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ABSTRACT In this paper, a nonparametric spatial-temporal self-exciting point process is proposed to model
clustering features in emergency calls. Gaussian kernel density functions are considered. The expectation-
maximization algorithm is adopted for estimating the model. A simulation study is designed to carefully
examine the performance of the proposed nonparametric method. The spatial-temporal patterns of the
emergency calls in Montgomery County of Pennsylvania are studied using the proposed nonparametric
model. The results demonstrate that the proposed nonparametric model captures the clustering phenomena
present in the emergency calls from Montgomery County very well. Further, the proposed parameter
estimation method results in robust and precise estimates.

INDEX TERMS Spatial-temporal point processes, emergency calls, nonparametric model, maximum
likelihood estimation, expectation-maximization algorithm.

I. INTRODUCTION
With the growth of major cities in hazard prone areas, many
researches have focused on improving the system of early
hazard warnings and emergency responses [7]. Many differ-
ent types of crime data have been extensively studied for
analyzing hazard prone areas in the framework of random
point processes [8], [11], [14], [17], [18], [22]–[24], [32]. One
important characteristic of crime data is the clustering feature
in the dimensions of space and time [17], [18], [22], [24].

Self-exciting point processes were developed and dis-
cussed in the context of seismology with the Neymann-Scott
models and other cluster process models [37]. The explicit
form of a self-exciting point process was formally defined
by [15]. The Epidemic Type Aftershock Sequence (ETAS)
model developed in seismology is an early important appli-
cation of self-exciting point processes [27]. Self-exciting
point processes perform particularly well in modeling
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earthquakes due to the dependence between the main
shocks and aftershocks [20]. The dependence between
the major and subsequence events has also been noted
in criminology [17], [18], [24]. Many factors play roles in
the connection between one main crime and subsequent
ones [24]. Lewis [18] pointed out that crimes may be corre-
lated due to exogenous factors such as the state of economy,
the month of the year, the change in military operations,
etc., rather than ‘‘caused’’ by endogenous factors such as
repeated offending behaviors. For example, burglars may
repeatedly attack clusters of nearby targets because the local
vulnerabilities are known to them [4]. A gang shooting may
incite waves of retaliatory violence in a local region of the
rival gang [33]. The contagious spread of crimes leads to the
presence of clustering features in both space and time [24].
To account for the clustering features observed in crime data,
self-exciting point processes were used to describe random
collections of crimes where the occurrence of one crime
increases the likelihood of other crimes occurring shortly
thereafter [24].
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However, there is limited research on modeling emergency
calls with stochastic models. Wang et al. [38] performed
a simple descriptive statistical analysis for emergency calls
of a metropolitan city in China. The application of spatial-
temporal self-exciting point processes on modeling and char-
acterizing emergency calls is a relatively new research field.
Emergency call data provide the information on when and
where people encounter emergent events. One emergency call
may be associated with many other emergency calls within a
short time period. This dependency among emergency calls
is because sometimes emergency calls are the quick actions
of the insiders who were involved in the emergencies. The
insiders can be the real triggers, the witnesses or the indirect
insiders who are told about the already happened emergen-
cies. Studying emergency calls allows us to understand how
human beings react to emergent events, and how the news
of accidents is spread in order to identify and characterize
hazard prone areas.

In this paper, we focus on analyzing and modeling an
interesting emergency call dataset from Montgomery county
of Pennsylvania. We explore the data with a nonpara-
metric method, which allows us to construct a flexible
spatial-temporal self-exciting point process. The proposed
nonparametric model introduces some scaling parameters in
both the background and triggering intensity functions. The
intensity functions can be expressed as the product of the
scaling parameters and densities, and the densities are for-
matted using Gaussian kernel density functions. Viewing the
estimation of the proposed self-exciting point process as an
incomplete data problem (see Section III-C), the Expectation
and Maximization algorithm (EM) is employed to obtain the
maximum likelihood estimates (MLEs) of the scaling param-
eters. With the proposed nonparametric spatial-temporal self-
exciting point process along with the EM algorithm, we seek
to tackle the following three questions:
(a) Does the proposed nonparametric model work flexibly

and effectively for spatial-temporal self-exciting point
processes?

(b) Are the clustering phenomena present in emergency
calls? If they do exist, what are the characteristics of the
clustering phenomena?

(c) Can the proposed nonparametric spatial-temporal self-
exciting point process model emergency calls very well?

For the first question, we use a parametric spatial-temporal
self-exciting point process to simulate a toy catalog [24],
and then examine the flexibility and effectiveness of the
proposed nonparametric version. The simulation algorithm
proposed in [43] is adopted to generate the simulated data.
For the second question, the clustering features are studied
using the estimated triggering intensity function. For the third
question, we use a typical residual analysis, which is a simple
and efficient model diagnostic method [31], to examine the
performance of the proposed nonparametric spatial-temporal
self-exciting point process in modeling emergency calls. The
contributions of this paper are: (1) The MLEs of the scaling
parameters have explicit formulae; (2) A novel explanation

of the proposed nonparametric spatial-temporal self-exciting
point process is given based on the varied bandwidth kernel
density estimation (KDE) method; (3) A detailed analysis
of point processes provides insights about spreading patterns
of the information in emergencies by human beings and the
characteristics of hazard prone areas.

