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ABSTRACT Radio-based indoor localization is currently a very vibrant scientific research field with many
potential use cases. It offers high value for customers, for example, in the fields of robotics, logistics, and
automation, or in context-aware IT services. Especially for autonomous systems, dynamic human–machine
interaction, or augmented reality applications, precise localization coupled with a high update rate is a
key. In this paper, we present a completely novel localization concept whereby received radio signal phase
values that are fed into an extended Kalman filter (EKF) without any preprocessing are evaluated. Standard
preprocessing steps, such as angle-of-arrival estimation, beamforming, and time-of-flight or time-difference-
of-arrival estimations are not required with this approach. The innovative localization concept benefits from
the high sensitivity of radio signals’ phase to distance changes and the fast and straightforward recursive
computation offered by the EKF. It completely forgoes the computational burden of other phase-based
high-precision localization techniques, such as synthetic aperture methods. To verify the proposed method,
we use an exemplary setup employing a 24 GHz frequency-modulated continuous-wave (CW) single-input
multiple-output secondary radar with 250 MHz bandwidth. A high-precision six-axis robotic arm serves as
a 3D positioning reference. The test setup emulates a realistic industrial indoor environment with significant
multipath reflections. Despite the challenging conditions and the rather low bandwidth, the results show
an outstanding localization 3D RMSE of around 1.7 cm. The proposed method can easily be applied to
nearly any type of radio signal with CW carrier and is an attractive alternative to common multilateration
and multiangulation localization approaches. We think it is a quantum leap in wireless locating, as it
has the potential for precise, simple, and low-cost wireless localization even with standard narrowband
communication signals.

INDEX TERMS FMCW, radar, localization, extended Kalman filter, near field, indoor.

I. INTRODUCTION
Indoor localization has growing fields of applications, espe-
cially if GPS is not available.Microwave radar is a reasonable
candidate for a whole range of wireless local positioning
tasks, for example, industrial applications, tracking tools or
goods, autonomous storage robots, and many more. Depend-
ing on the speeds involved and health and safety regulations,
these applications may require very precise localization and
high update rates, while the complexity, and therefore the cost
of the necessary infrastructure, needs to be minimized.

Conventional techniques for wireless positioning
are angle-of-arrival (AOA), round-trip-time-of-flight
(RTOF), time-difference-of-arrival (TDOA) or

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehmet Alper Uslu.

received-signal-strength (RSS), see [1]–[3]. Depending on
the indoor use case, these methods have different challenges
and drawbacks.

RSS based localization relies on signal strength received
from several landmarks, like radio frequency identifica-
tion tags [4] or wifi hotspots [5]. Especially under noisy
conditions, like in industrial settings, the technique is
too sensitive to changes in the environment and requires
continuous surveillance of the surroundings, while being
insensitive to location changes. Although inertial sensors
may improve localization accuracy [6], generating an ade-
quate map of wifi fingerprints, for example, is time-
consuming. Sophisticated mapping methods may reduce
the effort required, as well as the number of labeled
fingerprints [7].
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Another approach would be transit-time-based methods,
requiring accurate synchronization, see [8], and [9], or coher-
ent transponders. Applications using this basic concept of
multilateral are manifold. Examples are self-localization
using a grid of known landmarks with fixed positions [10] or
the reverse scenario locating a tag attached to a vehicle [11].
As the bandwidth determines the range accuracy, ultra
wideband (UWB) systems are particularly suitable for
precise multiangulation tasks [12]. As non-synchronized,
non-coherent beacons should be used, where possible, TOF-
and RTOF-based methods are effectively ruled out.

In contrast to these techniques, the proposed solution relies
solely on the phase differences between the signals received
at distributed antennas. The conventional approach would be
to determine the AOA with a beamformer, e.g., Delay and
Sum or MUSIC. Specifically, the angle for every fixed sta-
tion is calculated first, then the location is determined using
the combined information from multiple base stations [13].
In landmark-based scenarios, a mobile station measures the
angle to multiple fixed transponders [14] and computes its
pose and position. In order to determine the AOA, the trans-
mitter is assumed to be located in the far field of the base
station. To achieve high precision for close ranges, the cur-
vature of the wave front would have to be considered [15].
This would require information about the distance to the
transmitter.

Furthermore, angulation and lateration may be combined,
as shown in [16]. The most significant strength of this con-
cept is the minimal infrastructure needed for localization.
Nevertheless, it suffers from the drawbacks of AOA and TOF
already mentioned above and is therefore not employable for
unsynchronized systems.

Other approaches for high precision localization using a
moderate bandwidth, are synthetic aperture concepts, shown
in [17] and [18]. But the high precision achieved with these
methods comes at the expense of high computational effort.

In the light of these issues and challenges, we propose
an approach that evaluates the measured phase differences
directly using a computationally efficient Extended Kalman
Filter (EKF). The approach resolves occurring ambiguities
in a recursive manner and can take advantage of the high
phase sensitivity at elevated carrier frequencies. It also deals
with the problem of unknown phases for incoherent systems
and proves itself suitable for various infrastructures, while
requiring low computational effort.

The sections in this paper are organized as follows. First,
the general signal model and assumptions for the filter are
presented. Then, the proposed EKF is described and the
compositions of the individual matrices are specified. Finally,
the algorithm is verified using a 24GHz secondary frequency
modulated continuous wave (FMCW) radar in an indoor near
field localization scenario, and the results are presented.

II. SYSTEM MODEL
In order to extract the location from a wireless position-
ing system, a relation between the position of an object

FIGURE 1. Configuration of one base station with 8 coherent receive
channels and a transmitter located at

[
px (k), py (k), pz (k)

]
.

or transmitter and the input data is required. In this work,
an object emitting the signal

sTX,RF(t) = sTX,BB(t)ejω0t+φ0 (1)

shall be located, where ω0 = 2π f0 denotes the carrier fre-
quency, φ0 represents an unknown phase offset, and sTX,BB(t)
denotes a slowly varying base band signal. Here, no assump-
tions about the signal origin are made and hence, the signal
sTX,RF(t) may be reflected from the object or be emitted on
purpose by a wireless transmitter. Furthermore, no special
signal form is assumed and therefore any arbitrary transmit-
ter, like a communication device, that emits a signal can be
localized. For this purpose,M base stations at fixed locations,
each equipped with an arbitrary number Im of coherently
receiving antennas are available. Hence, the signal

sim (t) = aim · sTX,BB(t − τim )e
j(ω0(t−τim )+φ0+φm) (2)

is received at each antenna. Here aim represents an attenuation
factor, φm denotes the unknown phase offset of the m-th
station and the transmitted signal requires τim =

rim
c0

to travel
the distance

rim =
√
(xim − px)2 + (yim − py)2 + (zim − pz)2 (3)

from the object at [px , py, pz] to receive antenna im at
[xim , yim , zim ]. In order to locate the object, the phase differ-
ence between each pair of coherently receiving antennas im 6=
jm, (Fig. 1), is evaluated by correlating the received signals
sim (t) and sjm (t) of the i-th and j-th antenna, respectively, at the
m-th station∫

s∗im (t)sjm (t)dt

=

∫
aims
∗

TX,BB(t−τim )e
−j(ω0(t−τim )+φ0+φm) ·

· ajmsTX,BB(t−τjm )e
j(ω0(t−τjm )+φ0+φm)dt

=

∫
a · s∗TX,BB(t−τim )sTX,BB(t−τjm )e

jω0(τim−τjm )dt
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≈ a ·
∫ ∣∣sTX,BB(t − τim )∣∣2 ejω0(τim−τjm )dt

= a · ejω0(τim−τjm )
∫ ∣∣sTX,BB(t − τim )∣∣2 dt, (4)

where a = aim · ajm , and sTX,BB(t − τim ) ≈ sTX,BB(t −
τjm ) holds, as the modulation signal sTX,BB(t), is considered
slowly varying. Hence, a position-dependent phase difference
between each antenna pair is originated (this is well suited for
localization). Generally speaking, the phase difference can
be evaluated in different ways, especially if specific types
of radar systems, such as FMCW or OFDM, are used. The
general dependency

