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ABSTRACT Sleep quality is directly related to overall wellness and can reveal symptoms of several diseases.
However, the term ‘‘sleep quality’’ still lacks a definitional consensus and is commonly assessed in sleep
labs with polysomnography, comprising high costs, or through sleep questionnaires, a highly subjective
technique. Multiple methods have been proposed to address the estimation of sleep quality, and devices
were developed to conduct the examination in the subject’s home. The objective of this paper is to analyze
the methods and the devices presented in the literature, assessing the development of objective markers that
could lead to an improvement of the subjective sleep experience understanding, leading to developments
in the treatment of sleep quality deficits. A systematic review was conducted, selecting research articles
published from 2000 to 2018, and two research questions were formulated, specifically, ‘‘what methods for
sleep quality assessment have been developed’’ and ‘‘what kind of measures are employed by the devices that
have been developed to estimate sleep quality.’’ The research trend for the assessment of sleep quality is based
on the sleep macrostructure, and it was verified that despite the convenience and considerable popularity
among the consumers of home health monitoring of devices, such as actigraphs, the validity of these tools
regarding the estimation of sleep quality still needs to be systematically examined. A detailed resume of the
key findings and the identified challenges are presented, ascertaining the main gaps in the current state of
the art.

INDEX TERMS Sleep quality analysis, monitoring devices, home detection.

I. INTRODUCTION
Sleep is part of the circadian rhythm and is characterized by
sequences of stages with related autonomous nervous system
functions. It is a complex physiological process inherent to
each individual and commonly covers nearly one third of the
lifespan. The daily wear of major body systems, such as the
circulatory, the respiratory, the musculoskeletal and central
nervous system, is repaired during the sleep [1]. Sleep also
plays a relevant role in the consolidation of memories, learn-
ing, physical development, emotion regulation and quality of
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life [2]. A sustained deprivation of sleep leads to a decrease
in the immune system efficiency and increases the risk of
cardiovascular pathologies, hypertension, obesity, metabolic
deregulation and diabetes [3].

The quality of life concept was defined by the World
Health Organization, reflecting the importance of each indi-
vidual living conditions and the capacity of accomplishing
the expectations, goals and standards in different cultural
systems. Therefore, the quality of life can be seen as a subjec-
tive concept, regarding the life-satisfaction and experienced
well-being, with objective desires of each individual life. The
world health organization quality of life group developed
a quality of life scale with four domains: physical health;
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psychological; social relationships; environment. Sleep and
rest are one of the most relevant factors that affect physical
health since sleep related complaints are the second most
common causes for seeking medical attention, superseded
only by the feel of pain [4]. Non-restorative sleep complaints
are commonly associated with a variety of mental and physi-
cal conditions.

A large annual economic loss is also associated with poor
sleep due to the reduction in the workplace productivity, with
an estimated value ranging from $299 billion to $433 billion
by the year 2020 in the United States, where more than a third
of the adult population does not get enough sleep on a regular
basis [5]. The estimated economic loss for Japan, United
Kingdom, Germany and Canada are, respectively, $94 billion
to $146 billion, $40 billion to $54 billion, $41 billion to
$62 billion and $14 billion to $22 billion, with a prevision
of increases in the economic loss in the following years [5].

It was estimated that nearly half of the older adults report
poor sleep quality but the prevalence is lower in healthy
adults, thus sleep quality may be considered as an early
marker of cognitive decay in midlife [6]. With the increas-
ingly aged population, it is expected an increase in the occur-
rence of neurodegenerative disorders and sleep disturbances,
common symptoms in the elderly population. Therefore, it is
predictable that sleep quality examination will become a
major relevant analysis for the medical diagnosis. It is likely
that sleep quality is amultifaceted construct that would be dif-
ficult to characterize by any single measure arising the neces-
sity of examining sleep quality using amultivariable approach
with a wide range of predictors [7] that are interpreted taking
into consideration the age and gender differences [8].

Due to the current significance of this topic, a systematic
literature review was conducted, analyzing the developed
devices and methodologies for sleep quality analysis, thus
assessing the development of objective markers that could
improve the understanding of subjective sleep experience,
possibly leading to improvements in the treatment of sleep
quality deficits. A summary of sleep structure and metrics
employed to determine the quality of sleep is presented in
the second section. The employed methods are indicated
in the third section and the reviewed articles are studied
in the fourth and fifth sections. Discussion of the analysis was
performed on the final section.

II. STRUCTURE AND QUALITY METRICS OF SLEEP
Sleep has a characteristic architecture compose by a
macrostructure and a microstructure, defined by the elec-
troencephalogram (EEG) signals, that undergoes through
changes, such as sleep duration and quantity of sleep oscilla-
tions, as the person progresses into an older age [9], increas-
ing the subjective complaints associated to poor sleep quality.

A. SLEEP MACROSTRUCTURE
Full night polysomnography (PSG) is the gold standard
for sleep quality studies. PSG requires the monitoring
of multiple physiological signals, including body position,

respiratory movement, electrocardiogram (ECG), EEG, elec-
trooculogram (EOG), electromyogram (EMG), breath air-
flow and oxygen saturation. Sleep scoring was commonly
based on the visual examination of EEG signals following
the Rechtschaffen and Kales’s recommendations or, more
recently, using the new guideline that was proposed by Amer-
ican Academy of SleepMedicine (AASM). However, scoring
based on visual examination has multiple difficulties since
it is a slow and expensive process (needs the analysis of
trained expert for multiple hours) that is prone to errors due to
fatigue with an inter scorer agreement, among expert, lower
than 90% [10]. Therefore, several approaches have been
proposed to record sleep [11] and produce automatic sleep
staging [12].

According to the AASM manual, the sleep macrostruc-
ture is composed by cycles of rapid-eye movement (REM)
sleep and non-REM (NREM) sleep with three different stages
in the NREM (N1, N2, N3). It is scored in 30 s epochs
and comprises five phases, specifically, wake, N1, N2, N3
and REM. N1 and N2 are identified as lighter NREM
stages and N3 is known as slow wave sleep (SWS). The
EEG characteristic waves of each sleep stage are [13]: alpha
(8–13 Hz) and beta (13–30 Hz) during wake; theta (4–8 Hz)
in the N1; k-complexes (1 Hz) and sleep spindles (12–14 Hz)
in the N2; delta (0.5–4 Hz) in the N3; sawtooth waves
(2–6 Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta
(13–30 Hz) during REM.

Specific changes happen as the person advances into the
fifth decade of age and beyond [9]: longer sleep-onset latency
(time taken to fall asleep); higher sleep fragmentation (greater
number of arousals, awakenings and transitions from deep
to light sleep); advanced sleep timing (earlier rise times and
bedtimes); higher probability of a feeble sleep (greater chance
of awakening by external sensory stimuli); shorter total sleep
duration; reduced duration of SWS with increase in the light
sleep stages; increased duration of the awake periods; fewer
and shorter cycles of NREM and REM sleep. The frequency
of diurnal naps also increases with the progress of the age.
It was verified that a significant increase in the EEG sig-
nal complexity occurs until the age of 60-year-old where it
becomes stagnated or slightly decreases [14].

B. SLEEP MICROSTRUCTURE
The sleep microstructure is composed by transitional states
that have a shorter duration than the conventional scoring
epoch (30 s), describing the transient and phasic events in the
brain electrical activity. These events can clearly be distin-
guishable from the background rhythm appearing as abrupt
amplitude changes and (or) frequency shifts.

