-
tic powermanagement using the HMM; and in reference [19],
a transient identification method based on a stochastic
approach with the HMM has been suggested and evaluated
experimentally. It is worth noting that the HMM represents
the dynamic characteristics of the system to be studied,
since the user’s load curve also has dynamic characteristics
too, the HMM provides a good idea for the dynamic behavior
modeling of the load.

C. INNOVATIONS
To the best of the authors’ knowledge, nowadays, most of
the existing load data mining researches are performed on
the time scale of a single day, and the selection of load

FIGURE 1. Weekly load curve for three types of power users.

characteristic indicators are mainly based on typical daily
indices [20], such as the daily maximum load, daily minimum
load, daily average load, daily load rate, and so on. To some
extent, the utilization of daily approaches has certain rational-
ity. This is because from the perspective of the cyclicality of
social production, the behaviors of power consumption have
significant similarities between the days.

Nevertheless, it is worth noting that some non-ignorable
power consumption characteristics on relatively long time
scales cannot be extracted based on the typical daily load
curves. FIGURE 1 shows weekly load curves of three dif-
ferent power users, and the sampling interval in the figure
is 15 minutes. For the first and second users, the daily load
profiles are basically the same, especially after normalization.
If only daily profiles are utilized as the clustering criteria,
the first and second users obviously would be classified into
one group. However, as can be seen, some certain differ-
ences do exist in these two users between days. For the first
load, it presents a rising trend, while the second one has an
obvious decreasing. If the weekly load profiles are studied,
the different trends between days are likely to be preserved,
thus more accurate and reasonable clustering results can be
obtained. What’s more, the third user presents an observable
randomicity between days, then it is not feasible to extract and
utilize one typical daily load profile for load data mining. So,
load data with longer time scale should be used as the basis
of load clustering to characterize power consumption features
between days for the users’ behaviors.

Furthermore, the three loads shown in FIGURE 1 corre-
spond to three different power usage patterns. From a day’s
perspective, for the first user, the representative profile can be
summarized as a two-spike shape, in which the second spike
overtops the first one. For the second user, the latter spikes
are generally lower than the former ones in days. Extend
to a week, for the first user, the weekends are close to the
working days in terms of load level, while for the second
one, the weekend loads decrease significantly. In general,
the essence of electricity consumption features can be
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FIGURE 2. Flowchart of the proposed method.

considered as the dynamic transition laws between different
load levels.

To solve the above problems and better describe the power
consumption characteristics of users, a data mining approach
based on the weekly load curves is proposed in this paper.
The main contributions of the proposed method include:

a) An adaptive k-means method based on PAA technique
is proposed to perform clustering. Specifically, a piecewise
aggregate approximation (PAA) technology is utilized to
transform the dense fluctuating load data into piecewise
paned data. Then, ADavies-Bouldin index (DBI) based adap-
tive k-means algorithm is utilized to cluster the studied users
into several groups. The optimal clustering number can be set
automatically without prior knowledge.

b) A Hidden Markov Model (HMM) is established to
describe the probabilistic transitions of different load levels
in the aggregated load curve of each cluster. The proposed
model is capable of characterizing the representative dynamic
weekly demand features. Moreover, the proposed model also
provides a feasible tool to evaluate the performance of the
short-term load forecasting. It realizes the pre-check for the
forecasting results without the real load data of the forecast
day.

D. PAPER ORGANIZATION
The flowchart of the proposed method in this paper is briefly
described in FIGURE 2.
Specifically, in section II, basic methodologies including

data normalization and piecewise aggregate approximation
are introduced. Then, an adaptive k-means clustering method
based on Davies-Bouldin index (DBI) is proposed, which
can find the optimal classification number for the studied
dataset. In Section III, the Baum-Welch algorithm is utilized
to establish an HMM for each type of load pattern, which
represents the dynamic characteristics of it. In Section IV,
A feasible tool based on dynamic characteristics of load
patterns is invented to evaluate the short-term load forecasting
methods. Section V validates the feasibility of the proposed

FIGURE 3. Standardization of the weekly load curve for two power users.

model based on real data sets in Guangdong, China. Finally,
the conclusions are presented in Section VI.