1ϕm,i−j = ω0(τim − τjm ) (5)

of the phase difference between the coherently receiving
im-th and jm-th antenna at the m-th receive station holds,
nonetheless. The difference may be ambiguous depending on
the antenna positions and is mapped to the interval [−π, π]
as

1ϕm,ij

=

{
mod2π (1ϕm,i−j), for mod2π (ϕm,i−j) < π,

mod2π (1ϕm,i−j)− 2π, for mod2π (ϕm,i−j) > π.
(6)

We assume, for the sake of simplicity, that all antenna ele-
ments have the same directivity pattern and the phase center is
independent within the used bandwidth, and that phase shifts
caused by length imbalances and other hardware impairments
have been calibrated. Furthermore, the position of each indi-
vidual antenna is known. Kalman filters have proven them-
selves robust against nonidealities, see [19].

III. EXTENDED KALMAN FILTER
Although the phase difference is only known in the interval
[−π, π], ambiguity is handled by using a recursive filter
locating the transmitter in the surroundings of its location,
that is predicted by preceding measurements. A well-suited
algorithm for this task is the proposed EKF, see [19]–[21],
which is described in the following sections. Although it is
computationally very efficient, it is still just one of many
possible ways of implementing the basic idea of recursively
locating an incoherent transmitter based on the evaluation of
phase differences for coherent receive channels.

A Kalman filter typically consists of two steps, the state
transition (prediction) and its correction (update). In an opti-
mal case, the function relating the last state xk−1 with the
predicted current state xk should be a linear function with
added Gaussian noise

xk = Fxk−1 + nk , (7)

where xk is the state at sample point k , F the transitionmatrix,
and nk is a random vector with Gaussian distributed entries
described by the covariance matrix Q.

The same conditions apply for the function relating mea-
surement and state, and for optimality it must be linear in its

arguments [19]. This function is given by

zk = Hkxk + wk , (8)

where zk is the vector containing the measurements, Hk
denotes the matrix for the conversion from the measurement
to the state domain, and wk is a vector with Gaussian dis-
tributed entries described by the covariance matrix R.

The corresponding equations for the proposed Kalman
filter are derived in the next section. First, the state vector
is defined, then a quick overview for one possible prediction
step is given. Finally, the general equations for the proposed
novel update concept are shown and the compositions of the
individual matrices are described in-depth.

A. STATE VECTOR
First, the state vector for the localization problem is defined as

xk =
[
px(k), py(k), pz(k), vx(k), vy(k), vz(k)

]T (9)

at sampling point k with px(k), py(k), pz(k) as the Carte-
sian coordinates of the transmitter and their corresponding
speed components vx(k), vy(k), vz(k). Kalman filters gener-
ally assume Markov processes, i.e., each state xk is fully
described and stochastically dependent on its preceding state
xk−1, as in (7). Unfortunately, the Markov assumption does
not hold for radar systems, as the environment affects the
motion statistics. Nevertheless, Kalman filters have proven
themselves to be very robust to such violations [19].

B. PREDICTION
In order to predict the location, we assume that the transmitter
moves with almost constant velocity [22]. Accelerations are
handled in the process noise covariance. Therefore, the loca-
tion can be predicted by applying the equation of motion,
resulting in the linear state transition

xk|k−1 = F · xk−1|k−1

=


1 0 0 1T 0 0
0 1 0 0 1T 0
0 0 1 0 0 1T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 · xk−1|k−1,
(10)

where xk|k−1 =
[
p′x(k), p

′
y(k), p

′
z(k), v

′
x(k), v

′
y(k), v

′
z(k)

]T
denotes the predicted location, 1T the time between two
adjacent sampling points, and F the state transition matrix.

