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ABSTRACT This paper proposes a deep learning model for the classification of citrus canker that overcomes
the shortcomings of traditional approaches, and the scarce number of available images for training, which
have been subject to the overfitting limitation. To address the issues, we propose two approaches, namely,
the feature magnification and objective breakdown optimization, to augment datasets, and emphasizes
meaningful features and prevent the model from overfitting noise signals. The first approach mimics the
distribution of positive samples with a generative model based on deep convolutional generative adversarial
networks. The second approach updates different parts of the model with optimization objectives, whereby
back-propagated error signals are no longer the only signal for updating parameters. To validate the proposed
approaches, we present theoretical proofs to justify the correctness of ourmethods and conduct extensive case
studies and experiments to show that the proposed approaches clearly outperform traditional approaches on
the classification of accuracy and efficiency of small training sets. In this paper, a methodology is proposed
to generate a general model. The model can be applied to other bio-medical applications, where the scarcity
of visual samples makes it difficult for a normal deep learning model to work without overfitting.

INDEX TERMS Generative adversarial networks, Siamese learning, feature magnification, optimization
objective breakdown.

I. INTRODUCTION
A. TRADITIONAL APPROACHES USED TO IDENTIFYING
CITRUS CANKER
Citrus canker is an infectious and fatal disease for citrus
plants, that could potentially lead to heavy crop losses. Given
that one of the common measures enforced to prevent citrus
canker infections is to decimate all citrus products near the
site of infection, owners of citrus plants have very littlemotive
to report citrus canker epidemics, or to provide visual samples
of afflicted plants.

Before the mass application of computer vision, the diag-
nosis of citrus canker was difficult owing to the facts that
a) the disease has very obscure visual traits in its early
stages, and b) its identification requires considerable human
experience.

Traditional computer vision techniques seek to program
the model to identify a series of traits that empirically
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differentiate positive samples from negative ones.Yet, such
approaches require complicated logic structures and it is thus
difficult to achieve adequate accuracy.

Recently, machine learning and especially convolutional
neural network models have exhibited considerable strengths
for image identification applications. However, most deep
learning algorithms are too complex in network structures
and require a large training set. For citrus canker classifica-
tion applications, the training instances and related data are
scarce. Novel models and algorithms are in high need for the
exploitation of the scarcity of training images for yielding a
good identification accuracy.

B. PROPOSED APPROACHES
Our approach includes multiple steps:

1)We first augment the training set by feeding it to the
convolutional network with both real-world and artificial
samples. The artificial samples are generated from generative
adversarial networks and are trained to match the distribution
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of authentic samples. This process is referred to as feature
magnification because it essentially replicates and empha-
sizes meaningful features to prevent the model from overfit-
ting to noise signals. With the expanded training set, the con-
volutional network is capturing characteristic visual traits
based on which positive samples can be identified.

2)Furthermore, in order to speed up training and reduce the
possibility of overfitting, we base our model on a lightweight
AlexNet with implemented modifications of the optimiza-
tion objective and the parameter updating mechanism where
Siamese training is involved. Specifically, we split the model
into two parts, separated by a chosen latent layer l. Preceding
parameters are updated with the objective of minimizing
the Siamese loss on l, and forcing latent representations to
be linearly separable. Parameters in successive layers are
updated to identify a decision boundary and allow the com-
pletion of the classification task. In view of the optimiza-
tion objectives, we are able to mathematically prove and
experimentally demonstrate that the model performance is
enhanced.

II. RELATED STUDIES
Recently, considerable research efforts were paid to
the problem of citrus canker identification. Traditional
approaches used for the identification of citrus canker usually
employed machine learning algorithms such as AdaBoost.
Zhang et. al [1] proposed a method to detect citrus canker
with the use of a comprehensive method based on global
and local descriptors that achieved a similar classification
accuracies as those achieved by human experts. Addition-
ally, the authors of this study extended their methodol-
ogy even further and proposed an approach that can adap-
tively detect citrus canker online. Lately, a pipeline was
introduced by Sunny and Gandhi in [2] for the identifi-
cation of canker with a support vector machine (SVM)
classifier.