The rest of this paper is organized as follows. Section II
describes the framework of spatial-temporal self-exciting
point processes. Section III proposes a nonparametric
spatial-temporal self-exciting point process. In this section,
theMLEs of the nonparametric spatial-temporal self-exciting
point process are derived based on the EM, and the overall
Goodness-of-fit as well as a simulation algorithm for the
estimated spatial-temporal self-exciting point process model
are also introduced. Section IV provides the performance
of the proposed method using a simulated dataset. The pro-
posed model is implemented on an interesting emergency call
dataset from Montgomery county, Montana, in Section V.
Finally, SectionVI summarizes the results and future research
directions.

II. SPATIAL-TEMPORAL SELF-EXCITING
POINT PROCESSES
A spatial-temporal point process X is a random collection of
points with each point falling in an observed metric space
S×T ⊆ R2

×R. A spatial-temporal point process is uniquely
determined by specifying its intensity process [19]. In a more
general case the distributions of intensity functions of random
point processes are conditional, not only on the time since the
last event, but also on any additional information regarding
the past history that may affect the distribution of the remain-
ing times.

Let N be a simple counting process and Ht be the
collection of all events observed within the time interval
(−∞, t), t ∈ T . The conditional intensity process λ(s, t) of a
spatial-temporal point process is the expected rate describing
the frequency of points occurring around space location s and
time t , conditional on the history Ht , t ∈ T , consisting of the
set of location and time of all events that occur prior to time t .
In other words, Ht is a family of sigma-algebras generated
by the events occurring at times up to, but not including t .
The definition of conditional intensity process is given in
Equation (1), if the limits in Equation (1) exist.

lim
4s→0
4t→0

P(N ([s, s+4s)× [t, t +4t))=1|Ht )
4s4t

=λ(s, t|Ht ),

lim
4s→0
4t→0

P(N ([s, s+4s)× [t, t +4t)) > 1|Ht )
4s4t

= 0,

(1)

where s := (x, y) ∈ S represents a space location.
The critical problem of modeling such point processes is

to determine how the conditional intensity process depends
on the past history [36]. Typically, it is dealt by specifying
special structures for the conditional intensity process. The
self-exciting point process models are one important kind of

24866 VOLUME 7, 2019



C. Li et al.: Nonparametric Method for Modeling Clustering Phenomena in Emergency Calls

conditional intensity process models [19]. Given observed
events with location si and time ti up to time t (i = 1, 2, 3 · · · ),
we have the following definition for the conditional intensity
process of a spatial-temporal self-exciting point process.
Definition 1: Given an observed event sequence (si, ti),

i = 1, 2, . . ., and ti < t , a spatial-temporal self-exciting
point process is simply a point process N such that N has
a conditional intensity process written in Equation 2.

λ(s, t|Ht ) = µ(s, t)+
∫
S×(−∞,t)

g(s− ξ , t − ς )N (dξ , dς )

:= µ(s, t)+
∑
i:ti<t

g(s− si, t − ti), (2)

for (s, t) ∈ S × T , where N (dξ , dς ) = 1 if an infinitesimal
element (dξ , dς ) includes an event (si, ti) for some i, other-
wise N (dξ , dς ) = 0.

Equation (2) is closely related to a branching process,
i.e., each point of a self-exciting process is either an immi-
grant (background) or a descendant (offspring or trigger-
ing) [34]. A point of a self-exciting process occurs at location
si ∈ S and time ti ∈ R is called an immigrant if it is
viewed as a point generated from an inhomogeneous Poisson
process with the intensity functionµ(si, ti). Then, it generates
offsprings at future location s and time t > ti from an inho-
mogeneous Poisson process with the intensity function g(s−
si, t − ti). All offsprings related to this immigrant are called
the descendants of this immigrant (si, ti). Each immigrant
generates either zero or more descendants independently. The
immigration intensity function µ(s, t) governs the frequency
at which new immigrants arrive. Whenever a point event
occurs, it is either an immigrant or a descendant, and the con-
ditional intensity process is increased temporarily, i.e., events
arrive at a higher frequency for certain time windows. The
increase in intensity causes secondary point events, which
in turn can spawn descendants of their own. How fast this
effect decays in time is governed by the triggering intensity
function g(x, y, t).
In most applications of self-exciting point processes,

the background intensity function µ(x, y, t) is assumed to be
stationary [15], [20], [27], [40], [42]. Existing works often
restrict the triggering intensity function as an exponential
function in time [1], [2], [13]. The distribution in space of
the triggering intensity function, according to the research
fields of seismicity, crime and security, is often considered
as an isotropic Gaussian kernel [24], [28], [42]. A more flex-
ible approach was proposed using a set of basic functions
to explore the triggering intensity function [35], [39], [41],
where the coefficients and even the basic functions [41] are
iteratively updated and refined. An alternative way to esti-
mate the triggering intensity function non-parametrically was
proposed in [3] by solving a set of p Wiener-Hopf systems
in p2 dimensions. Zhuang et al. [42] considered using a
varied bandwidth kernel density function method to estimate
the background intensity function. Marsan and Lengline [20]
proposed a complete nonparametric method, namely
the model-independent declustering algorithm (MISD),

for estimating both the background and triggering intensity
functions. Fox et al. [12] extended this method to the cases in
which the background intensity function is inhomogeneous.