The expected covariance matrix Pk|k−1 is calculated from
the covariance Pk−1|k−1 at sampling point k − 1 and the
process noise covariance matrix Q [19]–[21] as

Pk|k−1 = F · Pk−1|k−1 · FT
+ Q. (11)

The state obtained in this step is an assumption for the
likely new position. Since no sampled data have been con-
sidered so far, the uncertainty due to increasing covariance
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matrix entries rises. The process noise covariance matrix Q
is derived from the possible misjudgment of position and
velocity, mainly due to the acceleration with variance σ 2

a ,
which is assumed constant between two sampling points and
has been neglected in the prediction step. Incorporating it into
the variance results in the covariance matrix

Q = σ 2
a ·



1T 4

4
0 0

1T 3

2
0 0

0
1T 4

4
0 0

1T 3

2
0

0 0
1T 4

4
0 0

1T 3

2
1T 3

2
0 0 1T 2 0 0

0
1T 3

2
0 0 1T 2 0

0 0
1T 3

2
0 0 1T 2



,

(12)

which reflects the uncertainty about how position and veloc-
ity may have altered within the elapsed time1T because the
acceleration has not been modeled. The variance σ 2

a should
be chosen appropriately to reflect the actual acceleration and
may differ significantly in different scenarios, like tracking
vehicles or persons, or the rapid movements of human limbs.
If the variance is chosen too low, strong accelerations like
turnarounds can’t be tracked properly. On the other hand,
if the variance is chosen too high, the uncertainty increases
more in the prediction step and the EKF puts more trust in
the measurements. In the limiting case, the filter would only
trust the measurements and completely loose the benefits of
exploiting motion statistics.

C. UPDATE
The relation between state (position, velocity) and sampled
data (phase differences) is a nonlinear function that must be
linearized, hence the EKF equations are applicable.

The input data is merged with the prediction in this step.
The Kalman gain

Kk = Pk|k−1HT
k (HkPk|k−1H

T
k + R)

−1 (13)

is calculated for this purpose, with Hk denoting the Jacobian
matrix obtained from the output transition function h(xk|k−1)
and R the measurement noise covariance matrix. The phase
variance can be determined empirically and adjusted for a
proper weighting of the measurement. Small matrix entry
values in R imply that the EKF puts more trust in the mea-
surements, while small matrix entries in Q means more trust
for the prediction. Hence, the relation between R and Q must
be chosen properly for best accuracy. The Kalman Gain is
then used to update the state and its covariance matrix using
the standard EKF formulas [19]–[21] as

xk|k = xk|k−1 + Kk (innok (xk|k−1)), (14)

Pk|k = (I6 − KkHk )Pk|k−1 (15)

where xk|k , and Pk|k respectively denote the updated position
and covariance, I6 is a 6× 6 identity matrix, and zk contains
the sampled phase information obeying equation (5). The
innovation innok (xk|k−1) represents the difference between
the actual data and the values expected due to prediction.
Then, the Kalman gain balances the data and prediction
uncertainties, and inverts the measurement model in order to
update the state in (14). The smaller covariance after apply-
ing (15) reflects the lower uncertainties. In the next section,
we give a detailed description of how thematrices and vectors
are composed for the proposed filter.

1) MEASUREMENT VECTOR
The measurement vector consists of the phase differences
obtained from the correlation, as in (5). For every radar
stationm, all phase difference permutations of the Im antennas
are formed

1ϕm =



1ϕm,12
...

1ϕm,ij
...

1ϕm,I (I−1)

 (16)

and combined to the final measurement vector, taking into
account all used base stations, to yield

zk =



1ϕ1
...

1ϕm
...

1ϕM

 , (17)

which is now a vector containing M I (I−1)
2 entries represent-

ing all measurement information. If any other sensor, like an
inertial measurement unit, is used, the measurement vector
can simply be expanded by appending these values.