II. BASIC METHODOLOGY
A. DATA NORMALIZATION
Since the range of values of raw data varies widely, in some
machine learning algorithms, objective functions will not
work properly without normalization [21]. Moreover, since
we focus on the dynamic characteristic of the loads, which are
reflected by the relative power levels of different time periods,
thus the original load data needs to be normalized firstly.

Due to the complexity and diversity of the user’s
power usage behavior, the original load data may not
totally or approximately satisfy the Gaussian distribution,
the results of commonly used z-scores normalization will
be poor [22]. Therefore, the unity-based normalization
(also known as min-max normalization) is utilized in this
paper [23]. This method ensures that all data is linearly
mapped into the interval [0], [1]. The formula of unity-based
normalization is as follows.

x ′ =
x −min(x)

max(x)−min(x)
(1)

where x represents the original load data sequence, min(x)
and max(x) represent the minimum and maximum values of
the load data sequence, respectively. And x ′ represents the
normalized data sequence.

FIGURE3 shows the data sequence before and after unity-
based normalization. It can be easily found that the profiles
of the two load curves are quite similar after normalization.
Then, these loads with disparate amplitudes are likely to be
classified into the same cluster.

B. PIECEWISE AGGREGATE APPROXIMATION
In this paper, the feature used for clustering is the weekly load
curve. However, for a raw uncompressed weekly load curve,
assuming that the sampling interval of the measuring device
is 15 minutes, the data volume of a weekly load curve will
reach 672 dimensions.
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FIGURE 4. PAA result for weekly load curve.

However, clustering uncompressed weekly load data is
time consuming, and the high-dimensional data may lead
to over-fitting of the clustering algorithm. Since we mainly
focus on weekly load profile, so only some typical val-
ues or segments are essential to represent it. Thus, the PAA is
adopted in this paper to reduce the original dimensions.

Here, we divide a day into three equal time periods,
this is in line with social activities of power users: during
0:00-8:00, most of the loads are off; during 8:00-16:00, office
and industry facilities are at work; and during 16:00-24:00,
most of the offices and industries are off while the residents
and malls are on.

The PAA uses the mean of each time period to approximate
the whole weekly load data [24]. From a general perspective,
the PAA divides the time series of length n into M seg-
ments, each segment is of the same length k . The principle of
PAA can be expressed as follows.

x̄i =
M
n

(n/M )i∑
j=n/M (i−1)+1

xj (2)

FIGURE 4 shows the converting of a 672-points weekly
load curve into a PAA sequence with a length of 21.

As can be seen from FIGURE 4, the dimension of the
original data is reduced by PAA, and the obtained sequence
preserves the original profile information. It means that each
daily load curve is represented by 3 representative data val-
ues, which cover the average load of 0:00-8:00, 8:00-16:00,
and 16:00-24:00 respectively.

C. ADAPTIVE K-MEANS ALGORITHM BASED ON
WEEKLY LOAD CURVE
The traditional k-means is not suitable to cluster load profiles
directly, because the number of the profile clusters cannot be
subjectively determined without any prior knowledge of the
dataset. To solve this difficulty, an adaptive k-means that can
automatically set k values according to the input dataset is
proposed.

First of all, the convergence of the k-means with normal-
ized load data is discussed below. Denote the load data after
unity-based normalization and PAA as x = (x1, x2, · · · , xN ),

where N is the length of the data. Since xi ∈ [0, 1] ,
i = 1, 2, · · ·N , the domain of the user load data is an
N-dimensional cube with a side length of 1, which obviously
satisfies the properties of the convex set [25]:

∀x, y ∈ S, t ∈ [0, 1]⇒ (1− t)x+ ty ∈ S (3)

Therefore, according to the convex optimization [26], the
k-means algorithm here can converge at a fast speed.

The main idea of the proposed k-means is a distance-based
iterative process, which is shown as follows [27]:

Algorithm 1 Adaptive k-means Algorithm
Step 1: Randomly assign k seeds for the center vectors

c1, c2, · · · , ck ;
Step 2: Assign the seeds to the nearest center using a dis-

tance measure. The distance measure for load data
sequence DPAA(X̄ , Ȳ ) is given in (4). Constructing
non-overlapping clusters of the given dataset based
on distance.

DPAA(X̄ , Ȳ ) ≡

√
n
M

√√√√ M∑
i=1

|x̄i − ȳi| (4)

Where X̄ = (x1, x2, · · · x i, · · · xM ) and Ȳ =(
y1, y2, · · · yi, · · ·yM

)
are two PAA sequences.

Step 3: Update the centers through the distance measure-
ment method. The chosen center should be the one
with the minimum summated distance to all the
other samples in the same cluster, which can be
expressed as follows.

S
(
X̄
)
=

∑
Ȳ∈�X ,Ȳ 6=X̄

DPAA
(
X̄ , Ȳ

)
(5)

where,�X̄ is the cluster that X̄ belongs to. And Ȳ is
the seed in�x which is different from X̄ . The X̄ with
the minimum S

(
X̄
)
should be treated as the center

of cluster �X̄ .
Step 4: Repeat step 2 and 3 until the algorithm converges

(the centers are no longer changes).

Then, in order to automatically select the optimal clus-
tering number k , firstly, the sample profiles are mixed into
one set; then, a quantitative index is introduced to search the
optimal clustering of the mixed profiles.

The key of the proposed adaptive procedure is the cluster-
ing evaluation. There are various relevant criteria such as the
clustering dispersion indicator (CDI) [28], [29], the scatter
index (SI) [3], the Davies-Bouldin index (DBI) [3], [30], [31],
and the mean index adequacy (MIA) [28], [32].

Among these indicators, DBI uses quantities and features
inherent to the dataset, which is suitable for k-means cluster-
ing evaluation. It is defined as follows:

IDBI =
1
K

k∑
i=1

max
j6=i

(
Ci + Cj
Di,j

)
(6)
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FIGURE 5. Flowchart of the adaptive clustering based on DB index.

where, C i and C j represent the average distance of the seeds
in cluster i and j to the center of the corresponding cluster,
respectively. Di,j represents the Euclidean distance between
the center of the cluster i to cluster j. As can be seen,
the smaller the IDBI is, the better the clustering performs.
By comparing indices of different cluster trials, we can

obtain the best cluster number kbest , which is indicated by the
minimum IDBI .
FIGURE 5 shows the procedure of the adaptive k-means.

The profiles are continuously subdivided until the DBI of the
clusters no longer descends. In this way, the best k is automat-
ically set based on the input profiles without any prior knowl-
edge. To avoid generation of excessive clusters, a threshold is
utilized to limit the number of clusters, denoted as kmax .

D. THE HIDDEN MARKOV MODELLING OF LOAD
DYNAMIC BEHAVIOURS
Since the behavior of a single load is of significant random-
ness and volatility, its dynamic behavior is difficult to be
accurately described. So, the modeling of dynamic charac-
teristics of a single load is of little significance.

On the other hand, the load patterns are of relatively regular
power consumption habits. Thus, we aggregate the load in
the same cluster to obtain the aggregated load curves which
represents the corresponding typical load patterns.

Then, the hidden Markov model (HMM) is utilized to ana-
lyze the load dynamic behaviours based on each aggregated
load curve.

1) DISCRETIZATION OF AGGREGATED LOAD CURVE
The first step of HMM is to convert the aggregated load
curves into sequences. The key of the discretization is the
determination of the ‘‘breakpoints’’.