Given the conditional intensity process defined in Equa-
tion (2) over the observation period D := [t∗, t∗), the
parameter estimates can be obtained by maximizing the
log-likelihood function [10] written in Equation (3)

logL =
∫ ∫ ∫

S×D
log λ(s, t)N (ds, dt)

−

∫ ∫ ∫
S×D

λ(s, t)dxdydt

:=

n∑
i=1

log λ(si, ti)−
∫ ∫ ∫

S×D
λ(s, t)dxdydt. (3)

Note that the log-likelihood function depends on the choice
of the observation period D. The history Ht defined in Equa-
tion (2) is adjusted as a collection of all events observed
during the time interval [t∗, t), t ≤ t∗.

III. NONPARAMETRIC MODEL AND
MODEL DIAGNOSTICS
In this section, we consider spatial-temporal self-exciting
point processes with inhomogeneous background intensity
functions.We first present the proposed nonparametric model
and then explore the estimation method based on the EM
algorithm. To examine the Goodness-of-fit of the proposed
nonparametric model, the residual analysis with the thinning
method proposed in [31] is adopted.

A. NONPARAMETRIC MODEL
In an exploratory context for modeling point events, paramet-
ric models are not always flexible enough to cover all the
possible structures of the intensity processes, therefore non-
parametric models are very useful. In this paper the spatial-
temporal self-exciting point process model considered has an
inhomogeneous background intensity function µ(x, y, t) and
a nonparametric triggering intensity function g(x, y, t). One
can assume that the spatial-temporal background intensity
function µ(x, y, t) can be separated as

µ(x, y, t) = αu(x, y)v(t), (4)

where α is a positive scaling factor controlling the
overall background intensity function [24], [35], [42];∫
R2 u(x, y)dxdy = 1 and

∫
R v(t)dt = 1. Then the varied

bandwidth KDE can be used to estimate u(x, y) and v(t) as

u(x, y) =
1
nb

nb∑
i=1

Kd1,i (x − x
b
i , y− y

b
i ), (5)

v(t) =
1
nb

nb∑
i=1

Kd2,i (t − t
b
i ), (6)

where {(xbi , y
b
i , t

b
i )}

nb
i=1 represents the background events;

nb represents the number of background events; d1,i and d2,i
are the varied bandwidths of space and time respectively
calculated for each background event i; Kd1,i (x − x

b
i , y− y

b
i )
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and Kd2,i (t − t
b
i ) denote Gaussian kernel functions:

Kd1,i (x − x
b
i , y− y

b
i ) =

1
2πσ bx σ by (d1,i)2

exp{−
(x − xbi )

2

2(σ bx d1,i)2

−
(y− ybi )

2

2(σ by d1,i)2
},

Kd2,i (t − t
b
i ) =

1
√
2πσ bt d2,i

exp{−
(t − tbi )

2

2(σ bt d2,i)2
},

where σ bx , σ
b
y , σ

b
t are the standard deviations of the coor-

dinates of the background event points {(xbi , y
b
i , t

b
i )}. The

bandwidths d1,i and d2,i are computed by finding the radius
of the smallest disk centered at the scaling data of {(xbi , y

b
i )}

and {tbi }, which have a unit variance in each coordinate, and
the smallest disk contains at least n1 and n2 extra events,
respectively.

Furthermore, one can split the spatial-temporal triggering
intensity function g(x, y, t) into two parts:

g(x, y, t) = βh(x, y, t), (7)

where β < 1 is a positive scaling factor and∫ ∫ ∫
R2×R h(x, y, t)dxdydt = 1. Function h(x, y, t) can be

viewed as the underlying joint probability density function
for both space and time between a background event and
its triggering events. Then the varied bandwidth KDE of
h(x, y, t) can be given by

h(x, y, t) =
1
no

no∑
i=1

Kd3,i (x − x
o
i , y− y

o
i , t − t

o
i ), (8)

where {(xoi , y
o
i , t

o
i )}

no
i=1 represent the inter-point distances

between the triggering events and their parent events; no rep-
resents the number of the triggering events; Kd3,i (x − x

o
i , y−

yoi , t − t
o
i ) denotes Gaussian kernel functions written as

Kd3,i (x − x
o
i , y− y

o
i , t − t

o
i )

=
1

σ ox σ
o
y σ

o
t (
√
2πd3,i)3

exp{−
(x − xoi )

2

2(σ ox d3,i)2
−

(y− yoi )
2

2(σ oy d3,i)2

−
(t − toi )