2) OUTPUT TRANSITION FUNCTION AND MATRIX
The output transition function h(xk+1|k ) converts the pre-
dicted state vector, i.e. the position and velocity, into the
measurement domain, i.e. the vector of phase differences.
Using (5), a relation for the predicted phase

1ϕ′m,ij = ω0
(rim − rjm )

c0
(18)

is formed for every permutation, where c0 is the speed of
light in a vacuum, and rim , rjm are the distances between the
transmitter and receiver antennas im, jm for the m-th base
station based on the predicted state xk+1|k . The corresponding
distances can be calculated using (3). The output transition
is now composed consistent with (17) by taking the same
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antenna combinations to form

h(xk+1|k ) =



1ϕ′1,12
...

1ϕ′m,ij
...

1ϕ′M ,I (I−1)

 , (19)

representing the expected measurement values, due to the
predicted state. Normally, the innovation is calculated as the
difference between the actual and predicted values, which
results here in an incorrect update due to the phase ambiguity.
Hence, the difference between the phase measurement and
the prediction is mapped onto the interval [−π, π] via a
modulo operation as

innok (xk|k−1)

=

{
mod 2π (1k ), for mod 2π (1k ) < π,

mod 2π (1k )− 2π, for mod 2π (1k ) > π,

with 1k = zk − h(xk|k−1). (20)

To calculate the Kalman gain (13) and the covariance
matrix (15), Hk+1 must be calculated. For this purpose,
the Jacobian matrix of h(xk|k−1) for the state vector is
formed as

Hk+1

=



∂1ϕ′1,12

∂p′x(k)

∂1ϕ′1,12

∂p′y(k)

∂1ϕ′1,12

∂p′z(k)
0 0 0

...
...

...
...
...
...

∂1ϕ′1,I (I−1)

∂p′x(k)

∂1ϕ′1,I (I−1)

∂p′y(k)

∂1ϕ′1,I (I−1)

∂p′z(k)
0 0 0

...
...

...
...
...
...

∂1ϕ′m,ij

∂p′x(k)

∂1ϕ′m,ij

∂p′y(k)

∂1ϕ′m,ij

∂p′z(k)
0 0 0

...
...

...
...
...
...

∂1ϕ′M ,I (I−1)

∂p′x(k)

∂1ϕ′M ,I (I−1)

∂p′y(k)
∂1ϕM ,I (I−1)

∂p′z(k)
0 0 0


(21)

with

∂1ϕ′m,ij

∂p′x(k)
=
ω0

c

(
(p′x(k)− xi)

ri
−

(p′x(k)− xj)
rj

)
, (22)

∂1ϕ′m,ij

∂p′y(k)
=
ω0

c

(
(p′y(k)− yi)

ri
−

(p′y(k)− yj)

rj

)
, (23)

∂1ϕ′m,ij

∂p′z(k)
=
ω0

c

(
(p′z(k)− zi)

ri
−

(p′z(k)− zj)

rj

)
. (24)

Since the phase depends only on the location, the deviation
for the velocity and therefore the three right-hand columns
of the Jacobian are zero. If an additional sensor, like an
accelerometer is used, the matrix must be extended by an
additional line, incorporating the relationship of the new
sensor to the state.

3) MEASUREMENT NOISE COVARIANCE MATRIX
Although we consider individual phase noise terms to be
uncorrelated, each absolute phase term is evaluated in sev-
eral phase differences and hence, the measurement noise
becomes correlated, i.e., a non-diagonal matrix covariance
matrix arises. We can distinguish four different types of
matrix elements deduced from the phase variance σ 2:
• Differences which don’t have any phase value in com-
mon and are therefore uncorrelated yield

Cov(ϕn − ϕm, ϕo − ϕl) = 0,

with n 6= m 6= o 6= l ∈ [0, ..., I ]. (25)

• Elements in the main diagonal yield

Var(ϕn − ϕm) = Var(ϕn)+ Var(ϕm) = 2σ 2. (26)

• Differences which have one phase value ϕn in common
yield

Cov(ϕn − ϕm, ϕn − ϕl) = σ 2. (27)

• Differences which have one phase value ϕn in common,
but are evaluated with different signs, yield

Cov(ϕn − ϕm,−ϕn + ϕl) = −σ 2. (28)

If the system comprises multiple base stations, their respec-
tive phases can be considered independent and uncorrelated
and therefore their covariance is zero. Furthermore, it should
be mentioned that the phase variance is not necessarily the
same for all base stations. Especially if the signal-to-noise
ratio at the different stations is expected to differ, due to
different ranges, for instance, it may be useful to adapt the
variance based on the predicted location.