Since the unity-based normalization is utilized, the orig-
inal load data has been linearly mapped into [0,1]. For
discretization, we can just divide the interval into n parts
in proportion, and n represents the level of discretization.
For example, when n = 10, the corresponding discretization
rules are as shown in TABLE 1.

TABLE 1. A lookup table for discretization rules.

Algorithm 2 Mathematical description of two HMM
problems
The Evaluation Problem:
Given the HMM λ = (A,B, π), compute P (O|λ),

the probability of occurrence of the observation
sequenceO = {O1,O2, · · · ,OT }. This problem can
be solved by forward algorithm.
The Learning Problem:
Given the observation sequence O = {O1,O2, · · · ,OT },

find themodel λ = (A,B, π) that best explains the observed
data. This problem can be solved by the Baum-Welch algo-
rithm, which will be given below.

In this way, the load curve represented by the
PAA sequence can be expressed as a sequence of integers.

2) HIDDEN MARKOV MODEL (HMM)
For weekly load data mining, two issues are mainly addressed
in this paper. Firstly, our goal is to build a dynamic model
based on a series of observations which is derived from the
load curves. That is to say, we want to learn the parameters of
the HMM. Secondly, with the known parameters of HMM,
we want to calculate the probability of certain observation
sequences.

As for HMM, it mainly solves three questions: evaluation
problem, decoding problem and learning problem [33]. Obvi-
ously, the two questions proposed above correspond to the
learning problem and the evaluation question, respectively.
The following part gives a mathematical description of the
above two problems.

Here, A =
{
aij
}
is transition matrix where aij represents

the transition probability from state i to state j. B =
{
bj (Ot)

}
is observation emission matrix, where bj (Ot) represent the
probability of observing Ot at state j. π = {πi} is the initial
state probability vector.

For the load curve, compared with the current state,
the next observation state is of two options: increase or
decrease. Thus, a two-state HMM is utilized in this paper. The
state I1 means that the observation value tends to increase,
while the state I2 means that the observation value tends
to decrease. If each state has 10 outputs Oi = i, i =
1, 2, · · · , 10, the FIGURE 6 shows this HMM topology.

Here, for example, a11 = 0.8 means that if the current
state is I1, then the probability that the next state holds on is
a11 = 0.8, a12 = 0.2 means the probability that the next
state shifts to state I2 is a12 = 0.2. While b1i = 0.3 means
that if the current state is I1, then the probability of getting
observation value Oi = i is 0.3.
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Algorithm 3 The Baum-Welch Algorithm
Expectation:
Calculate Q(λ,λ

′
), where λ

′
is the current estimate of

the HMM parameters. In order to do that, we need to obtain
the probability distribution of the hidden variables, and then
use it to obtain the expectation of the log-likelihood of the
joint probability of the observable sequence and the hidden
sequence.

Q(λ, λ′) =
∑
I

logπi1P(O, I |λ
′)

+

∑
I

(
T−1∑
t=1

logait−1it )P(O, I |λ
′)

+

∑
I

(log bit (Ot ))P(O, I |λ
′) (7)

The forward-backward algorithm [34] is used to find the
probability distribution of hidden variables in the Expecta-
tion step, which uses dynamic programming to reduce the
amount of computation greatly.
Maximization:
Find the new model parameters that maximize Q(λ, λ′).

Exit if the convergence condition is reached, otherwise
return to step 1. The model parameters are calculated as
following:

aij =

T−1∑
t
P(O, I = i, I = j|λ′)

T−1∑
t=1

P(O, I |λ′)

bj(k) =

T∑
t=1

P(O, I = j|λ′)δ(ot = vk )

T∑
t=1

P(O, I = j|λ′)

(8)

where δ(ot = vk) is a Kronecker delta function [35],
when ot = vk, we have δ (ot = vk) = 1, otherwise
δ (ot = vk) = 0.

The following section III shows the detailed Baum-Welch
training algorithm and the following section IV shows the
detailed procedure of short-term forecasting evaluating.

III. THE BAUM–WELCH ALGORITHM
Briefly, the Baum-Welch algorithm is utilized for parameters
estimating of the established HMM, which consists of two
steps: Algorithm 3 shows the mathematical expression of
these two steps.

More details of the Baum–Welch algorithm can be
found in [36]. The historical load data sequences O =

{O1,O2, · · · ,OT } are input into the Baum–Welch algorithm
to train the HMM. The obtained parameter set λ = (A,B, π)
of the HMM model can be utilized to represent the dynamic
feature of the load cluster.

FIGURE 6. HMM structure.

IV. EVALUATION OF FORECASTING METHODS
BASED ON HMM
For the evaluation of the forecasting model, the usual
approach is to compare the forecasting result with the actual
data of the load, and then calculate the MAPE or other
indices [37].

MAPE =
1
n

n∑
t=1

∣∣∣∣Xt − FtXt

∣∣∣∣ (9)

where Xt and Ft is the actual and forecasted values,
respectively.

As can be seen from the above definition, the actual load
data must be known for MAPE evaluation, which is utilized
as the benchmark.

In this paper, an HMM based method is proposed to solve
this problem. It should be mentioned that it is not appropriate
to directly use HMM for load forecasting. This is because
the HMM assumes that the output of the model at the next
moment is only related to the current time. It is called the non-
aftereffect property of theMarkov chain [38]. But for the load
forecasting, the load information in the previous day or even
the previous week should be considered.

However, combinedwith the forward algorithm, the trained
HMM can be used to evaluate the occurrence probability of
other sequences. For the forecasting sequences that are more
consistent with the load dynamics, the probability values
given by the forward algorithms will be larger.

The details of the forward algorithm introduced in algo-
rithm 4.

For a short-term load forecasting problem, various fore-
casting methods and models are available. By converting
the forecasting results into discrete observation sequences,
we can determine which sequence has a higher probability.
By comparing the probability of each sequence, the different
forecasting methods can be evaluated in terms of the dynamic
behaviors of the load data.

V. CASE STUDY
A. DATA DESCRIPTION
The load dataset utilized for the case studies in this paper
is provided by the Metrology Center of Guangdong Power
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Algorithm 4 The forward algorithm
Given the HMM parameter λ = (A,B, π), the basic idea
of the forward algorithm is given below [34]:If the hidden
state is qi at time t , the probability of occurrence of the
observation sequence O = {O1,O2, · · · ,Ot } is defined as
the forward probability. Noted as (10).

αt (i) = P (O1,O2, · · · ,Ot , It = qi|λ) (10)

Step 1: Calculate the forward probability of each hidden
state at time 1:

α1 (i) = πibi (O1) , i = 1, 2, · · ·N (11)

Step 2: Recursively obtains the forward probability of time
2, 3, · · · T:

αt+1(i)=

 N∑
j=1

αt (j)aji

 bi (Ot+1) , i = 1, 2, . . .N

(12)

Step 3: The final result is shown in (13).

P (O|λ) =
N∑
i=1

αT (i) (13)

FIGURE 7. DBI for different cluster number k.

Grid Corporation. The dataset contains the smart meter mea-
surements of 200 large users in Foshan, Guangdong province
of China in 2016 (366 days), and the sampling interval is
15 minutes. The whole dataset totally has about 7.03 million
(200× 35, 136) daily load profiles.
After eliminating the missing values or continuous zeroes,

the load data of 165 large users for 250 consecutive days
are selected as the studied dataset, and there are overall
5,892 weekly profiles.

B. ANALYSIS OF CLUSTERING RESULTS
ADBI-based adaptive k-means is utilized to cluster themixed
load profiles. The DBI results of different clustering schemes
are shown in FIGURE 7.

As can be seen from FIGURE 7, the best clustering num-
ber kbest = 3, which achieves the minimum DBI of 1.3926.

FIGURE 8. (a) 3 cluster centroids represented in PAA; (b) corresponding
aggregated load of each cluster.

Thus, the collected 165 users are clustered into three clusters.
FIGURE 8 (a) illustrates the three centroids or representative
load profiles for the three typical user patterns.

After clustering, each load has a label indicating its cluster.
By aggregating the load in the same cluster, three aggregate
load curves can be obtained as FIGURE 8 (b).
From FIGURE 8, we can find that the first and the second

cluster both have obvious periodicity but also present some
differences. Firstly, the load of the first cluster increases grad-
ually during a whole week, especially on weekends, while the
load of the second cluster holds on during the working day,
and decrease on weekends. Secondly, the daily peak of the
first cluster appears in 16:00-24:00, while the daily peak of
the second cluster appears in 8:00-16:00. The cluster 3 is of
significant randomness. The loads in this cluster do not have
the characteristic of periodicity.

Furthermore, to verify the clustering results, the t-SNE [39]
is utilized to visualize the analyzed loads.

From FIGURE 9, the loads in cluster 1 or cluster 2 are
close to other loads in the same cluster. The few confused
and intersecting seeds indicate that the loads in cluster 1 and
have regular load patterns and can be classified with good
performance. However, loads in cluster 3 are dispersed which
means the loads in cluster 3 is difficult to forecast.

VOLUME 7, 2019 34615



S. Lu et al.: Weekly Load Data Mining Approach Based on Hidden Markov Model

FIGURE 9. Visualization of the clustering results.

C. ANALYSIS OF THE DYNAMIC MODELLING
In order to model the load dynamic behaviors using
HMM, the three aggregated load curves are discretized into
sequences with ten levels. In detail, after processing these
load sequences with unity-based normalization, the specific
discretizing principle has been discussed in TABLE 1.
After training HMM with the Baum-Welch algorithm,

the transition matrix A =
{
aij
}
and observation emission

matrix B =
{
bij
}
can be obtained.

For example, the transition matrix A1 and observation
emission matrix B1 of cluster 1 are given as following.

A1 =

(
0.9518 0.0482
0.0337 0.9663

)
, B′1 =



0.3213 0
0.2812 0
0.1272 0
0.1399 0
0.1365 0.0462

0 0.1876
0 0.1661
0 0.2036
0 0.2036
0 0.1929


(14)

For the transition matrix, a11 = 0.9518 is significantly
larger than a12 = 0.0482, which means that if the load has an
increasing tendency at the current time, the probability that
it will still increase at the next moment is much greater than
the possibility of decreasing. In general, this kind of dynamic
characteristics can be named as inertia load.

In addition, observing the emission matrix B =
{
bij
}
,

we can conclude as follows, when the load level is low,
the probability of the load increasing at the next moment is
large; while when the load level is high, the load is likely to
decrease at the next moment.

Then anHMM for a single user is trained. TheFIGURE10
shows the weekly load curve of a single power user. Here,
this single load curve is also converted into an observation
sequence with ten discretization levels too.

After training the observation sequence using the Baum-
Welch algorithm, we find that the algorithm does not con-
verge within the upper limit of the iteration (500 times). The
transition matrix A =

{
aij
}
and observation emission matrix

FIGURE 10. Weekly load curve of a single load.

B =
{
bij
}
are obtained as follows.

A =
(
0.0822 0.9178
0.3374 0.6626

)
, B′ =



0.0167 0.0264
0.3055 0.2988
0.1190 0.1191
0.0418 0.0416
0.0450 0.0445
0.0528 0.0539
0.0583 0.0559
0.0812 0.0800
0.0875 0.0900
0.1923 0.1898


(15)

As can be seen, the load curve in FIGURE 10 fluctuates
greatly. Furthermore, the emission matrix of the aggregated
load in (14) is more regular that of the single load in (15).
Specifically, in the emission matrix B1 in (14), the structure
of the matrix presents a certain symmetry, because it contains
several continuous zero elements; while the elements of the
emissionmatrix in (15) are of disorder, this shows the fact that
observation result in (14) is limited in only a few values, while
the observed result in (15) is more uncertain for a particular
hidden state. To conclude, the HMM with emission matrix
in (14) has strong regularity, while the emissionmatrix in (15)
is of more possible transitions and presents a high degree of
uncertainty.

Therefore, it is reasonable to model the dynamic behavior
of weekly load curves based on aggregated or clustering
results, rather than a single load curve.

D. EVALUATION OF DIFFERENT FORECASTING METHODS
In this section, the Multiple Linear Regression (MLR) and
Neural Network (NN) Model are utilized to illustrate the
proposed HMM-based forecasting evaluation.

1) THE UTILIZED MLR AND NN METHODS
In order to construct the training dataset, the input feature
parameters and output parameter are described below.

The input parameter is x = (x1, x2 · · · x6), where
x1 represents the load of the same time on the previous day,
x2 represents load of the same time and same day in the
previous week, x3 represents the previous day’s average load,
x4 represents the hour of the day, x5 represents the day of the
week, and x6 indicates whether the day is a holiday or not.
And the output parameter y represents the current load value.
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FIGURE 11. Result for cluster 1. Forecasting results and real value.

FIGURE 12. Result for cluster 2. Forecasting results and real value.

FIGURE 13. Result for cluster 3. Forecasting results and real value.

For MLR, we aim to find the regression coefficients
β = (β0, β1 · · ·β6) making the input and output satisfy the
following equation.

yMLR = β0 + β1x1 + β2x2 + · · ·β6x6 (16)

The detailed information about MLR can be found in [40].
For NN, a simple backpropagation network is utilized

which has an input layer, one hidden layer with 10 nodes
and an output layer. The sigmoid function is utilized as the
activation function [41]. More details about NN can be found
in [42].

2) EVALUATION RESULT
In this section, MLR and NN are utilized to perform load
forecasting on the three typical aggregated load patterns
which is obtained above, the forecasting results are shown
in FIGURE 11, FIGURE 12 and FIGURE 13, respectively.

Then, based on the trained HMM, the probabilities of the
NN and MLR sequences can be calculated. In order to verify

TABLE 2. HMM probability and MAPE for NN and MLR sequence.

FIGURE 14. HMM Probability and its corresponding MAPE.

the evaluation effectiveness, the mean absolute percentage
error (MAPE) of each forecasting result is assessed.

The HMM probabilities and MAPE results are illustrated
in TABLE 2.

For cluster 1 and 3, the NN forecasting results are more
accurate, while for Cluster 2, the MLR presents better accu-
racy. Therefore, for further application, combined forecasting
methods should be utilized to improve the accuracy of fore-
casting but not single MLR or NN.

Further, the data in TABLE 2 are illustrated in
FIGURE 14, in which the X-axis is in logarithmic form.
It can be found that the points in the coordinate system exhibit
an approximate linear relationship.

This linear relationship indicates that there is a close rela-
tionship between HMM probability and MAPE. At the same
time, it can be proved that the HMM can extract typical load
dynamic behavior characteristics from the historical data of
the load, and the typical behavior has better consistency in
the range of the daily time scale.

VI. CONCLUSIONS
In this paper, a data mining approach based on the weekly
load curves is proposed. Firstly, PAA technique is utilized
to transform the dense fluctuating load data into piecewise
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paned data. Then, a Davies-Bouldin index (DBI) based
adaptive k-means algorithm is utilized to cluster the stud-
ied users into several groups, where the optimal clustering
number can be set automatically without prior knowledge.
Finally, a hidden Markov model (HMM) is established to
describe the probabilistic transitions of different load levels
in the aggregated load curve of each cluster. The proposed
model can characterize the representative dynamic weekly
demand features. Moreover, it also provides a feasible tool
to evaluate the performance of the short-term load fore-
casting, which realizes the pre-check for the forecasting
results without future real measurements in the forecasting
horizon.
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