Models that apply deep learning techniques have not been
introduced until recent years given the lack of computa-
tional power. Most of the latest approaches that have been
proven to be efficient rely on neural networks to identify
plant features that are highly intractable by usual methods.
Reyes et. al [3] used convolutional neural networks to clas-
sify 1000 plant images, including stems or leaves, flowers,
fruit, and entire trees. The results showed that the average
accuracy rate was 0.486, and the classification accuracy for
leaves and flowers was the highest compared to other types.
Xiaolong et al. [4] applied deep convolutional neural net-
works to promote the capacity to recognize plant leaves in
complex environments. Tan et al. [5] proposed a method
to identify fruit–melon lesions with a convolutional neural
network (CNN).

Although modern neural networks can be considerably
deep and complex, many medical classification tasks can
be pursued with a relatively shallower CNN classifier.
Li et al. [6] customized a shallow CNN framework to clas-
sify interstitial lung disease (ILD). Another classification

model for ILD with a seven-layer CNN was proposed by
Hattikatti et al. [7] in 2017, which used a local binary pattern
for feature extraction. Because of the rapid advancement of
CNNs, such measures are easily transferred to other clas-
sification tasks in the field of biomedicine, including the
recognition of citrus canker.

AlexNet, proposed by A. Krizhevsky, is one of the most
prevalent CNNs with publicly available pretrained weights.
The model comprises five convolutional layers and three
fully connected layers. AlexNet achieved a state-of-the-art
performance in the ImageNet Large Scale Visual Recognition
Challenge in 2012, with a top five error of 15.3%, and laid the
foundation for its successors. AlexNet was designed to allow
the input of images with matrix sizes of 227*227 pixels, and
performed a 1,000 label classification task on these images.
During the training of the model, error signals were back
propagated through each of the layers, and all the encountered
parameters were updated. Tajbakhsh et al. [8] considered
three distinct medical fields (radiology, cardiology, and gas-
troenterology) before they evaluated the effects of pretraining
CNNs on large datasets. Their findings showed that models
with pretrained initial weights can perform as well as—if not
better than—models trained from the beginning. This finding
allows the fitting ofmodels with limited data for specific tasks
if the model is pretrained on an extensive dataset.

In this study, however, we approach the image classifi-
cation problem from another perspective and update differ-
ent parts of the model with different optimization goals.
Errors computed against ground truths are no longer the
sole signal for tuning our model, and peer comparisons
are conducted to update model parameters as proposed by
Krizhevsky et al. [9].
Apart from the CNNs, another major development in deep

learning is the development of generative adversarial net-
works (GAN) first proposed by Goodfellow et al. in [10].
A GAN comprises two major parts: a) a discriminator that
aims to distinguish real samples from all other images, and b)
a generator that aims to fool the discriminator by generating
artificial images that closely resemble the real ones [11]. Suc-
cessful GAN variants include the deep convolutional GAN
(DCGAN) [12], InfoGAN [13], energy-based GAN [14],
Wasserstein GAN (WGAN) [15], Wasserstein GAN with
gradient penalty (WGAN–GP) [16], RCNN [17], and others.

In this study, we base our model on the DCGAN, whose
discriminator and generator both contain convolution (decon-
volution) layers, batch normalization layers, and periodically
repeating ReLU activations.

III. MODEL STRUCTURE
The performance of an image classification model depends
heavily on its ability to capture abstract features that are dis-
tinctive for each category. To ensure that a model learns these
features, a sufficiently large training set with labels is usually
required. However, in the context of citrus canker recognition,
samples available for model training are often scarce, and the
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visual traits of positive samples are too obscure such that only
very few experts are able to correctly annotate the samples.

To address these problems, we come up with specific
alternatives that prove to improve model performance.

A. FEATURE MAGNIFICATION
To remedy the inadequacy of training samples (positive sam-
ples in particular), we construct a generativemodel to produce
realistic artificial samples that share a similar distribution
to that for genuine samples, a process which we refer to as
feature magnification.