2

2(σ ot d3,i)2
},

where σ ox , σ
o
y , σ

o
t are the sample standard deviations of the

coordinates of inter-point distances {(xoi , y
o
i , t

o
i )}; the band-

width d3,i is computed by finding the radius of the smallest
disk centered at the scaling data of {(xoi , y

o
i , t

o
i )}, which has a

unit variance in each coordinate, and the smallest disk con-
tains at least n3 extra events. Combining Equations (4)-(8),
we propose a general form of nonparametric models as

λ(x, y, t|Ht ) = αu(x, y)v(t)

+

∑
i:ti<t

βh(x − xi, y− yi, t − ti). (9)

B. MAXIMUM LIKELIHOOD ESTIMATION
Since the branching structure is unknown, we can view the
estimation of self-exciting point processes as incomplete
data problems. Then we use the EM algorithm to attain
the maximum likelihood estimates (MLEs) of the scaling

parameters (α, β) and update the kernel densities. The EM
algorithm has been widely used in estimating the background
and triggering intensity functions for both parametric and
nonparametric models [12], [13], [16], [18], [20], [24], [34].
A good overview of the EM algorithm and its extensions is
provided by [21]. In the rest of this section, we derive the
MLEs of the proposed nonparametric model based on the EM
algorithm.

Suppose we have observed a realization of a spatial-
temporal self-exciting point process, with event locations
{s1, . . . , sn} and times {t1, . . . , tn} over a spatial region S and
a temporal window D. Define random variables

ζi =

{
i if event i is a background event,
j if event i is triggered by event j, i 6= j.

(10)

If a branching structure is incorporated, the complete data
log-likelihood can be decomposed into the likelihood func-
tions for the background and triggering events separately as

logLc(2)

=

n∑
j=1

n∑
i=1

1{ζi=j,j=i} log(µ(xi, yi, ti))

−

∫ ∫ ∫
S×D

µ(x, y, t)dxdydt

+

n∑
j=1

[ ∑
i:tj<ti

1{ζi=j} log(g(xi − xj, yi − yj, ti − tj))

−

∫ ∫ ∫
S×[tj,t∗)

g(x − xj, y− yj, t − tj)dxdydt
]

=

n∑
i=1

1{ζi=i} log(µ(si, ti))

+

n∑
i=1

n∑
j=1

1{ζi=j} log(g(si − sj, ti − tj))

−

∫ ∫ ∫
S×D

λ(s, t)dxdydt, (11)

where 2 = {ζi, i = 1, . . . , n;9} and 9 = {α, u(x, y), v(t),
β, h(x, y, t)}; 1{·} is the indicator function. Let 9(k)

:=

{α(k), u(k)(x, y), v(k)(t), β(k), h(k)(x, y, t)} be the set of values
of 9 at the kth iteration. Then the E-step and the M-step can
be calculated as:
E-Step Calculating Q(9;9(k))

Q(9;9(k))
= E9(k){logLc(2)|(x, y, t)}

=

n∑
i=1

p(k)ii log(µ(xi, yi, ti))

−

∫ ∫ ∫
S×D

µ(x, y, t)dxdydt

+

n∑
j=1

[ ∑
i:tj<ti

p(k)ij log(g(xi − xj, yi − yj, ti − tj))

−

∫ ∫ ∫
S×[tj,t∗)

g(x − xj, y− yj, t − tj)dxdydt
]
, (12)
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where

p(k)ij := E(1{ζi=j})

=


µ(k)(xi, yi, ti)
λ(k)(xi, yi, ti)

, j = i,

g(k)(xi − xj, yi − yj, ti − tj)
λ(k)(xi, yi, ti)

, ti > tj, j > 0,

0, ti < tj, j > 0;
(13)

and µ(k)(x, y, t) = α(k)u(k)(x, y)v(k)(t); g(k)(x, y, t) =
β(k)h(k)(x, y, t); λ(k)(x, y, t) = µ(k)(x, y, t)+

∑
i:ti<t g

(k)(x−
xi, y− yi, t − ti);
M-StepMaximizing Q(9;9(k))
The probabilities pij, i, j ∈ {1, 2, . . . , n}, allow estimating

u(k+1)(x, y), v(k+1)(t) and h(k+1)(x, y, t) using kernel density
functions as

u(k+1)(x, y) =

∑n
i=1 p

(k)
ii Kd1,i (x − xi, y− yi)∑n

i=1 p
(k)
ii

,

v(k+1)(t) =

∑n
i=1 p

(k)
ii Kd2,i (t − ti)∑n
i=1 p

(k)
ii

,

h(k+1)(x, y, t)

=

∑n
j=1

∑n
i=j+1 p

(k)
ij Kdij (x−xij, y− yij, t − tij)∑n
j=1

∑n
i=j+1 p

(k)
ij

,

where

σ̂ bx =
1∑n

i=1 p
(k)
ii

n∑
i=1

p(k)ii

(
xi −

∑n
i=1 p

(k)
ii xi∑n

i=1 p
(k)
ii

)2

,

then σ̂ by and σ̂ bt are estimated similarly;