These periodic activities can be characterized with three
parameters: repetitive elements that compose the activation
phase (A phase); quiescent phase representing the return
to background activity (B phases); period, characterizing
the recurrence rate (the sum of the A phase and B phase
duration) [15]. The cyclic alternating pattern (CAP) is a
specific periodic activity in which both A and B phases
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range between 2 and 60 s and is composed by the A phase
and the following B phase. This pattern is only defined in
the NREM sleep and a succession of two or more CAP
cycles is defined as a CAP sequence. The lack of a CAP for
more than 60 s is scored as non-CAP (NCAP) and
concurs with a state of sustained physiological stability.
The A phase waveforms include: vertex sharp waves; sleep
spindle; k-complexes; delta bursts; polyphasic bursts; inter-
mittent alpha; EEG Arousals. Three subtypes of the A phase
were defined [15]: A1 is characterized by predominance
of EEG synchrony with high-amplitude slow waves with a
desynchrony (low-amplitude fast waves) occupying lower
than 20% of phase duration; A2 has a mixture of fast and
slow rhythms with desynchrony occupying between 20% and
50% of the phase; A3 is dominated by rapid low-voltage
rhythms where more than 50% of the phase is occupied by
desynchrony.

The EEG arousal characterizes an event that produces an
awakening activity. Thus, a high presence of these events
incites the sleep fragmentation and prevents the restful sleep,
providing a marker of sleep disruption [16] and are related
to daytime sleepiness. Since the arousals duration ranges
between 3 and 15 s (AASM criteria), the person is com-
monly unaware of their sleep fragmentation and, despite the
appearance of a continuous night sleep, the sleep stages were
interrupted [17]. A disturbance in sleep, such as induced
vigilance instability, produces an increase in the CAP rate,
a metric defined by the ratio of the total CAP time to the
total NREM time. A poorer sleep quality was associated with
higher values of CAP rate indicating that CAP is a marker
of sleep instability [18]. The presence of CAP has also been
associated with multiple disorders including [19]: bruxism;
sleep apnea; insomnia; restless leg syndrome; periodic limb
movements; nocturnal frontal lobe epilepsy; idiopathic gen-
eralized epilepsy.

C. SUBJECTIVE MEASUREMENTS OF SLEEP QUALITY
As the age progresses, women are more likely to report sub-
jective complaints of poor sleep [9]. However, the term ‘‘sleep
quality’’ lacks a definitional consensus while it is widely used
by clinicians, researchers and the public. This is probably due
to the vague definition of what quality is [20].

A generally employed approach to measure the sleep qual-
ity is based on a self-rating index, reflecting the individual
satisfaction with sleep and often involves the correlation with
other measures such as the timing of sleep, environmental
factors, physiologically derived indices, pharmacologic inter-
ventions, polysomnographic parameters and occurrence of
sleep disorders [21]. The most used techniques regarding
this approach are the Pittsburgh Sleep Quality Index (PSQI),
self-report questionnaire to measure the quality of sleep
quality in clinical populations with 19 question categorized
into seven domains (sleep duration, sleep disturbance, sleep
latency, daytime dysfunction, sleep efficiency, subjective
sleep quality and use of sleep medication), the National Insti-
tutes of Health Patient-Reported Outcomes Measurement

Information System (PROMIS), provides a sleep disturbance
scale, and the Epworth Sleepiness Scale (ESS), assesses day-
time sleepiness [22]. A new single-item Sleep Quality Scale
(SQS) [23] was recently developed, where the respondent
rates the sleep quality, over a 7-day recall period, considering
five categories (from terrible to excellent).

The self-rating sleep and awakening quality scale (SSA)
measures 20 items to produce three sub-scores (somatic com-
plaints, subjective sleep quality and subjective awakening
quality) and a total score to reflect the sleep experience [24].
However, Grandner et al. [25] have verified that PSQI is
correlated with sleep diary variables but lack the capability
to distinguish between general dissatisfaction, such as pes-
simistic thinking, and sleep-related disturbances.

As an example, the measured sleep complaints often are
more related to general dissatisfaction than to a specific
sleep-related disturbance. Rošt’áková et al. [26] have also
determined that the correspondence between objective sleep
measurement and the person’s subjective assessment of the
sleep quality is considerably low, with a maximum correla-
tion of 35% when considering the standard sleep characteris-
tics and the SSA.

D. OBJECTIVE METRICS TO DEFINE SLEEP QUALITY
Basing the analysis on self-reports has a major limitation due
to the fact that the subject is in a state of loss of conscious-
ness during sleep, making the person a poor self-observer of
behavior during sleep. Therefore, the accuracy of the ques-
tionnaire is subject to the individual’s recall. The alternative is
defining sleep quality with objective measures that have been
found to closely reflect the perceived sleep quality [27] by
analyzing the aspects of sleep experience that are not captured
by subjective indices or metrics.

The common sleep quality indicators ([21], [26], [28]–[32])
are presented in Table 1, distributed in six groups: duration;
intensity; continuity; stability; frequency; sleep episodes.
A contextualization analysis of the sleep quality measures
is presented in Table 2, regarding the sleep structure and the
effect in the overall sleep quality.

Sleep efficiency and wake after sleep onset, continuity
measures, were considered to be correlated with sleep quality
by considering either signals collected from subjects [27]
or the analysis of paper and pencil sleep diaries [33], such
as Karolinska sleep diary (filled in the subsequent morn-
ing with questions about the previous night) [34]. However,
it was verified that the measures commonly obtained by PSG
(duration, intensity and continuity) have a small contribu-
tion to subjective ratings of prior-night sleep quality [8].
Consequently, the stability measures could be more relevant
for future medical diagnosis [7]. A different approach was
proposed by theNational Sleep Foundation defining the Sleep
Health Index (SHI) with a composition based in sleep quality,
sleep duration and disordered sleep [22].

Multiple studies have revealed a variety of factors that
can influence the sleep quality such as ([35]–[40]): exis-
tence of chronic diseases; elevated anxiety symptoms;
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TABLE 1. PSG based sleep quality measures.
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TABLE 1. (Continued.) PSG based sleep quality measures.

depressive symptoms; depressive disorder; social factors;
nutrition; lifestyle; mood; physical activity; obesity; mental
health; age; consumption of drugs; habitual caffeine con-
sumption; nicotine dependence (by smoking); alcohol depen-
dence; high stress. Another major element is the presence of
sleep related disorders, with more than 60 disorders already
identified, divided into seven categories, by the International
Classification of Sleep Disorders [41].

III. METHODS
A systematic literature review was conducted, covering
papers published between the years 2000 and 2018, to address
the formulated research questions: what methods for sleep
quality assessment have been developed; what kind of mea-
sures are employed by the devices that have been developed
to estimate sleep quality.

On the first review phase a search was conducted in the
IEEE Xplore, Web of Science, ScienceDirect, PubMed and
Google Scholar, covering journals that are specialized in
sleep analysis and the cited literature in the included articles.
The search keywords were ‘‘sleep quality AND device’’ and
‘‘sleep quality ANDmethod’’. In total 10594 original articles

were found with the presence of the keywords either on the
title, keywords or abstract. The relevance of the studies for
this review was assessed in the second phase considering the
inclusion and exclusion criteria.

The inclusion criteria for sleep quality methods were:
presentation of a method to measure sleep quality; study
published in a scientific journal or a scientific conference;
specifically mention the usability, for sleep quality analysis,
of the method. For the sleep quality devices, the inclusion cri-
teria were: presentation of a device for asserting sleep quality;
validation of a commercial device or research project analyz-
ing sleep quality metrics; specifically mention the usability,
for sleep quality analysis, of the device. Exclusion criteria
were: lack of description of the sleep quality metric or mea-
surement method; article not written in English; presentation
of an application that uses only the smartphone sensors; the
developed device is not suitable for home detection.

The smartphone applications were excluded since
they have been examined in a review performed by
Ong and Gillespie [42]. At the end of the second phase,
ninety articles (some presented both a method and a device)
were selected for the review (after the duplicated results
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TABLE 2. Analysis of the sleep quality measures.

FIGURE 1. Distribution of reviewed articles by year of publication.

were removed). Forty-six articles were selected regarding the
analysis of sleep quality methods and fifty-five articles were
examined concerning the sleep quality devices. The articles
distribution according to year of publication is presented
in Figure 1. By evaluating the figure, it is possible to deter-
mine an increase in the number publications, especially in
the sleep quality devices, indicating the growing importance
of this topic and, therefore, reinforcing the relevance of this
work.