The generative model we employ is a custom-architected
variant of DCGAN, which proves to be effective in many
applications. Yet, owing to limitations of the loss function
[18] [15], the discriminator network tends to overfit, thus
making it difficult to update the generator in the right direc-
tion. In light of this, we implemented the following modifi-
cations to the original model.

We performed data augmentation before the learning of the
statistical distribution of the genuine samples. Specifically,
for each image sample, we added to the dataset copies of the
sample that were flipped horizontally and vertically, along
with four other copies of the sample rotated by 0◦, 90◦, 180◦,
and 270◦. In this manner, the size of the training data is six
times larger, making it less likely for the discriminator to
overfit.

We implemented our discriminator model using a custom
architecture based on DCGAN by incorporating it between
each convolutional and batch normalization layers, which we
refer to as a two-dimensional mute layer. A mute layer works
in a similar manner as the dropout layer except that the former
leaves out a certain proportion of signals during both training
and validation, while the latter only does so during training,
and is skipped during validation.

The insertion of such a layer is an unorthodox practice
because existent studies have shown that dropout layers
do not work well where batch normalization (BN) is also
employed (see [19]). Accordingly, we explain the reasoning
behind this choice as follows. Normally, when dropout is

applied in the training phase, the scaling factor
1
p
causes vari-

ance shifts of the batch of samples, thus misleading the batch
normalization. Therefore, in the validation phase, where the
dropout layer is no longer active, the batch normalization
layer does not yield the ideal input for the pursuant convo-
lutional layer (which is trained to accept input normalized by
a different variance).

For a mute layer, however, because we indiscriminately
leave out a part of the signals during the training and valida-
tion processes, the influence of the variance shift is cancelled
out. The mute layer merely checks for possible overfitting by
the discriminator and does not enhance its performance.

After successfully training the generative part of themodel,
we mix the output of the artificial samples with genuine
positive samples and feed them to the classification part of the
model. Experimental results in Section 4 indicate that such

procedure can increase model performance and speed up the
training process.

B. OPTIMIZATION OBJECTIVE BREAKDOWN
In the context of citrus canker recognition, the task is to
identify positive samples from negative ones, including the
leaves that are unaffected and the leaves that suffer from other
diseases.

Traditional image classification models deal with multi-
label classification with hundreds or thousands of classes,
which is excessive for our tasks, and can result in underfitting.
Actually, for the purpose of recording and extracting relevant
features in our model, a simple AlexNet model should suffice
provided that the model knows the traits which it should look
for.

Because the de novo training of AlexNet can be very slow,
even with the use of the feature magnification procedure,
we initialize the model with publicly available weights pre-
trained on ImageNet and update the weights only on the three
fully connected (FC) layers, thus leaving all other parameters
unchanged.

A trickier problem arises from the fact that some samples
of different class labels are so close to each other that visual
traits differ in a very subtle manner. The model initialized
with pretrained weights can hardly learn to capture these fea-
tures without occasional overfitting. Therefore, we incorpo-
rated Siamese training into the network. Specifically, we split
the model into two parts with the use different training objec-
tives for its different parts [20] [21].

The two parts are separated by a latent layer l based on
a chosen hyperparameter. The objective of all its preceding
layers is to minimize the computed Siamese loss, while the
objective of all its succeeding layers is to minimize the cross-
entropy computed against ground truths on the output layer
(the last layer).

The Siamese loss on a latent layer is defined to be a
function of latent representation vectors. Let x be the input
image tensor, c ∈ {0, 1} be the class label, y ∈ (0, 1) be the
output prediction scalar, and zi (i = 0, 1, . . . , n) be the latent
representation in the ith layer, where z0 = x and zn = y.

The Siamese loss function of latent representations of the
two input images x(1) and x(2) in layer i is defined as,

loss =


max (0, ‖z(1) − z(2)‖ − α0)

p
c(1) = c(2) = 0

max (0, ‖z(1) − z(2)‖ − α1)
p

c(1) = c(2) = 1
max (0, α2 − ