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ABSTRACT This paper reports the method for constructing multiple coexisting attractors from a chaotic
system. First, a new four-dimensional chaotic system with only one equilibrium and two coexisting strange
attractors is established. By using bifurcation diagrams and Lyapunov exponents, the dynamical evolution of
the new system is presented. Second, a feasible and effectivemethod is applied to construct an infinite number
of coexisting attractors from the new system. The core of this method is to batch replicate the attractor of the
system in phase space via generating multiple invariant sets and the generation of invariant sets depends on
the equilibria, which can be extended by using some simple functions with multiple zeros. Finally, we give
some numerical results of the appearance of multiple coexisting attractors in the system with sine and sign
functions for demonstrating the effectiveness of the method.

INDEX TERMS Chaotic system, coexisting attractors, Lyapunov exponents, equilibrium.

I. INTRODUCTION
As everyone knows, chaos is ubiquitous in nature and human
society, and have a great applying potentiality in engineering
owing to its unique features including ergodicity, bounded-
ness, self-similarity, initial condition sensitivity, etc. In the
past few decades, scholars have conducted extensive and
intensive study on chaos, and fruitful research results have
been achieved [1]–[4].

With the cognition of the importance of chaos grows, a nat-
ural question that refers to how to generate chaos in system
has been raised. Chaos generation (or chaotification) has
become a research focus with the advent of large quantities
of chaotic systems in recent years. Several typical chaotic
systems have received much attention, including Lorenz-type
systems [5], [6], Sprott family systems [7], no-equilibria sys-
tems [8], [9], memristor-based systems [10]–[12] and so on.
Most of the previous chaotic systems usually only exist one
chaotic attractor for a set of fixed parameters. However, with
the deepening of research, more evidence suggests that some
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simple chaotic systems are likely to generate multiple coex-
isting attractors from different initial conditions [13]–[18].
Li and Sprott [19], [20] and Li et al. [21], [22] gave a
comprehensive analysis of the coexisting attractors in Lorenz
and Lorenz-type systems and put forward the offset boosting
and conditional symmetrymethod for constructing coexisting
attractors in simple systems. Lai and Chen [23] proposed
an effective polynomial function method which can pro-
duce multiple coexisting butterfly attractors from Sprott B
system. Zhang and Chen [24] generated infinitely many
chaotic attractors from low-dimensional differential systems
by using an effective method. Hens et al. [25] applied the
concept of partial synchronization to construct infinitely
many coexisting attractors from coupled chaotic systems.
Kengne et al. [26] constructed an extremely simple jerk
system with a pair of symmetric strange attractors and ana-
lyzed it by using simulation and circuit implementation.
Danca [27] studied the coexisting attractors of fractional-
order chaotic systems. The phenomenon of coexisting attrac-
tors reflects the influence of initial conditions on the diversity
of the final evolution state of the system. It is generally
believed that the system with coexisting attractors has better
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flexibility and plasticity in performance. Through reason-
able adjustment and control mechanism, the system can
switch orderly in multiple states to adapt to different external
environments and work requirements. As a matter of fact,
the phenomenon of coexisting attractors is common with
biological systems [28], [29], electrical systems [30], optical
systems [31], neural networks [32] but not limited to these
systems. It has a positive effect on the system and promotes
the system’s diversity.

Both the chaos and coexisting attractors are very impor-
tant physical phenomenawith engineering application values.
Hence it is necessary to study them deeply. The previous
studies on coexisting attractors are confined to the con-
struction of chaotic systems with finite coexisting attractors,
thus it will be very interesting to use some methods for
increasing the number of coexisting attractors. In view of
these considerations, this letter considers to create a new
autonomous chaotic system with coexisting attractors and
construct infinitely many coexisting chaotic attractors from
this system by using a simple method. Section 2 presents the
mathematical model of the new system and analyzes its basic
properties. Section 3 introduces the method of generating
coexisting attractors and applies it to the proposed system
with theoretical and simulation analysis.