σ̂ ox =

∑n
j=1

∑n
i=j+1 p

(k)
ij

(
xij −

∑n
j=1

∑n
i=j+1 p

(k)
ij xij∑n

j=1
∑n

i=j+1 p
(k)
ij

)2

∑n
j=1

∑n
i=j+1 p

(k)
ij

,

then σ̂ oy and σ̂ ot are estimated similarly; xij := xi − xj, yij :=
yi − yj and tij := ti − tj.
Alternatively, a Monte Carlo-based method proposed

in [24] can be used to gain efficiency of using KDEs when
the data size is large. One can estimate u(k+1)(x, y), v(k+1)(t)
and h(k+1)(x, y, t) as

u(k+1)(x, y) =
1
nb

nb∑
i=1

Kd1,i (x − x
b
i , y− y

b
i ), (14)

v(k+1)(t) =
1
nb

nb∑
i=1

Kd2,i (t − t
b
i ), (15)

h(k+1)(x, y, t) =
1
no

no∑
i=1

Kd3,i (x − x
o
i , y− y

o
i , t − t

o
i ), (16)

where the background events {xbi , y
b
i , t

b
i }
nb
i=1 and the

triggering-parent inter-point distances {xoi , y
o
i , t

o
i }
no
i=1 are

sampled from p(k)ij , i, j ∈ {1, . . . , n}; nb is the number of the

background events, while no is the number of the triggering
events.

One can calculate the scaling parameters by equaling the
corresponding partial derivatives to zero, i.e.,

β(k+1)

=

∑n
j=1

∑n
i=j+1 p

(k)
ij∑n

j=1
∫ ∫ ∫

S×[tj,t∗)
h(k)(x − xj, y− yj, t − tj)dxdydt

,

(17)

α(k+1) =

∑n
i=1 p

(k)
ii∫ ∫ ∫

S×D u
(k)(x, y)v(k)(t)dxdydt

. (18)

To simplify the above computation, we adopt the following
approximation Equations (19) and (20). The integral terms of
Equation (17) can be approximated by 1 using the fact that the
spatial-temporal distances between the triggering events and
their parent events are usually much smaller than the study
region S×D. This approximation was also considered in [34].
For the similar reasoning, the integral term of Equation (18)
can also be approximated by 1. Using these approximations,
we have

β(k+1) ≈

∑n
j=1

∑n
i=j+1 p

(k)
ij

n
≈
no
n
, (19)

α(k+1) ≈

n∑
i=1

p(k)ii ≈ nb. (20)

Algorithm 1 summarizes our proposed Monte Carlo-based
EM algorithm for estimating the parameters of the proposed
nonparametric model.

Algorithm 1 Estimation
Input: Event locations {s1, . . . , sn} and times {t1, . . . , tn}.
Initialize P(0) := (p(0)ij ) by

P(0) =


1 0 0 ··· 0 0
1/2 1/2 0 ··· 0 0
1/4 1/4 1/2 ··· 0 0
...

...
...

. . .
...

...
1/(2(n−1)) 1/(2(n−1)) 1/(2(n−1)) ··· 1/(2(n−1)) 1/2


n×n

Output: The parameters 9(k)

− 1© Sample background events {xbj , y
b
j , t

b
j }
nb
j=1 and

triggering-parent inter-point distances {xoi , y
o
i , t

o
i }
no
i=1 from

P(k−1);
− 2© Estimate u(k)(x, y), v(k)(t) and α(k) from the sampled
data using Equations (14), (15) and (20);
− 3© Estimate h(k)(x, y, t) and β(k) from the sampled data
using Equations (16) and (19);
− 4© Update the probabilities in matrix P(k) = (p(k)ij ) using
Equation (13)
− 5© If the errors L2 := 1

n2
∑n

i=1
∑n

j=1(p
(k+1)
ij −p(k)ij )2 < ε,

then the algorithm is converged (in practice we take ε =
10−4); Otherwise, repeat Steps 1©- 5© until convergence.

Remark 1: In [42], zhuang et al. suggested choosing a value
between 15 and 100 for n1. As well as in [24], both n2 and n3
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take values between 15-100. To overcome the over-fitting
problem, the bandwidths should be greater than some small
values due to measurement errors (e.g., the lower bound of
space radiuses may be set as 0.02 km and the lower bound of
time radiuses may be set as 0.05 h). In addition, P(0) is one
possible initialization. One can use other initial matrices (see
the examples in [12]).
Remark 2: Other approaches used to estimate the back-

ground and triggering intensity functions have been discussed
in [42], [20], [24], and [12]. In [42], Zhuang et al. used
semi-parametric models and estimated the parameters using
the iterative numerical optimization methods [28]. In [24],
a nonparametric estimate of g(x, y, t), which was consistent
with our approximate estimate, was adopted directly without
explanation. In [12] and [20], Fox et al. and Marsan and
Lengline considered using piecewise constant functions to
model the background and triggering intensity functions, and
then using histogram estimators for parameter estimation.

C. MODEL DIAGNOSTICS AND SIMULATION
In this section, we examine the Goodness-of-fit of the pro-
posed nonparametric spatial-temporal self-exciting point pro-
cess for emergency calls. The methods for evaluating the
Goodness-of-fit are presented using residual analysis meth-
ods, such as thinning, re-scaling, and superposition, which
involve transforming point processes with conditional inten-
sity functions and then inspecting the uniformity of the
results [9]. Residual analysis methods can help identify
defects in spatial-temporal models and suggest ways in which
the models may be improved [31].

1) OVERALL GOODNESS-OF-FIT
There are many model diagnostic methods for self-exciting
point processes [5], [6], [29], [31]. We decided to use the
residual analysis methods with the thinning idea proposed
in [31] since it is simple and efficient. The thinning method
uses the property that any process characterized by its con-
ditional intensity process may be thinned to obtain a homo-
geneous Poisson process [26]. The following procedure is a
standard thinning algorithm [31]:
(1) Denote k = inf(xi,yi,ti) λ̂(xi, yi, ti), i.e., the largest lower

bound (infimum) of λ̂(xi, yi, ti);
(2) For event i, calculate the quantity pi = k

λ̂(xi,yi,ti)
;

(3) Retain event i with probability pi.
For the thinning process, one can use Ripley’s

K -function [30], which calculates the proportion of events
per unit area within a given distance, to perform model diag-
nostics. This method detects whether the thinning process
still has clusters not accounted by the model [31]. The most
commonly usedK -function with edge-corrected estimators is
given in Equation (21) [30]:

K̂ (d) = |S|n−2
∑
i

∑
j 6=i

w(si, sj)−11dij<d , (21)

where |S| is the volume of the observation region, dij is
the distance between the ith and jth points, and the weight

function, w(si, sj) is the proportion of the circumference of a
circle, which has center si and radius ||sj − si||2 that lies in
the study area. Further, the L−function, estimated by L(d) =√

K̂ (d)
π

and based on K̂ (d), has a more stable variance than
that of Ripley’s K−function. Thus we use L−function to
perform model diagnostics. Algorithm 2 gives the diagnos-
tic procedure based on the Monte Carlo simulation and the
L−function.

Algorithm 2 Diagnosis
Input: Initial tuning parameter k , the estimated intensity
function λ̂(x, y, t), a number of simulations M and a dis-
crete value d
Output: The empirical 95% confidence bounds of the
L-function
− 1© Using the thinning method to obtain a thinning
process;
− 2© Calculate the value of the L-function;
− 3© Repeat Steps 1© and 2© M times;
− 4© Calculate the empirical mean of the L-function;
− 5© Simulate a homogeneous Poisson process with inten-
sity k over the observed region S and repeat Step 2©
M times;
− 6©Calculate the empirical 95% confidence bounds of the
L-function corresponding toM realizations of the homoge-
neous Poisson process.

2) SIMULATION
Here we introduce a simple and efficient simulation method
proposed by [43]. For a thorough review of simulation
methods and the rationality of the thinning method, please
see [10], [26], and [25].

IV. NUMERICAL EXPERIMENTS
A. SIMULATED DATA
In this section, a simulated data generated from the condi-
tional intensity function as defined in Equation (22) with the
size around 6000 is used for verifying the performance of the
proposed method. Number 6000 is a common data size used
in most applications of earthquakes and crimes [24], [42].
The background and triggering intensity functions for this
simulation are written as:

µ(x, y, t) =
µ

2π (σµ)2
exp(−

(x − c)2

2σ 2
µ

−
(y− d)2

2σ 2
µ

),

g(x, y, t) =
θω

2πσxσy
exp(−ωt −

x2

2σ 2
x
−

y2

2σ 2
y
),

(22)

where µ = 5.71, σµ = 4.5, c = 10, d = 10, θ = 0.2,
ω−1 = 10, σx = 0.01 and σy = 0.1. The simulation is carried
out using Algorithm 3 in a 20 by 20 region of the space.
In order to have a realization of the point process at a steady
state, the first and last 2000 points are discarded in each simu-
lation. Mohler et al. [24] used a similar conditional intensity
process for their simulation study. However their triggering
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Algorithm 3 Simulation
Input: The estimated intensity functions µ̂(x, y, t) and
ĝ(x, y, t)
Output: Data simulation
− 1© Calculate m̂ =

∫ ∫
R2

∫
R ĝ(x, y, t)dtdxdy;

− 2© Generate events from the background with the inten-
sity function µ̂(x, y, t) over region S×D, using the thinning
method. Name this catalog of events G(0);
− 3© Let l = 0;
− 4© For event i in G(l), simulate its N (i) triggering events
where N (i)

∼ Poisson(m̂). The triggering events’ location
and time are generated using the probability density func-
tion ĥ, normalized from the triggering intensity function ĝ.
Name these triggering events O(l)

i ;
− 5© Let G(l+1)

=
⋃

i∈G(l) O(l)
i ;

− 6© IfG(l) is not empty, set l = l+1 and return to Step 4©.
Otherwise, return G =

⋃l
j=0 G

(j);
− 7©Discard the points inG falling inR2

×R\S× [t∗, t∗),
the rest points are the final set of simulated events.

intensity function g(x, y, t) has
∫ ∫ ∫

R3 g(x, y, t)dxdydt > 1,
which contradicts the definition of conditional intensity func-
tion [19]. We correct this contradiction and proposed the
triggering intensity function as Equation (22).