The analysis is divided into two sections, examining first
the articles that presented a method and, in the second,
the devices that were developed to measure sleep quality and
are suitable for home detection, since home health care is
considered to be, in a near future [43], one of themost relevant

wellness services, due to the low cost of diagnosis and high
accessibility, providing a possible alternative to PSG. The
discussion of the analysis is performed in the final section.

IV. METHODS DEVELOPED FOR SLEEP QUALITY
ANALYSIS
A. BASED ON SLEEP MACROSTRUCTURE PARAMETERS
Slow-wave microcontinuity was analyzed by
Kemp et al. [44], producing a maximum-likelihood estimator
to quantify sleep depth by computing the fraction of the
present slow-wave that continues to the near-future of the
EEG signal. This metric is not affected by gender or anatom-
ical parameters. The differences in duration of this metric,
between consecutive nights, were correlated to changes in
sleep quality. A measure to determine the sleep restorative
ability was proposed by Badreldin and Morsy [45], named
sleep restoration gain. This metric is evaluated every 30 s
and changes according to the sleep stage. If the current epoch
corresponds to SWS the current value was incremented while
the opposite happens if it is N1, N2 or wake. REM stage does
not affect the metric value. A transition from any sleep stage
into wakefulness was highly penalized, providing a good
correlation with the AI.

Chaos analysis of the heart rate variability (HRV) was
proposed byWakuda et al. [46], evaluating a two-dimensional
map composed by the largest Lyapunov exponent (Y-axis and
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related to mental fatigue) and a correlation dimension (X-axis
and related to physical fatigue), to estimate the number of
sleep cycles and the periodicity of the cycles based on the fact
that each sleep stage presents a well-defined characteristic in
the map. As a result, it was possible to verify that a low value
of the largest Lyapunov exponent associated to a significant
correlation dimension was correlated to feeling drowsy dur-
ing the day, corroborating the sleep quality measure.

Sleep or wake detection based on an audio signal examina-
tion was also performed by Dafna et al. [47], examining the
breathing pattern and snore properties. The repeating breath-
ing patterns were assessed by analyzing the period (location
of the first peak), intensity (peak amplitude) and consistency
(how much the pattern is consistent and homogenously peri-
odic) of the cycle (12 s interval). Snore properties were based
on the maximum snore likelihood scores, within a 30 s epoch,
and the snore index (SnI), number of snores per hour.

Sleep or wake classification was performed using the
AdaBoost classifier, fedwith features from the current and the
two previous epochs (suitable approach for quasi-stationary
processes). The output was employed to calculate the TST,
SE, SOL, WASO and AwI. Good reliability of the proposed
method was confirmed for the last three parameters. A similar
approach was presented by Dafna et al. [48] were audio
events were detected using an adaptive energy threshold and
a Gaussian mixture model was employed for snore event
detection. Snore likelihood score and breathing rhythmic
period and intensity (determined by analyzing the audio
signal energy) were used as features for the classification
of sleep or wake periods based on a two-states (sleep and
wake) hidden Markov model (HMM). A probability density
function was estimated to produce a sleep quality score (with
a 5 second resolution) by integrating the transition prob-
ability with the probability density function score of each
feature.

Sound events, defined by an area where the burst level
(extracted by the statistical burst extraction method) is greater
than 1, were also used by Wu et al. [49]. Sleep-related
events were clustered using the Kullback–Leibler kernel self-
organizing map and categorized by hierarchical clustering.
A multinomial HMM was employed to classify the data
as either good or bad sleep. Highest accuracy (70%) was
achieved using 5 hidden states. Time and frequency based
features extracted from surrogate ECG derived respiratory
(EDR) and HRV (52 from EDR and 60 from HRV) were
analyzed by Bsoul et al. [50]. A multi-stage support vec-
tor machine (SVM) with a Gaussian radial basis function
was used for the wake and sleep staging. SE and DEI were
estimated from the classifier output achieving an average
accuracy of 87% and 78% respectively.

Cheng and Huang [51] proposed an algorithm based on the
normal to normal heart rate standard deviation average of the
5 minutes estimate. A period was considered as SWS or REM
if the standard deviation was, respectively, 75% lower or 20%
higher than the average. An epochwas labeled as light sleep if
the standard deviation was higher, between 75% and 120% of

the average value. SWS% and the ratio (TN1+TN2+TR)/TST
was used as a metric for sleep quality estimation.

By analyzing the low-frequency band (LFB) power in the
HRV from photoplethysmography (PPG), Tseng et al. [52]
assessed the sleep and wake periods, analyzing the
LFB power in the HRV. This analysis can then be used to
estimate the TST and TWT. Body movements, from actigra-
phy, and PPG-derived HRV was used by Fonseca et al. [53]
to produce features for sleep or wake classification, using lin-
ear discriminant analysis. It was verified that the estimation
error of SE and SOL was small but significant in the TWT
and WASO. The HRV features were also found to be better
than actigraphy features for estimation of the wake state,
particularly when the subject does not move.

Actigraphy signals were used by Blackwell et al. [54]
to measure the TST, SE, WASO and SOL in a one-minute
epoch. Thesemeasures were produced by analyzing three fea-
tures: proportional integration (measures the vigor of motion
by determining the area under the rectified conditioned trans-
ducer signal); zero crossings (indicative of the movement
frequency, counting the number of times the movement single
crossed the zero voltage in each epoch); time above a defined
threshold (estimate the time spent in motion by summing the
time above the sensitivity threshold in each epoch). Sleep and
wake periods were determined by calculating a moving aver-
age taking into consideration the activity levels immediately
after and prior to the current epoch.

Subject’s activity was analyzed by
Sathyanarayana et al. [55] to estimate the SE (considering
a good sleep quality when the score is higher than 85%)
determined through the sleep time actigraphy data and six
classifiers were tested: logistic regression; multilayer percep-
trons (MLP); convolutional neural network (CNN); recurrent
neural network (RNN); long short-term memory RNN; time-
batched long short-term memory. The highest area under the
receiver operating characteristic curve was produced by the
last classifier (97%), followed by the MLP and CNN (both
with 95%). CNN produces the highest accuracy (93%) with
filter and pooling length of 5 and 4, respectively, 25 hidden
nodes and a mini-batch size of 5. However, the studied
population was composed mainly by teenagers thus it is
necessary to determine is the same results could be obtained
with other populations.

The arterial baroreflex, a blood pressure regulatory reflex
mechanism, was analyzed by Jung et al. [56] to estimate
the SOL based in the observation that this mechanism has a
marked influence on the HRV control with the onset of sleep.
ECG and Ballistocardiogram (BCG) signals were used to
estimate the HRV and the R–J interval, time interval between
the ECGR peak the BCG J peak. SOLwas defined by consid-
ering that sleep started 30 s after the presence of negative cor-
relation coefficients, from the correlation analysis between
the detrended R–J interval fluctuations and the HRV, for more
than two consecutive data subsets of 120 s. BCG was also
used by Park et al. [57] to determine the nocturnal awakening
periods, through BCG peak detection, and estimate the SE.
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B. USING PARAMETERS FROM SLEEP MICROSTRUCTURE
Mendonça et al. [19] studied eight features, generated from
EEG monopolar derivations, and nine classifiers to esti-
mate CAP. It was verified that a feed-forward neural net-
work (FFNN) with five features (power spectral density in
the beta and theta bands, Shannon entropy, Teager energy
operator and autocovariance) chosen using a sequential for-
ward selection method produced the best results with an
average accuracy of 79% for CAP and A phase detection.
Mariani et al. [58] have developed an algorithm to classify
the A phases by also considering EEG monopolar deriva-
tions using specific band descriptors, differential variance
and Hjorth activity to feed a FFNN, achieving an average
accuracy of 82%.

A method to estimate CAP from a single-lead ECG was
developed by Thomas et al. [59], by producing a spectro-
graphic representation of cardiopulmonary coupling (CPC)
of EDR and normal-to-normal sinus intervals. A quantita-
tive index was defined, to measure CPC, as the product of
crossspectral power and coherence. The presence of CAP
was associated with the predominance of low-frequency
coupling (0.01 to 0.1 Hz). Considering this method,
Mendonça et al. [60] have developed an algorithm to estimate
the CAPR considering the age-related CAPR percentages in
healthy subjects as reference, classifying the NREMandCAP
minutes with two deep stacked autoencoders. An improved
version of the algorithms was later developed [61] analyz-
ing multiple thresholds for CAP detection, correctly clas-
sifying 77% of the subjects regarding sleep quality (either
good or bad).

C. ANALYZING A COMBINATION OF PARAMETERS FROM
THE SLEEP STRUCTURE
Threemachine learning approaches for measuring sleep qual-
ity were proposed by Wang et al. [62], specifically, discrimi-
native graph regularized extreme learning machine (GELM),
k-nearest neighbor (kNN) and SVM, using power spectral
density (PSD) features extracted from the EEG signals. The
analysis was made using 62-dimension PSD features from
62 different electrodes and five EEG bands, with data from
8 subjects. Sleep quality was assessed by analyzing the TST,
considering 8 hours as good sleep, 6 hours as a normal
(neither good or bad) and 4 hours as poor sleep quality.

A linear dynamical system was employed to decrease the
EEG’s feature noise and the PSD of the signal of each band
was calculated. A linear kernel was used with a SVM and
k equal to 1 was considered for the kNN. With 310 features
the highest accuracywas achieved byGELM (62%), followed
by SVM (48%) and kNN (37%) with the gamma band
(31–50 Hz) producing the more relevant features. Five fea-
ture selection methods were tested to increase the accu-
racy, specifically, conditional infomax feature extraction,
mutual information features selecting, mutual information
maximization, joint mutual information and minimal-
redundancy-maximal-relevance (mRMR). The best results
were produced using the features selected by mRMR, with

a feature dimension of 12, achieving an average accu-
racy of 76%, 74% and 62% for GELM, SVM and kNN,
respectively.

Further improvement in the accuracy was achieved by
considering the energy in the brain topographic map and
mRMR to choose the best features (electrodes C6, PO3 and
PZ in the beta band; electrodes C3, FCZ, FPZ and PO6 in
the gamma band; electrode F1 in the delta band; electrode
FCZ in the theta band). GELM achieved an average accuracy
of 84%. These results are significant despite the reduced
dataset. However, it is unknown if a similar performance
could be achieved considering other sleep quality metrics.

A combination of multiple measures in a multivariate
approach was proposed by Krystal and Edinger [7], including
NREM spectral EEG indices, traditional PSG indices and
CAP rate. This approach can possibly assess sleep quality
with high precision if the chosen constellation of attributes
of sleep, that will be used to classify the quality of sleep,
does not differ significantly among individuals. Otherwise,
a sub-grouping approach, based on clinical or physiological
characteristics, could possibly address this issue, providing
specific metrics for each subgroup (e.g. normal sleep, sleep
disorder, significant pathology, addicted to substances). How-
ever, specific thresholds need to be defined for each subgroup,
possibly leading to the necessity of assumptions based on
statistical analysis.

Takhtsabzy and Thomsen [63] have applied crosscorre-
lation functions between several EEG channels to find the
time of activity shift across the channels, allowing to detect
the SOL, K-complexes and sleep spindles. The algorithm first
finds the normalized crosscorrelation coefficients between
two different times, considering the recorded potential fields
and the number of electrodes, for all the samples and the
values were introduced in a crosscorrelation matrix. An error
function was then calculated from this matrix and the local
minima represents the transition from one microstate to
another since this method provides a micro segmentation of
the signals. A method based in a distance measure of autocor-
relation functions between a test and a moving window was
also tested, providing similar results.

D. USING MODELS BASED ON SLEEP MICROSTATES
Rošáková and Rosipal [64] have developed a probabilistic
sleep model (PSM) that describes sleep through posterior
probabilities of 20 sleep microstates. k-means clustering was
applied on the smoothed posterior curves where each cluster
was characterized by an average posterior curve. It was found
that microstate 19 had an 87% correlation with the wake
state, providing an indicator for sleep quality since higher
values of the self-rating sleep quality score (scores greater
than 8 were considered as bad sleep quality) belong to the
cluster associated with this microstate.

This work points to the possibility that standard sleep
scoring does not allow to extract the maximum information
regarding the sleep experience. This possibility was tested
by Rošt’áková et al. [26] where the PSM and the standard
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hypnogrammodel were tested to assessedwhich one provides
the highest correlationwith subjective sleep qualitymeasures.
In total 25 standard sleep variables from PSG and 75 features
for PSM were analyzed, determining the most relevant fea-
tures using sequential feature selection.

PSM achieved a marginally higher average correlation
when considering the most relevant features, specifically,
the skewness of a moving window, the arithmetic mean,
the median and the entropy for each microstructure of sleep
stages. Using the PSM with 20 stages a corresponding met-
ric to the percentage of time spent in each sleep stage,
named relative time spent in a microstate, was developed
by Lewandowski et al. [65]. A sleep fragmentation measure
was also developed, indicating the number of sudden transi-
tions between microstates that can be related to a frequency
shift or arousals.

In a similar approach, Rosipal et al. [66] proposed a
model to find correlations of sleep quality with physiologi-
cal measures, subjective sleep quality ratings and neuropsy-
chological test results. It was concluded that grouping a
wider set of performance metrics into a smaller parsimo-
nious set of commonly not directly observed latent variables
should be employed to produce a robust indexing of sleep
quality. However, the traditional standardize score of sleep
into a finite set of discrete sleep stages may not provide
enough relevant information to detect changes related to such
index.

Flexer et al. [67] presented a probabilistic continuous sleep
stager algorithm, based on HMM, using data from a single
EEG signal. The method uses an unsupervised approach
with a finer temporal resolution (1 s) than the commonly
used 30 s epoch. A continuous model based on HMM was
also proposed by Ravelo-García et al. [68] where sleep qual-
ity changes, between good and bad sleepers, were measured
according to the SSA. A single EEG channel was employed
and the hidden states of the HMM were associated with the
sleep stages using 3 s epochs. Differences between groups
of sleepers were found using measures that were based on
probabilistic traces.

E. NON SLEEP STRUCTURE FEATURES
Choi et al. [69] have developed a set of rules, learning from
examples based on rough sets, to qualify the sleep quality
status as either good, normal or bad. These rules are based
on 19 attributes and an average accuracy of 73%, on the sleep
quality estimation as either good, normal or bad. The most
significant detectors, from rules selected with the highest
frequency, are: age; body mass index (kg/m2), number of
minutes with normal and higher heart rate during sleep and
awake, average heart rate during sleep, smoking and drinking.

Estimation of sleep quality is conventionally based on
EEG signals. However, other sensors can also be used to pro-
vide the estimation. A multimodality sensor system was pro-
posed by Peng et al. [70], extracting features from each sensor
that are fed to multiple classifiers (one SVM for each sensor).
The results of each classifier are further fused together to infer

the sleep quality. Movements were determined considering a
motion time ratio producing a feature vector.

Detection of sleep was conducted by analyzing the spec-
tral components of HRV in the high-frequency band (HFB),
0.15 to 0.4 Hz, and the LFB, 0.04 to 0.15 Hz. NREM is
associated with a trend towards a decrease of ratio LFB/HFB
while the opposite is associated with REM sleep. A Gaussian
kernel was employed in the SVM for themotion classification
while a linear kernel was used for the sleep classification and
a normalized ensemble fusion process for the sleep or wake
detection and estimation of the SOL, TST and SE. Audio sig-
nal analysis, performed using Mel-frequency cepstral coef-
ficients, was also considered in the multimodality sensor
system for the inference of the sleep or awake detection [71].
Information from a passive infrared sensor was used by
Peng et al. [72] for motion detection using the same multi-
modality sensor architecture.

Alivar et al. [73] proposed the use of several electrome-
chanical film sensors to assess the periodicmovements during
sleep and, therefore, estimate the quality of sleep. Highest
accuracy in the detection of motion artifacts (95%) was
achieved using a sequential detection rule formulation to
determine if a sample has motion artifacts by computing the
log-likelihood ratio of the binary hypothesis (sample with
movement artifacts or sample without artifacts) and compare
the results with a threshold to classify the sample.

F. PROPOSED NEW METRICS
Multiple sleep quality metrics have been proposed with the
aim of improving the sleep analysis since metrics based on
the hypnogram examination, such as TST, SE and SOL, only
capture the changes in the sleep architecture. Information
regarding the fragmenting behaviors and continuity of con-
secutive epochs can enhance the sleep quality prediction. Two
sleep quality ratios were defined by Cheng and Mei [74].
The first takes into account objective measures derived from
signals measured by a home monitoring device and was
defined by[
TST
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where am is the average optimal average sleep time (assumed
to be 8.5), ap is the personalized optimal sleep time and
aA is the personalized number of awakenings. The second
considers subjective data that was assessed through statistical
analyses of a sleep database, allowing to estimate the TN3 and
TR values by considering the average values for the subject’s
age.

A sleep fragmentation index was proposed by
Morrell et al. [75] calculated as

nan1
TST

(2)
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where nan1 is the number of awakenings or shifts to N1
from N2, SWS or REM. It was determined that this index
was significantly related to higher levels of awake systolic
blood pressure. However, Swarnkar et al. [76] have verified
that each sleep stage has a different influence on the overall
sleep quality, where some sleep transitions increase the sleep
fragmentation, such as from SWS to wake, while others
decrease (from N1 to N2).

Therefore, a new index was proposed, denoted weighted-
transition sleep fragmentation index, where a specific
weight (W ) was associated with all possible sleep stage tran-
sitions and is specified by∑N−1

i=1 Wi

mTST
(3)

with N indicating the total number of epochs and m the
median of the hypnogram time series. This index pre-
sented a significant correlation with the AI, TST and SE.
Haba-Rubio et al. [77] have also proposed an alteration to the
sleep fragmentation index considering the NSS and awaken-
ing periods, defined by

NSS + A
TST

(4)

A more complex approach, composed by a model with
three variables, each having two parameters (detection thresh-
old and weight), was presented by Bouazizi et al. [78] defin-
ing the mathematical diagnosis of sleep fragmentation as

H
[
wXH (xi−τX )+wYH (yi−τY )+wZH (zi−τZ )−wX−wY

wX + wY + wZ

]
(5)

where H is the unit step function, X is the A%, Y is the NSS,
Z is A and τ and w are, respectively, the threshold and weight
associated to each sleep quality metric.

Kirsch et al. [79] indicated that sleep fragmentation index
does not capture the temporal dynamics of the underlying
sleep process thus presenting two entropy-based measure
that directly analyzes the hypnogram, epoch by epoch, as a
categorical time series of sleep stages. The first metric was
Walsh spectral entropy computed as
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where the Hw is the Walsh-Fourier transform and X is the
time series (input vector with length N ). The second mea-
sure was Haar spectral that was computed by replacing the
Walsh-Fourier transform with the Haar transform.

It was also found that conditional entropy allows to quan-
tify the predictability of the hypnogram by quantifying the

likelihood of obtaining the pattern of length L given the
existence of the pattern of length L−1, according to

−
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)
log

[
P
(
xL |xL−1

)]
(7)

where P(xL |xL−1) is the conditional probability of the
Lth sample of the pattern xL , given the previous L−1 samples,
and P(xL−1) is the joint probability of the pattern xL−1.

Naeck et al. [80] developed the sleep diversity index, based
on the Shannon entropy index to model the sleep stages,
specified by ∑Smax

j> Smax
2
Sj∑N

j=1 Sj
(8)

considering N to be the number of samples (j), S the Shan-
non entropy of the sample and Smax the maximum entropy
(equiprobability of occurrence of all sleep stages). Recently,
Naeck et al. [81] proposed thresholds to define the presence
of sleep fragmentation for the sleep fragmentation (14.81)
and sleep diversity (20.95) indexes.

A combination of NREM sleep duration, the presence of
sleeping disorders (apneic episodes) and the sleeping position
was proposed by Nam et al. [82] to estimate sleep quality
according to

TNR
TST

α + (100− NAE ) β + Pγ (9)

where α, β and γ are tunable weights, NAE is the number
of apneic episodes and P is the total duration of the most
chosen sleeping position. Intervals between roll-overs during
sleep were analyzed by Miwa et al. [83] to classify light
sleep (N1 and N2) and SWS if the frequency of roll-overs
was, respectively, higher or lower than 20 (defined threshold).
SWS% was derived from this information and it was verified
that sleep quality decreases when TST rises above the average
sleep duration in healthy subjects due to the fact that toward
the end of sleep only light sleep increases.

Han et al. [84] proposed a metric based on the sleeping
position and the acceleration of the movements during sleep,
multiplying a weight factor associated to the measured posi-
tion (0 for supine, 1 for prone and 0.5 for left or right) to
the normalized value of the acceleration. Pouliot et al. [85]
analyzed the bed occupancy, specifically the number of times
the subject exit the bed during the night and the trend of the
bed occupancy, as an indication of the quality of sleep.

A different approach was presented by Guettari et al. [86],
determining the presence in bed by feeding the difference
between the ambient and the radiated temperature as features
for a clustering based analysis, performed by k–medoids, and
classify considering a threshold. The developed sleep quality
estimation algorithm operates if the subject was detected in
the bed, extracting features from the difference signal using
a symbolic approximation with four symbols (based in the
SAX method) and detects if the subject is awake, sleeping
agitated or in paradoxical sleep using a Kohonen network
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(a kind of self-organizing network). Therefore, the output
was used to indicate if sleep was either normal or agitated
(disorder).

Norman et al. [87] have developed three measures of sleep
continuity. The first was based on nonparametric survival
curves using the Kaplan-Meier estimates of survival and the
other two were based on regression analyses (one for each
subject and one including the data of all the subjects). The
sequence of epoch-based sleep stages was feed as input to all
methods and a run starts when a change from wake to sleep
was detected. In the second and third methods the distribution
of the runs durations, of each subject and of all the subjects,
was fitted to an exponential survival curve with the intent
to determine how fast the curve drops. It was found that the
longer runs were strongly related to normal sleep subjects.

V. DEVELOPED DEVICES FOR SLEEP QUALITY
ESTIMATION
A. DEVICES PROPOSED BY RESEARCHERS
Multiple devices have been proposed by researchers and
developed by companies with the aim of estimating sleep
quality. Hamdan et al. [88] proposed a biofeedback system
to monitor the quality of sleep and adapt the ambient envi-
ronment to improve the sleeping conditions. A total sleep
index was produced considering 12 metrics, including the
respiratory disturbance index, to estimate the overall quality
of sleep.

An approach based on a single conductive layer to measure
the EEG signal was presented by Tseng et al. [89], using
the DAQ100 (BeneGear, Taiwan) recording module, with one
electrode placed under the ear (a1 location) and one on the
forehead (fp1 location), to measure the value of a global min-
imum in the local field potential to infer the quality of sleep.
A forehead EEG sensor was developed by Yu et al. [90],
sending themeasured information byBluetooth to a computer
where a developed application produces the analysis as dis-
plays the results to the user.

PPG signal was analyzed by Cheng and Huang [51] to
estimate the HRV and determine the SWS% and ratio of
the light sleep to TST. The algorithms were implemented
in a smartphone that was connected to the PPG sensor.
Bsoul et al. [50] analyzed a device that uses information
from a single-Lead ECG to estimate the HRV and the EDR.
112 features were obtained from these signals and the sleep
stage was identified using a multi-stage SVM.

A wearable actigraphy recording device was developed
by Kuo et al. [91], defining the sleep quality metrics by
analyzing the results of a wake-sleep scoring method that was
based on the evaluation of movement density. The intraclass
correlation coefficient between the PSG and the device scor-
ings were 0.93, 0.84, 0.75 and 0.53 for, respectively, TST, SE,
WASO and SOL, indicating that SOLwas the onlymetric that
did not achieved a good performance.

Peng et al. [70] developed a multimodality sensor system
using a night-vision video webcam, a passive infrared sensor
and a heart-rate sensor. A SVM was employed to produce

the classification of the signals of each sensor and the output
was fused together to deduce the sleep quality. A different
configuration of the system was presented by Peng et al. [71]
using the audio signal instead of the camera. In both systems,
the sleep metrics were inferred from the sleep-awake classi-
fication. Sathyanarayana et al. [55] developed an actigraphy
base classification of sleep periods to determine the SE,
achieving a 93% accuracy using a CNN.

A combination of actigraphy and pressure sensors was
proposed by Nam et al. [82] to monitor the sleeping posi-
tion, activity, HRV and variations on the breathing amplitude
(estimate the presence of apneic episodes). The sleep stage
was determined considering the HRV and the measured activ-
ity. Park et al. [57] proposed a contactless approach, using
polyvinylidene fluoride film sensors installed on the mattress
to monitor BCG and estimate the SE.

Gaddam et al. [92] proposed the employment of four pres-
sure sensors, placed under the legs of the bed, considering
that during good sleep periods the sensors produce steady
signals while the opposite happens during agitated periods,
associated with poor sleep quality. Jung et al. [56] used strain
gauge-based load cells, placed under the bed legs, to measure
BCG and infer the HRV. A device based on pressure sensors,
implemented on the bed, was developed by Pino et al. [93],
measuring the body position and the number of respiratory
cycles per minute. An algorithm to estimate apneic episodes
and the periods out of bed was later added to the device [94].

Prakash et al. [95] have developed a method to measure
BCG using an electromechanical film, positioned on the mat-
tress, and load cells placed under the bed frame. These sen-
sors were employed to measure physical activity, pulse rate
and respiratory rate. A piezoelectric film sensor, placed under
the mattress, was used by Paalasmaa et al. [96] to measure
BCG signal. The sensor measures the mechanical activity
of the person to estimate the HRV, measure the respiration
cycle and detect the activity information. The data is sent to
a web application to determine sleep metrics, including the
measurement of the total amount of quiet sleep.

A Doppler radar, in the K band (24 GHz), was used by
Rahman et al. [97] to determine the heart rate, breathing
rate and the body position by transmitting a single tone on
the carrier frequency, combined with phase noise from the
oscillator, and analyzing the reflected signal that has infor-
mation in the signal phase, according to the measured dis-
tance. The system determines sleep and wake periods using a
random forest classifier (estimates the amount of sleep) and
the REM or NREM periods with another a random forest
classifier. The output of the classifiers was further used to
produce sleep quality metrics.

An approach based on monitoring the channel state infor-
mation of WiFi signals to estimate the respiration cycle
and body movements was proposed by Liu et al. [98].
Milici et al. [99] have developed a device that estimates the
respiration rate, movements and apnea periods by measur-
ing variations in the earth’s magnetic field using a magne-
tometer sensor, placed on the subject’s body, detecting the

VOLUME 7, 2019 24537



F. MendonÇa et al.: Review of Approaches for Sleep Quality Analysis

breathing movements. An indirect approach was proposed by
Veiga et al. [100], measuring temperature, humidity, sound,
luminosity and vibration with sensors implemented in a pil-
low that sends the information, wirelessly, to a server to
estimate the sleep quality.

B. COMMERCIAL DEVICES BASED ON ACTIGRAPHY
A commercial device, Fitbit Charge HR (Fitbit, USA), was
validated in a research developed by Dickinson et al. [101].
The device allows to measure a sleep efficiency measure
based on the ratio TST/TIB, using actigraphy, a method
to determine movements via an accelerometer, and it was
concluded that the device overestimates sleep duration. This
device was also analyzed by Choi et al. [69] to produce a
sleep qualitymetric based on the heart rate analysis. However,
Weatherall et al. [102] concluded that this device is more
suitable to measure the physical activity than for sleep qual-
ity estimation by analyzing the subject self-reports. This is
most likely due to errors in the measurements that define the
quality of sleep since they are influenced by parameters that
characterize each subject sleep and cannot be accounted for
by changing the device settings.

Fitbit One (Fitbit, USA) and Beddit Pro (Beddit Ltd.,
Finland) were analyzed by Perez-Macias et al. [103]. The
first uses a proprietary algorithm to estimate the sleep qual-
ity metrics from actigraphy while the second measures the
temperature, sounds and light intensity and detects the pres-
ence on the bed using a piezoelectric sensor. It was verified
that Beddit Pro provides more accurate results and Fitbit
One overestimates the sleep quality metrics. However, both
devices produced good estimations for some subjects and
poor for others, indicating that a calibration for each subject
may be needed. The Fitbit Ultra (Fitbit, USA) actigraph was
evaluated by Meltzer et al. [104]. This device classifies the
sleep or wake stages and can operate in the normal or sensi-
tive modes. In the first the average accuracy, sensitivity and
specificity were, specifically, 84%, 86% and 56% while in
the second were 71%, 70% and 79%. Therefore, the first
mode provided an overestimation of the sleep quality metrics
while an underestimation was achieved in the second mode.

The Sleepwatch-O (Ambulatory Monitoring, USA) acti-
graph was analyzed by Blackwell et al. [54], measuring
the movements using a piezoelectric biomorph-ceramic can-
tilevered beam to estimate sleep quality considering the
zero crossings, a proportional integration and the time
above a threshold. Merilahti et al. [105] have evaluated
the Vivago WristCare (International Security Technology,
Finland), an actigraph capable of detecting sleep or wake
periods, identifying a high correlation coefficient, regarding
the TST measurement, when compared with the users self-
observations of their sleep time.

Two actigraphs, Fitbit (Fitbit, USA) and Actiwatch
64 (Philips Respironics, USA), were tested by
Montgomery-Downs et al. [106] by comparing the produced
analysis with a PSG. It was determined that both devices
overestimate the TST and SE, having a high sensitivity

(identifying sleep epochs) but a poor specificity (identifying
wake epochs). The same conclusion can be achieved by ana-
lyzing the results reported by Sharif and BaHammam [107],
analyzing the SenseWear Armband (BodyMedia, USA). This
device uses a dual axis accelerometer and is worn over the arm
instead of the common wrist an actigraph. A more recent ver-
sion of the device, SenseWear Pro2 Armband (BodyMedia,
USA), was analyzed by Miwa et al. [83] to detected roll-over
movements during sleep and estimate sleep quality.

SenseWear Pro3 Armband (BodyMedia, USA) and
Actiwatch 2 (Philips Respironics, USA) were studied by
Shin et al. [108] it was found that ambient temperature
can stigmatically affect the measurements of the actigraphs
thus home sleep studies should be made with caution since
the temperature conditions are more variable. SenseWear
Pro3 Armband was also analyzed by Soric et al. [109].
Sheth et al. [110] have analyzed the feasibility of using an
actigraph, Fitbit Charge 2 (Fitbit, USA) to monitor subjects
with asthma, regarding sleep quality. It was verified that the
device can be used as a continuous monitoring system but the
results were not compared with a PSG.

Three actigraphs were tested by Weiss et al. [111], specif-
ically, the Sleepwatch (Ambulatory Monitoring, USA), Acti-
watch (Philips Respironics, USA) and Actical (Respironics,
USA). The first two were designed to be worn on the wrist
while the last should be placed around the chest. It was found
that the three devices provide a good correlation with PSG
in the TST estimation but had a poor performance estimating
the SE, suggesting that adjustments of scoring and sensing
algorithms are needed to provide more accurate classification
of sleep or wake periods. Multiple actigraphs were evaluated
by Keill and Lee [112], specifically Actigraph GT9X (Acti-
graph, USA), SenseWear ArmbandMini (BodyMedia, USA),
Fitbit Charge HR, Basis Peak (Intel Corp, USA), Jawbone
UP3 (Jawbone, USA) and Vivosmart (Garmin, USA). It was
verified that all devices produced a good correlation with the
sleep diary for TST and TIB but a poor correlation for SE
and WASO, concluding that the devices are not valid for the
detection of wake periods during sleep.

Five actigraphs were evaluated by Mantua et al. [113],
specifically, the Basis Health Tracker (Intel Corp, USA), the
Fitbit Flex (Fitbit, USA), the Misfit Shine (MisfitWearables,
USA), the Withings Pulse O2 (Withings, France) and the
Actiwatch Spectrum (Philips Respironics, USA). The first
two devices uploaded the data to the user website to produce
the analysis while the third and fourth transmit the data by
Bluetooth to a smartphone application. Best results were
achieved byActiwatch andwas the only devicewere themean
value of SE did not differ, with significance, from PSG. Fitbit
and Misfit had the highest loss of data. Actiwatch 64 and
GT3X+ (Actigraph, USA) were tested by Cellini et al. [114]
that also conclude that they provide a high sensitivity but low
specificity, with GT3X+ producing better results, compared
to the PSG.

Validation of the actigraph Jawbone UP (Jawbone, USA)
was performed by Zambotti et al. [115]. The device algorithm
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performs the detection of sleep or wake periods, achieving a
good agreement with PSG, regarding the sleep quality met-
rics, but with overestimation. It was verified that the device
provides a low specificity (37%, detecting wake periods)
but a high sensitivity (97%, detecting sleep periods) [116].
Similar results were reported by de Souza et al. [117], using
the Mini Motionlogger Actigraph (Ambulatory Monitoring,
USA), and by Jean-Louis et al. [118], using the Actillume
(Ambulatory Monitoring, USA). These unbalanced results
could possibly question the usability of the device as a diag-
nostic tool. Actillume was also used by Greco et al. [119] to
analyze the effect that psychoactive medications have in sleep
quality, concluding that these drugs did not improve or reduce
the quality of sleep.

The MicroMini-Motionlogger actigraph (Ambulatory
Monitoring, USA) was employed by Souders et al. [120]
to analyze children with autism spectrum disorders, using
the 0-crossing mode, analyzing the mean activity, TST, SE,
SOL and A (for periods longer than more than 5 min-
utes). It was verified that reliable measurements can be
obtained from different locations, including the wrist, ankles,
trunk and upper-arm, but at least seven consecutive nights
of recordings should be used to attain reliable data. This
conclusion was also presented by Byrom and Rowe [121].
Tworoger et al. [122] have evaluated the Actiwatch-16 (Mini
Mitter, USA), observing that it was unreliable for measuring
TST, TIB and SOL, but was acceptable to estimate TWT
and SE. It was also verified that poorer actigraphic sleep
measures were associated with factors such as going to bed
late, increased daylight hours, use of medication and higher
body mass index. An analysis of the sleep quality of totally
blind subjects was conducted by Leger et al. [123] using the
Z80-32K V1 (Gaehviler Electronic, France) for two weeks.
It was verified that the subjects have lower values of TST, SE,
SOL and TR, indicating poorer quality of sleep.

A combination of actigraphy, using the AW4 (Mini
Mitter, USA) actighraph, and subjective reports were used
by Kushida et al. [124] to estimate sleep metrics. It was
verified that this combination produces good results in the
detection of TST and SE but a poor estimation of A. A com-
bination of objective sleep indicators, measured using the
Actiwatch-L (Mini Mitter, USA), and sleep diary entries,
to define the bedtime and time out of bed, was employed
by McCrae et al. [125], verifying that actigraphy results are
subjective to the gender of the user.

Da Silva Borges and Fischer [126] analyzed the dif-
ferences in sleep quality and work-time alertness of sub-
jects that work in 12 hours fixed night shift. The actigraph
(Ambulatory Monitoring, USA) was used to collect the data
that was analyzed using a developed algorithm to estimate the
sleep or wake episodes. It was verified that these episodes
were reliably estimated by comparing the predicted results
with the daily logs of sleep and activity. It was also deter-
mined that the subjects napped during the shift and the
self-perceived alertness systematically reduced. The daytime
sleep episodes were perceived as being of poorer quality than

the nighttime sleep episodes. Possibly due to the lack of
synchronization between daytime sleep and circadian time
structure. This conclusion is reinforced by the study of
Martin et al. [127] that have verified that subjects with less
robust circadian rhythms and disturbed sleep perform poorly
on neuropsychological tests.

C. OTHER COMMERCIAL DEVICES
Paavilainen et al. [128] have evaluated a system that performs
a continuous telemonitoring of the subject, ISTVivago (Infor-
mation Security Technology, Finland), to measure the daily
activity of demented subjects, verifying that they had a higher
nocturnal activity but a lower daytime activity. The device
is composed by a wrist unit, WristCare 3001, that measures
force changes to estimate the activity and wirelessly transmits
the information to a base station.

Liang and Martell [129] analyzed the difference between
an actigraph, Fitbit Charge 2, and an eye mask, NeuroOn
Open (inteliclinic, USA), that measures EEG, EOG, body
motion, oxygen saturation and temperature. It was verified
that both devices overestimated deep sleep but underesti-
mated light sleep, with Fitbit overestimating the TR and
SOL while NeuroOn underestimated A and TR. A device
that uses a single-channel EEG measured by a headband,
Zeo Sleep Manager Pro (Zeo, USA), transmitting the signal
wirelessly to a base station for examination, was analyzed by
Shambroom et al. [130] and Tonetti et al. [131]. The device
allows to estimate the sleep stage and infer sleep quality mea-
sures, having an average agreement ranged from moderate to
high with PSG.

De Zambotti et al. [132] have evaluated the Ōura ring
(Oulu, Finland), a device placed on the finger measuring the
subject HRV, blood volume pulse waveform and body motion
to estimate the sleep and wake states. By comparing with the
results provided by PSG the device achieved a 96% sensitivity
(identification of sleep) and 48% specificity (identification
of wake), providing a good estimate of TST but a significant
difference in the overnight total WASO.

A device that computes CPC from HRV and EDR,
the SleepImage (MyCardio, USA) sleep data recorder, was
analyzed by Visco et al. [133] and Magnusdottir et al. [134].
This device estimates the patient’s sleep quality index, a ratio
of stable sleep to unstable sleep, by analyzing the dura-
tion of very low, low and high frequency coupling. The
M1 (MyCardio, USA) was analyzed by Thomas et al. [135]
and also performs sleep quality by analyzing the CPC
frequency bands, defining the high-frequency coupling
(0.1–0.4 Hz) as the biomarker of stable sleep. The high-
frequency to low-frequency coupling ratio was also computed
to produce a continuous indicator of sleep that can be used to
estimate predict sleep quality or sleep related disorders.

A pressure base device, EarlySense (EarlySense, Israel),
composed by a piezoelectric sensor was evaluated by
Tal et al. [136]. The device is placed under the mattress and
is capable of measuring the body movements, respiratory
rate and heart rate. The information is sent to a developed
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FIGURE 2. Resume of the reviewed articles on the method section.

FIGURE 3. Resume of the reviewed articles on the device section.

smartphone application to perform the sleep analysis.
Table 3 summarizes the analysis regarding the developed
devices.

VI. DISCUSSION
A direct comparison between the reported results of the ana-
lyzed articles is not feasible due to the different databases,
application conditions and employed metrics used for the
experiments. Therefore, a broader analysis was performed,
studying the percentage of developed methods that are based
on the macro or microstructure and the percentage of devices
that use a sleep quality indicator from each of the groups
identified in Table 1 (or a proposed metric). The results of
this analysis are presented in Figures 2 and 3.

An answer for the research question ‘‘what methods for
sleep quality assessment have been developed’’ can be found
by examining Figure 2, where is possible to verify that the
majority of the proposed metrics (69%) are based on the
examination of sleep macrostructure while 18% study the
microstructure and 13% use metrics not related to the direct
examination of the sleep structure. Therefore, it is conceiv-
able to establish a tendency on the research for metrics based
on the sleep macrostructure. This is probably due to the fact
that more research was performed using well established
sleep stage definitions to estimate the sleep quality while
the microstructure is more commonly used to determine
specific sleep disorder such as insomnia and periodic limb
movements. However, as identified by Parrino et al. [18],
the sleep microstructure can provide a clear indication of
sleep instability thus, it could provide an estimation of the
sleep quality that has a higher correlation with the subject
self-rating.

Figure 3 provides an answer for the research question
‘‘what kind of measures are employed by the devices that
have been developed to estimate sleep quality’’. It is possible
to attest that the most common approach is the employment
of metrics based on the analysis of duration (39% of cases)
and continuity (31% of cases) of sleep, followed by the devel-
opment of new metrics for sleep quality assessment (26% of
the studied cases). Intensity and stability metrics were only
used on 4% of the cases while frequency and sleep episodes’
estimation were not used by any of the reviewed articles.

Only the research based devices employed the intensity and
stability metrics while the commercial devices used, majorly,
duration and continuity measures. This could be due to the
fact that actigraphs dominate the home health care market,
providing a classification of sleep or wake epochs. Conse-
quently, it is not possible to estimate stability measures such
CAPR. Actigraphs have a large employment possibly due to
their simplicity to set the device and start the analysis (easy
to use by the user), accessibility (commonly sold on hard-
ware or fitness stores), and minimal invasiveness (typically
they have the size of a bracelet worn on the wrist). However,
as Kaplan et al. [8] have reported, metrics like TST or SE
provide a small contribution to subjective ratings of prior-
night sleep quality. Therefore, the development of devices
capable of measuring stability measures could be more rel-
evant for future medical diagnosis. Actigraphs could perhaps
be used as a complement to other technologies despite the low
specificity (poor detection of wake periods) of actigraphy-
based devices, possibly due to the incapacity to identify
periods of immobility as wake epochs, since they rely on
the measurement of body movements to identify wakefulness
making them more robust to the noise that certain diseases
could cause in other sensors such as ECG.

Werner et al. [137] verified that actigraphy and sleep
diaries provide similar assessments of TST, but both have a
poor capability to indicate the nocturnal wake times, agreeing
with the previous observation. It was also concluded that
information provided by interviews or collected from ques-
tionnaires is insufficient to assess the sleep patterns. Also,
Wang et al. [138] have concluded that actigraphs may under-
estimate arousals, caused by respiratory events that could lead
to misleading results, especially in apnea patients. AASM
have defined the practice parameters for the clinical use of
actigraphy, defining guidelines to assist in the evaluation of
patients with sleep disorders and circadian rhythm sleep-
wake disorders [139].

A detailed review of the usability of actigraphy for the eval-
uation of these disorders, in adult and pediatric population
was also performed by AASM [140]. It was verified that for
healthy adults, actigraphy and sleep logs provide significantly
different results in the estimation of TST, SOL and SE but a
similar estimation of WASO. For the same population, actig-
raphy and PSG measures have a strong agreement estimation
TST and SOL but poor estimation of SE and WASO.

Analyzing the reviewed articles, it was possible to assess a
common processing flow of the developed methods, for sleep
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TABLE 3. Analysis of the developed devices for sleep quality estimation.
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FIGURE 4. Taxonomy of sleep quality analysis. Number of studies is
indicated in brackets.

quality estimation, based on a four step model. On the first
step the data was collected, either from a database or from
a device, and the feature-space was built on the second step,
feeding the developed algorithms for the event classification
(third step) and the results are presented to the user on the
final step. The taxonomy of sleep quality analysis obtained
through the analysis of this review is presented in Figure 4,
where the number or articles analyzed in each category is
indicated between brackets.

It is possible to assess that traditional PSG based metrics
are the most used but there is a significant number of new
proposed metrics that could possibly be considered as stan-
dard for sleep quality analysis but still need further validation.
Regarding the analyzed devices, it is possible to determine a
dominance of actigraphs, the few number of devices that use
the traditionally employed sensors for sleep analysis, specif-
ically EEG, ECG and EOG and the growing development of
pressure based devices.

Consumer sleep trackers are growing in the home health
monitoring market as the focus of health care is changing
from specialty and primary care to wellness and prevention.
Sleep quality analysis plays an important role in this change
since it can be used as the second level control mechanism,
in the fatigue error trajectory (assessment of fatigue) [141],
as symptoms of diseases [7] and as an overall metric for well-
ness evaluation [142], indicating its potential as a preventive
analysis and as a diagnostic tool.

Despite the convenience and large popularity among the
consumers of home health monitoring of devices such as
actigraphs, the validity of these tools for sleep quality esti-
mation still needs to be systematically examined, especially
the research devices and the commercial devices that have
recently entered the market. This claim is in agreement with
the agreeing with the AASM recommendation to not use
consumer sleep technologies that lack the United States Food
and Drug Administration clearance [143].

Independent validation of the proposed devices by research
projects and repeated validation studies on commercial
devices would give a higher relevance to the presented results.
However, the impacts on public health regarding the introduc-
tion of sleep quality home monitoring devices as a diagnosis
tool andwellness estimation still needs to be assessed andwas
identified as a future challenge. Despite the methodological
limitations of the devices, the results are consistent. Hence a
key finding of this review is that homemonitoring devices can
be used, at least, as an initial diagnostic tool for multiple sleep
disorders and future research should emphasize on further
corroborating this claim (in magnitude and significance).

A key aspect of the analyzed methods is the goal of achiev-
ing a good ratio performance-complexity, minimizing the
number of required sensors and decrease the complexity of
the algorithms to allow a feasible hardware implementation.
However, the results achieved with the developed methods
should be validated by independent research groups. Thus
the relevance of using publicly available databases to allow
the work reproduction. An efficient hardware implementation
was the main challenge identified for the reviewed methods
due to the high degree of complexity that most methods
present. This claim is even more relevant for home analysis
devices since they are more susceptible to data errors due to
uncontrollable factors present at the subject’s home.

From the general analysis of this review it can be identified
as future directions for the developed methods to increase the
study of metrics based on the sleep microstructure, produce
more research with machine learning classifiers, with partic-
ular interest on deep learning classifiers with the capacity
of self-learning features, and proceed to a hardware imple-
mentation of the algorithms. It was found that most metrics
are based on the macrostructure of sleep that is currently a
well-established field of research. Thus, it is recommended
to increment the research in microstructure based metrics to
further consolidate this field.

A new definition of sleep structure, considering more
stages to better approximate the discrete measurements to the
continuous process that is sleep, could possibly contribute to
the development of new metrics with more time resolution.
An example of such implementations is the continuous model
based on the PSM. The proposal of newmethods that describe
the underlying physiological process of sleep can possibly be
a relevant path to find new indicators of good or bad sleep.
Regarding the devices, the main gap in the current state of
the art is the employment of metrics based on the intensity,
stability, frequency and sleep episodes estimation.
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It was verified that actigraphy based analysis of sleep is the
most consolidate research field, regarding the home health
monitoring of devices, followed up by BCG. It is recom-
mended the further development of home monitoring devices
that employ more reliable sensors for sleep estimation, such
as EEG, to produce a sleep quality estimate that can be used
for clinical purposes, leading to developments in the treat-
ment of sleep quality deficits. A more robust system should
employ measurements from multiple sensors to produce the
estimate, possibly combining the information into a vector of
features to feed a machine learning classifier or employing
ensemble methods with multiple learning algorithms.
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