II. DESCRIPTION OF THE NEW CHAOTIC SYSTEM
In 2002, Lü and Chen coined a special chaotic system which
can be distinguished from other chaotic systems by its linear
part A = (aij)3×3 with a12 · a21 = 0, and the mathematical
model of the system is described by [6]

ẋ = a(y− x)
ẏ = by− xz
ż = xy− cz

(1)

where a, b, c are real numbers. In this section, we present
a new chaotic system according to the system (1). An extra
variable is introduced to system (1) as a nonlinear input, and
then the new system is given as

ẋ = a(y− x)
ẏ = by− xz− w
ż = xy− cz
ẇ = yz

(2)

with four state variables x, y, z, w. It is easy to know that the
new system (2) is dissipative because its divergence ∇V =
∂ ẋ/∂x + ∂ ẏ/∂y + ∂ ż/∂z + ∂ẇ/∂w = −(a − b + c) < 0
with a + c > b. We also can get the only equilibrium
O(0, 0, 0, 0) of system (2) by assuming ẋ = ẏ = ż = ẇ = 0.
The eigenvalues of the characteristic equation at O can be
calculated as λ1 = 0, λ2 = −a, λ3 = −c, λ4 = b. If b > 0,
O is unstable. If b < 0 and a > 0, c > 0, the stability of O
can be determined by using center manifold theorem since
O is a non-hyperbolic equilibrium with λ1 = 0. Here we
only consider the dynamic analysis of system (2) with a > 0,
b > 0, c > 0 and an unstable equilibrium O.

The dynamic behaviors of system (2) versus the param-
eter b can be illustrated by using the bifurcation diagrams
and Lyapunov exponents. The Fig.1 and Fig.2 present the
bifrucation diagrams and Lyapunov exponents with regard to
b ∈ [13, 17] and b ∈ (17, 30] for the fixed parameter values
a = 39, c = 3.

FIGURE 1. Bifurcation diagrams and Lyapunov exponents of system (2)
with a = 39, c = 3 and b ∈ [13, 17].

FIGURE 2. Bifurcation diagrams and Lyapunov exponents of system (2)
with a = 39, c = 3 and b ∈ [17, 30].

FIGURE 3. Two coexisting attractors of system (2) with initial
values (±1,±1, 0,±1) and: (a) b = 15; (b) b = 16.

In Fig.1(a), the independent red and blue branches started
from initial values X± = (±1,±1, 0,±1) indicate that
system (2) exists coexisting attractors. For b = 15, two
coexisting limit cycles are observed in system (2) as shown
in Fig.3(a). For b = 16, two coexisting chaotic attractors are
observed in system (2) as shown in Fig.3(b). The Fig.2 shows
that system (2) exists chaotic and periodic attractors within
b ∈ (17, 30]. By selecting b = 18, 26, 27, 30, we can numer-
ically obtain the chaotic and periodic attractors of system (2),
as illustrated in Fig.4. The Lyapunov exponents of system (2)
with respect to the parameter b shown in Fig.1(b) and Fig.2(b)
determines the chaotic and periodic features of system (2),
where L1, L2, L3 (L1 < L2 < L3) are the first three Lyapunov
exponents of system (2), and the minimumLyapunv exponent
L4 is always less than −5.

III. GENERATION OF COEXISTING ATTRACTORS
The coexisting attractors often have their respective indepen-
dent basins of attraction in phase space. For the sake of con-
structing chaotic system with multiple coexisting attractors,
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a very important thought is to establish multiple invariant sets
by extending the number of equilibria of the original system.
Taking the system (2) as the original system and we can
replicate the attractor of system (2) at different positions in
phase space by using some special functions. Here we will
apply the method proposed in literature [24] for obtaining
coexisting attractors from system (2).

Consider the following nonlinear differential system

Ẋ = F(X ), X = (x, y, z,w)T ∈ R4 (3)

and assume 8(t, t0,X0) is the solution of system (3) with
respect to initial condition X0 = X (t0). Define a compact
subset 3 ∈ R4 and the distance between the point X and
the set 3 as d(X ,3) = infX̄∈A

∥∥X − X̄∥∥. Suppose that 3δ =
{X |d(X ,3) < δ }, then3 ⊂ 3δ . Based on the literature [33],
we can conclude that 3 is an ultimate bound for system (3)
if lim

t→∞
d(8(t, t0,X0),3) = 0 for ∀X0 ∈ R4\3 implying

that there exists T > t0 such that 8(t, t0,X0) ∈ 3δ for any
t ≥ T , δ > 0. Furthermore 3 is considered to be a positively
invariant set if 8(t, t0,X0) ∈ 3 for any X0 ∈ 3, t ≥ t0.
Generally the basin of attraction of the attractor in system (3)
is contained in a bounded set if its corresponding invariant
set is contained in the bounded set. Thus we just need to con-
struct multiple invariant sets for obtainingmultiple coexisting
attractors in the system.

Suppose that the system (3) has an attractor with its basin
of attraction contained in the following set

4 = {(x, y, z,w) |max{|x|, |y|, |z|, |w|} ≤ Q}

where Q > 0 is a real number. Both system (3) and the set
4 can be scaled by applying the transformation x → a1x̃,
y→ a2ỹ, z→ a3z̃, w→ a4w̃ with real numbers ai > 0, i =
1, 2, 3, 4. And then the basin of attraction of the attractor is
within the following set

4̃ = {(x, y, z,w)

∣∣∣∣|x| ≤ Q
a1
, |y| ≤

Q
a2
, |z| ≤

Q
a3
, |w| ≤

Q
a4
}

For functions g1(x), g2(y), g3(z), g4(w) with multiple zeros.
By selecting appropriate a1, a2, a3, a4, we can generate multi-
ple coexisting attractors in the systems Ẋ = F(g1(x), y, z,w)
along the x-axis, Ẋ = F(x, g2(y), z,w) along the y-axis, Ẋ =
F(x, y, g3(z),w) along the z-axis, Ẋ = F(x, y, z, g4(w)) along
thew-axis and Ẋ = F(g1(x), g2(y), g3(z), g4(w)) along all the
axis. Actually if we apply the functions g1(x), g2(y), g3(z),
g4(w) to the system (3), then the number of the equilibria of
system (3) and the attractors around the corresponding equi-
libria will be extended. To some extent, it means that the num-
ber of attractors of system Ẋ = F(g1(x), g2(y), g3(z), g4(w))
is determined by the number of zeros of functions g1(x),
g2(y), g3(z), g4(w). Next we will illustrate the above results
via some numerical examples.

The Fig.4(a) shows the chaotic attractor of system (2) with
a = 39, b = 18, c = 3 and we can numerically obtain that
the attractor is placed in the region

2 = {(x, y, z,w) ||x| ≤ 25, |y| ≤ 25, 0 < z < 40, |w| ≤ 80}

FIGURE 4. Attractors of system (2) with different values of parameter b:
(a) b = 18; (b) b = 26; (c) b = 27; (d) b = 30.

FIGURE 5. Sixteen coexisting chaotic attractors C1 − C16 of system (4)
with a = 39, b = 18, c = 3.

Assuming x = 60x1, y = 60x2, z = 60x3,w = 60x4 and
applying the function gi(·) = sin(·), i = 1, 2 to the system (2),
we get the following new system

ẋ1 = a(sin(x2)− sin(x1))
ẋ2 = b sin(x2)− 60 sin(x1)x3 − x4
ẋ3 = 60b sin(x1) sin(x2)− cx3
ẋ4 = 60 sin(x2)x3

(4)

Let a = 39, b = 18, c = 3, then the system (4) can yield an
infinite number of chaotic attractors from initial values (1 +
2kπ, 1 + 2lπ, 0, 1), k, l = 0, 1, 2, · · · and the attractors are
placed along the x1-axis, x2-axis. The Fig.5 presents the phase
portraits of sixteen coexisting chaotic attractors C1-C16 of
system (4) which form along the x1-axis and x2-axis in phase
space, where C1-C4 (red color), C5-C8 (green color), C9-C12
(pink color), C13-C16 (blue color) are respectively yielded
from initial values (1+ 2kπ, 1, 0, 1), (1+ 2kπ, 1+ 2π, 0, 1),
(1+2kπ, 1+4π, 0, 1), (1+2kπ, 1+6π, 0, 1), k = 0, 2, 4, 6.
All these attractors have same shape. The Fig.6 gives a close
look at the attractor C1.
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FIGURE 6. Phase portraits of the attractor C1: (a) x1-x2-x3; (b) x2-x3-x4;
(c) x1-x2; (d) x3-x4.

FIGURE 7. Bifurcation diagram and Lyapunov exponents of system (4)
with initial values x2(0) = 1, x3(0) = 0, x4(0) = 1 and x1(0) ∈ [1, 20].

FIGURE 8. Bifurcation diagram and Lyapunov exponents of system (4)
with initial values x1(0) = 1, x3(0) = 0, x4(0) = 1 and x2(0) ∈ [1, 20].

Denote X0 = (x1(0), x2(0), x3(0), x4(0)) as the initial value
of system (4) and let x3(0) = 0, x4(0) = 1. Fix x2(0) = 1,
we can get the bifurcation diagram and Lyapunov exponents
of system (4) with regard to x1(0) ∈ [1, 20] as illustrated
in Fig.7. The Fig.7(a) indicates that system (4) generates four
coexisting attractors with the variation of x1(0) ∈ [1, 20] and
these attractors are C1-C4 shown in Fig.5. We also get the
bifurcation diagram and Lyapunov exponents of system (4)
with regard to x2(0) ∈ [1, 20] and x1(0) = 1 as shown
in Fig.8. The Fig.8(a) implies that system (4) generates four
coexisting attractors with the variation of x2(0) ∈ [1, 20] and
these attractors are C1, C5, C9, C13 shown in Fig.5. The first
three Lyapunov exponents L1, L2, L3 shown in Fig.7(b) and
Fig.8(b) indicate that all these attractors have nearly the same
chaotic feature as the change of Lyapunov exponents is very
small under different values of x1(0), x2(0). Thus we can obtain
that system (4) has the ability to reproduce attractors in phase
space and it is easy to numerically verify that system (4) can
generate an infinitely number of coexisting attractors along

FIGURE 9. Nine coexisting periodic attractors of system (4) with a = 39,
b = 30, c = 3.

FIGURE 10. Four coexisting chaotic attractors Q1-Q4 of system (5) with
a = 39, b = 18, c = 3 and the function x − sgn(x).

x1-axis, x2-axis if we choose more different initial values.
We also can obtain multiple coexisting periodic attractors
from system (4) with parameters a = 39, b = 30, c = 3
and initial values (1+ 2kπ, 1+ 2lπ, 0, 1), k, l = 0, 1, 2, · · ·
as shown in Fig.9.

Let g1(x1) = x1− sgn(x1), g2(x2) = x2− sgn(x2), then the
system (4) can be transformed into the following system

ẋ1 = a(x2 − sgn(x2)− x1 + sgn(x1))
ẋ2 = b(x2 − sgn(x2))− 60(x1 − sgn(x1))x3 − x4
ẋ3 = 60b(x1 − sgn(x1))(x2 − sgn(x2))− cx3
ẋ4 = 60(x2 − sgn(x2))x3

(5)

It is easy to verify that system (5) has four different equi-
libria O1(−1,−1, 0, 0), O2(1,−1, 0, 0), O3(−1, 1, 0, 0) and
O4(1, 1, 0, 0). The numerical results show that system (5)
coexists four chaotic attractors Q1-Q4 around the equilib-
ria and all these attractors are yielded from initial val-
ues (−1,−1, 0, 1), (1,−1, 0, 1), (−1, 1, 0, 1), (1, 1, 0, 1),
as shown in Fig.10. If the functions g1(x1), g2(x2) are replaced
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FIGURE 11. Nine coexisting chaotic attractors P1-P9 of system (5) with
a = 39, b = 18, c = 3 and the function x − sgn(x + 1)− sgn(x − 1).

by g1(x1) = x1 −
∑n

i=1 kisgn(x1 + si), g2(x2) = x2 −∑n
i=1 kisgn(x2 + si) (ki si are real numbers), then an infinite

number of coexisting attractors will be generated in sys-
tem (5). The Fig.11 shows nine coexisting chaotic attractors
in system (5) with g1(x1) = x1 − sgn(x1 + 1)− sgn(x1 − 1),
g2(x2) = x2−sgn(x2+1)−sgn(x2−1). Actually we also can
construct multiple coexisting attractors along x3-axis, x4-axis
by using sine function, sign function and other functions with
multiple zeros. Moreover, we can get not only the same type
of coexisting attractors, but also different types of coexisting
attractors for selecting proper system parameters and initial
values.

IV. CONCLUSIONS AND DISCUSSIONS
A novel four-dimensional chaotic system with only one equi-
librium with non-hyperbolic feature was created. Based on
this novel system, a simple method was used to produce an
infinite number of coexisting chaotic attractors, and some
numerical examples were given to illustrate the effectiveness
of the method. For selecting some initial values, sixteen
(or nine) coexisting chaotic attractors are obtained in the
system with sine (or sign) function. Actually the appearance
of multiple coexisting attractors depends on the number of
equilibria which determines the location of domain of attrac-
tion to some extent. So if the number of equilibrium points
can be increased by some methods, the system will easily
generate multiple coexisting attractors. We will continue to
forward the research of the coexisting attractors via proposing
its generation methods and engineering applications.
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