D. PHASE AMBIGUITY AND SYSTEM INTERVAL
The EKF resolves the phase ambiguity by recursively taking
into account the Kalman state. Nevertheless, this is only pos-
sible if antenna distances and sampling rates are matched to
the real accelerations. Ambiguity occurs, if the hypothetically
correct update step yields a phase difference of more than
π and hence fails due to the modulo operation in (20). For
simplicity but without loss of generality, only one antenna
pair is considered in the following. This is sufficient as the
worst ambiguity is generated by the antenna pair separated
from each other by the greatest distance. Fig. 2 shows exem-
plar phase-difference patterns for two different inter-antenna
distances da. Clearly, the largest phase difference change and
therefore the worst case concerning ambiguity appears, when
the transponder is located in front of the array and shifts
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FIGURE 2. Phase difference pattern for a 24GHz transponder (asterisk) and two antenna elements (a) da =5 cm (b) da =10 cm apart.

parallel to it. Moving the transponder at distance d from
x = −px to x = px , yields a phase difference change of

1(1ϕm,ij) = 2π
1(rim − rjm )

λ0

=
2π
λ0
· 2

√(
da
2
− px

)2

+ d2, (29)

where λ0 denotes the wavelength at carrier frequency and
da the inter-antenna distance. Hence, a maximum position
update of

1x = 2px = da −
√
λ20 − 4d2 (30)

is possible for a transponder-to-array distance of d . Fig. 2
also shows, that the smaller distance between the anten-
nas d , the smaller the unambiguous x-range. The ambiguity
impact on localization then depends on the motion model.
Assuming a constant velocity model, the maximum accelera-
tion is limited. Unfortunately, the preceding prediction might
be corrupted by noise, coupling, multipath, etc. and hence
some safety margin should be considered. For a transpon-
der not located in front of the antenna array, i.e. x 6= 0,
in Fig. 2, a smaller effective inter-antenna distance and a
larger unambiguous area emerges. A large antenna array or
a close transponder maximizes the sensitivity. In contrast, for
a big unambiguous range either the antenna elements must be
chosen close to each other or the transponder moves further
away from the array.

Unfortunately, given that radial movements from or to the
origin cause no change in the phase difference, additional
antennas are required for localization.

In summary, ambiguities can be tackled mainly by either
arranging the antennas closer to each other or increasing
the sampling rate. In addition, an elaborate prediction also
contributes to the unambiguousness. Generally, the EKF is
very computationally efficient since it consists mainly of

additions, differences, multiplications and one matrix inver-
sion. The number of evaluated phase differences defines the
matrix dimensions and hence the computational effort is inde-
pendent of the size of the measurement area. In contrast, other
phase-based approaches like beamforming and holography
classically search for the transponder on a discrete grid and
therefore their computational effort scales with the search
area’s size and dimension.

E. INTERPRETATION AND ADVANTAGES
The classical localization approach relying only on phase
information would be to evaluate the angle-of-arrival using a
beamformer or imaging algorithms. Multiple radar base sta-
tions are deployed for AOA and some kind of multiangulation
or an angle-based EKF [13] may be used for positioning. But
this means that beamforming and therefore intricate search-
ing is needed. Imaging techniques, such as interferometry or
synthetic aperture radiometry, imply a similar drawback and
require far more processing power than the proposed EKF.

The advantages of direct evaluation of the phases for local-
ization and especially for the proposed EKF are outlined in
the following section.

One advantage of phase-based localization over techniques
computing the angle is that the phases are used directly in
the update step. Consequently, a computationally complex
maximum search in the beamformers pseudo-spectrum is
not required, and every phase is considered separately. This
results in a total of M I (I−1)

2 values instead of M values for
multiangulation. Single erroneous measurements are there-
fore compensated more easily due to redundancy.

In order to obtain optimal prerequisites for the Kalman fil-
ter, themeasurement noise should be normally distributed and
with known dependency. The noise overlaying the sampled
phase values originates from various sources like hardware
components or radiation from other devices. Considering the
central limit theorem, we can assume that the overall noise is
normally distributed [23]. Generally speaking, there are two
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different views on phase noise in the literature. It may be
considered as an additive term in the phase [24] as

sn(t) = An(t)ej(θ+θn(t)), (31)

where sn(t) is the noisy signal, An(t) is the noisy amplitude,
θ represents the noise free phase, and θn(t) the overlaying
Gaussian noise, which may for example originate from phase
jitter in PLLs.

The other way would be to consider additive noise to the
whole signal as

sn(t) = s(t)+ n(t), (32)

with s(t) representing the complex noise free signal and n(t)
complex Gaussian noise, which may originate from cos-
mic radiation or other devices. Reference [25] shows that
this additive noise causes an approximately Gaussian-shaped
probability density function for the phase. In conclusion,
the phase noise can be well approximated as normally dis-
tributed in both cases.

In contrast, beamformers may suffer from ambiguities
depending on the array used. In consequence, a systematic
error for designated angle values may occur due to abrupt
changes in measured angles.

Another advantage of close-range positioning is that,
in contrast to AOA, we do not need to assume a plane wave
or compensate the wavefront. This is because all antennas
are considered individually, and the curvature is implicitly
contained in the relation between state and sampled data.

Furthermore, beamformers require relatively small arrays
in order to maintain unambiguousness [26]. For the proposed
algorithm, unambiguousness is achieved by elaborate choice
of array size and update rate, or if this is not possible,
by observing the covariance Pk|k over time.

In reverse conclusion, the antenna elements can be chosen
further apart, thus increasing the sensitivity of the phase
difference to location changes. Thus, coupling between the
antennas, and hence systematic errors, are reduced. Addition-
ally, the variety of multipaths at the antennas increases as the
distance between them increases. The phase error induced by
multipath can be considered increasingly random and thereby
independently normally distributed for the antennas.

Finally, the EKF is a computationally efficient algorithm,
and especially if phase based, the maximum search in the
pseudospectrum for a beamformer is omitted. The less time
needed to calculate localization results, the faster the location
is updated and, hence, the more suited the system is for
safety-critical tasks.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The test setup for algorithm verification is shown in Fig. 3.
It consists of three fixed radar stations [27], each equipped
with a sparse array of 8 receive antennas [26], originally
intended for beamforming, and a smaller mobile transmit-
ter with one transmit channel. The position and tilt of the
individual fixed radar stations are determined in-situ before

FIGURE 3. Experimental setup featuring three base stations (BS1, BS2,
BS3) with two TX and 8 RX channels each, one mobile transmitter with
two RX and one TX, and a robotic arm.

measurement. The individual antenna positions can be calcu-
lated from station position, tilt and the known antenna array.
Each base station consists of eight antennas yielding an array,
which is 6.4 cm wide and 3.1 cm high. The system uses the
FMCW principle, see [24], with 250 MHz bandwidth and
24 GHz starting frequency, to measure the range and respec-
tively extract the phases received at the spatially distributed
antennas. The transmitter is incapable of coherently respond-
ing to the FMCW signal, but it is synchronized [8], [9], as it
was originally meant for range and angle measurements.
As the proposed Kalman filter requires only phase values,
it is not necessary to synchronize the transmitter accurately,
as long as the signal can be detected in the baseband.

The well-known formula for the low pass filtered FMCW
baseband signal

SBB = ABB cos(2πµτim t + ω0τim + φm) (33)

can be employed for the system, where ABB is the amplitude
of the baseband signal, µ is the chirp rate, ω0 is the carrier
frequency, and φm is a characteristic unknown phase term
for radar m. The resulting range dependent phase for the
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FIGURE 4. (a) 3D view of ideal (grey, dash-dotted) and measured (blue) helix trajectory, where BS1-3 depicts the locations of the base
stations. (b) Cumulative RMSE error probability density function for the trajectory using the norm from (35).

FIGURE 5. (a) 3D view of ideal (grey, dash-dotted) and measured (blue) trajectory with bulges and turns, where BS1-3 depicts the locations of
the base stations. (b) Cumulative RMSE error probability density function for the trajectory using the norm from (35).

i-th antenna of the m-th radar is

ϕi = ω0τim + φm, (34)

in the ideal case. As the receive paths of a real radar suffer
from imperfections like different cable lengths for the chan-
nels, a phase calibration is carried out in advance. This is
crucial for the localization accuracy, since the calculation of
the hypothetical phase differences in the update step assumes
identical receive channels. Mismatches would cause falsified
measurements matching to wrong positions.

A robotic arm is used to move the transmitter in a repro-
ducible manner and simultaneously provide a high precision

reference for verifying the localization. The environment is
an indoor laboratory with unshielded walls, a metal partition
as well as the robotic arm inducing multipath in the scenario.

B. RESULTS
The proposed EKF is now used to compute the location of the
transmitter, which is moved by the robotic arm. The known,
ideal trajectory is saved for later comparison purposes and
algorithmic validation.

First, a helix shaped trajectory as shown in Fig. 4 (a) is
driven and evaluated. The ideal trajectory points in this sce-
nario are equally spaced with a distance of about 17 mm.
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The cumulative probability of the absolute error is shown
in Fig. 4 (b). For the k-th measurement, the error

1(k) =
√
1px(k)2 +1py(k)2 +1pz(k)2, (35)

is calculated as the 3D distance between the measured and
ideal position, see [28], with 1px(k),1py(k),1pz(k) denot-
ing the difference between the measured and ideal value from
the reference.

The RMSE of the overall trajectory is calculated for every
Cartesian coordinate as

RMSEx,y,z =

√∑L
l=11px,y,z(k)2

L
, (36)

where x, y, z is the Cartesian coordinate component for which
the error is calculated,1px,y,z(k) is the difference between the
localization result and the corresponding coordinate from the
high precision reference at the k-th sampling point, and L is
the number of data points. An overall accuracy of RMSEx =
0.99 cm, RMSEy = 0.59 cm, and RMSEz = 1.11 cm
has been achieved for the shown track. Differences in the
RMSE for the individual directions arise from the extent of
the antenna array. The direction with the largest aperture
(y-direction) is the most accurate, while the z-direction is
the least accurate due to the use of planar arrays facing
downwards. Comparing the results to a triangulation-based
EKF in the same setup [13], we observe a similar behavior
due to the aperture. Our holographic EKF is as such more
accurate overall. The accuracy may be further improved by
adjusting the array geometry.We should point out though that
the array size is limited by the maximum acceleration and the
measurement rate.

Another trajectory is shown in Fig. 5 (a), which involves
some turns and bulges for a less uniform transmitter motion.
In this case, the ideal trajectory points are not equally spaced
and are separated by distances of about 5-12 mm. The results
are shown in Fig. 5 (b) and can be evaluated for the track
as RMSEx = 0.91 cm, RMSEy = 0.57 cm, and RMSEz =
1.30 cm.

V. CONCLUSION
A novel 3D localization algorithm capable of high precision
3D positioning based on phase evaluation is presented in
this paper. The Kalman filter implementation offers lower
computational effort, in contrast to methods with large search
spaces, like conventional beamformers or SAR approaches.

As the algorithm inputs are simply phase difference mea-
surements, the approach is not limited to designated wave-
forms or large bandwidths. The only limitation is the need for
some spatially distributed coherent receive channels. Besides
this, any system capable of evaluating distance-dependent
phases at coherent receive channels can be used. Thereby
the approach enables the use of various transmitter topolo-
gies, starting with basic beacons, to non-coherent transmitters
and ubiquitous devices, such as cellphones. Conventional
systems, like WLAN, mobile communications, Bluetooth,

ZigBee and the like, can easily be repurposed for localization
without adding designated localization hardware.
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