B. FITTING SIMULATED DATASET
We estimate the conditional intensity process Equation (9)
based on the simulated datasets generated from Equation (22)
usingAlgorithm 1. The tuning parameters of the varied band-
width KDEs, i.e., the bandwidths d1,i, d2,i and d3,i, are set as
(15, 100, 15) based on the previous research in [24] and [42].

In Fig. 1, the errors L2, the log-likelihood value and the
branching coefficient β are plotted against the number of
iterations. We observe that the errors converge quickly within
the first 10 iterations and then stabilize. It can be seen that the
log-likelihood value converges to some maximum value. The
branching coefficient converges to the true value.

In Fig. 2, we plot the estimated marginal densities of the
background and triggering intensity functions against the
actual distributions at the 50th iteration of one implemen-
tation of the Monte Carlo sampling. We observe that the
estimatedmarginal densities of the background and triggering
events are close to the true densities except that the edge effect
of KDEsmakes the estimated marginal densities deviate from
the true densities at the boundary.

Fig. 3 shows the estimated values of the centered
L−function, L(d)−d , and the 95% confidence intervals of the
homogeneous Poisson process. For a homogeneous Poisson
process, L(d) − d = 0, so the departure from 0 indicates
inhomogeneity. It can be seen that the thinning residuals
are evidently homogeneous as the estimated values of the

FIGURE 1. The estimated (red lines) and actual (black lines) marginal densities of the
background (top) and triggering (bottom) intensity functions.

FIGURE 2. The error L2 (left), the log-likelihood (middle) and the branching coefficient
β (right) are plotted against the number of iterations for both background and triggering
marginals.
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FIGURE 3. Residual analysis with the thinning method. Lower red: the 5% confidence
bound of the estimated values of the centered L−function, L(d ) − d , of the homogeneous
Poisson process; Upper red: the 95% confidence bound of the estimated values of the
centered L−function of the homogeneous Poisson process; Lower green: the 5%
confidence bound of the estimated values of the centered L−function of the thinning
residuals; Upper green: the 95% confidence bound of the estimated values of the
centered L−function of the thinning residuals; Middle black: the empirical mean of the
estimated values of the centered L−function of the thinning residuals; Gray region: the
confidence region of the estimated values of the centered L−function of the thinning
residuals.

FIGURE 4. Histograms of time (less than 72 hours) of the homogeneous Poisson process
(top left), the simulated self-exciting point process (top right) and emergency calls
between events separated by 200 meters or less (bottom).

centered L−function, are entirely within the 95% confidence
bounds.

V. EMERGENCY CALL DATA ANALYSIS
A. DATA DESCRIPTION
Montgomery County is a county located in Pennsylvania.
The data collected by the Montgomery County government
contain 140545 reported emergency calls occurring in a
rectangular area between longitudes −76◦ and −74.8◦ and
latitudes 39.9◦ and 40.5◦ during September 20, 2016, and
September 20, 2017. The data include the information of
occurrence time stamps, longitudes, latitudes, emergency
descriptions, addresses, etc., and consist of 3 groups: Emer-
gency Medical Services (EMS), Fire and Traffic. The data
are publicly available at the link https://www.kaggle.com/
mchirico/montcoalert. The data have been transferred from
the system of longitude and latitude to the Universal
Transverse Mercator (UTM).

The clustering features of the emergency calls are clearly
present in Fig. 4. The top left of Fig. 4 displays the distribution
of the time by hours between pairs of events of a homo-
geneous Poisson process separated in space by 200 meters
or less. It is approximately uniformly distributed under this
situation. Meanwhile, the top right of Fig. 4 shows the distri-
bution of the time between pairs of events from the simulated
self-exciting point process data. It can be seen that the his-
togram shows a spike at shorter time, indicating the clustering
features of the simulated data. The bottom plots of Fig. 4
present the histograms of the time between nearby emergency
call pairs of all three types of emergency call events separated
in space by 200 meters or less, for all recorded emergency
calls. Again we observe the clustering features of emergency
calls indicated by a spike during a short time period.

B. MODELING EMERGENCY CALL DATA
Nowwe use the proposed approach tomodel theMontgomery
County emergency call data. We first study the triggering
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FIGURE 5. Triggering marginals: g(x) (left), g(y ) (middle) and g(t) (right) estimated
using the proposed nonparametric self-exciting method for three types of emergency
calls, i.e., fire, traffic and EMS respectively.

FIGURE 6. Background marginals: g(x) (left), g(y ) (middle) and g(t) (right) estimated
using the proposed nonparametric self-exciting method for three types of emergency
calls, i.e., fire, traffic and EMS respectively.

FIGURE 7. Background space marginal µ(x, y ) estimated using the proposed
nonparametric self-exciting method for three types of emergency calls, i.e., fire, traffic
and EMS respectively.

intensity function, which represents the clustering features
of the emergency calls. The estimated marginal densities of
the triggering intensity function are shown in Fig. 5. The
presence of clustering features can be seen clearly, as these
estimated marginal densities of space appear to approximate
Gaussian distributions with small variances. Fig. 5 shows
that an emergency call may trigger other emergency calls
in a very close distance and time. This is because these
emergency calls may be triggered by the same emergency
event and reported by nearby insiders within a time interval
from a few minutes to several hours. For different types of

emergency calls, the estimated marginal densities of spatial-
temporal are different. The emergency calls of fire were made
by the insiders within a 30 meters × 30 meters area and a
time interval from zero to several days because fire is easy
to spread and may last for long time. The emergency calls of
trafficweremade by the insiders within a bigger area than that
of fire because the traffic accidents occur within a 50meters×
50 meters area, but the time interval is less than one hour
because the traffic accidents are reported immediately by the
insiders and resolved in a shorter time period comparing to
fire emergencies. The emergency calls of the EMS show a
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FIGURE 8. Error L2 (left), log-likelihood (middle) and branching coefficient (right)
against iterations for the varied bandwidth KDE method.

FIGURE 9. The selected examining region of size [50; 60]×[20; 40] km×km.

FIGURE 10. The original location of emergency calls and the generated location with
the thinning process.

very different clustering pattern, i.e., these calls weremade by
the insiders within a uniform time interval from 0 to 10 days,
which is consistent with the discovery that the crimes with
high probabilities happen within 10 days after a ‘‘main’’
crime happened [24].

Figs. 6 and 7 display the marginal densities of the esti-
mated background intensity function, which represent the
occurrence rate of spontaneous, untriggered emergency calls.
Here we observe that the estimated background intensity
function does not exhibit fluctuations on a time scale of

months/days/hours, which are different from the fluctuations
due to self-excitation. The background intensity function is
spatially varied, and may be caused by the environmental
heterogeneity in Montgomery County, such as the population
density.

In Fig. 8, the errors L2, the log-likelihood and the branch-
ing coefficient are plotted against the number of iterations.
We observe that, from the left plot of Fig. 8, the errors
converge quickly within the first 5 iterations and then sta-
bilize. The middle plot of Fig. 8 shows the log-likelihood
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FIGURE 11. Thinning residuals. Lower red: the 5% confidence bound of the estimated
values of the centered L−function, L(d ) − d , of the homogeneous Poisson process;
Upper red: the 95% confidence bound of the estimated values of the centered
L−function of the homogeneous Poisson process; Lower green: the 5% confidence
bound of the estimated values of the centered L−function of the thinning residuals;
Upper green: the 95% confidence bound of the estimated values of the centered
L−function of the thinning residuals; Middle black: the empirical mean of the estimated
values of the centered L−function of the thinning residuals; Gray region: the confidence
region of the estimated values of the centered L−function of the thinning residuals.

converges to some maximum value. We also see that, from
the right plot of Fig. 8, the branching coefficient converges
to some fixed value. All the convergence indicates that
Algorithm 1 performs well for these three types of emer-
gency calls. We examine the Goodness-of-fit of the proposed
nonparametric spatial-temporal self-exciting point process in
a selected region of size [50, 60] × [20, 40]. Fig. 10 shows
the implementation of the thinning process. We observe
that the thinning process behaves similarly to Poisson pro-
cesses. Fig. 11 shows the estimated values of the centered
L−function, L(d) − d , and the 95% confidence bounds of
homogeneous Poisson processes of the selected region. Some
spatial-temporal points occur at exactly the same location
because of the location error. We therefore diagnose the esti-
mated model using L(d) function where d is greater than 0.5.
It shows that the estimated values of the centered L−function
are almost within the 95% confidence bounds. This result
demonstrates that the proposed spatial-temporal self-exciting
point process can well model the three types of emergency
calls.

VI. CONCLUSION
We propose a nonparametric spatial-temporal self-exciting
point process model for modeling emergency calls. Using
the residual analysis method, we examine the performance
of the proposed model. The clustering features are studied
based on the triggering intensity function. Using the simu-
lated data, we show that the proposed nonparametric structure
performs flexibly and effectively for spatial-temporal self-
exciting point processes. Furthermore, we show how our
spatial-temporal self-exciting point process model can be
used formodeling emergency calls. It can be seen that the pro-
posed nonparametric model is able to capture the clustering
features in emergency calls. The estimated background and
triggering intensity functions can be used to distinguish the

areas with intrinsically high emergency calls and those with
temporarily high emergency calls, as the former arises due to
some specific geographical and environmental conditions and
the latter may be caused by insiders’ behaviors. These are also
the reasons why different clustering patterns for different type
of emergency calls are observed. The branching coefficients
of the fire, traffic and EMS emergency calls are 26.90%,
47.55% and 45.2%, respectively. The clustering phenomena
strongly present in the emergency call data in the researched
region.

For future research, the branch coefficient β in Equa-
tion (9) can be extended as a function of space and time, such
as the ETASmodel where the branch coefficient is influenced
by the magnitude. To model emergency calls, a varied branch
coefficient is better because of the specific geographical and
environmental conditions, such as the population density.
Later, we will focus on studying a general form of branch
coefficient spatial-temporal self-exciting point processes and
their applications.
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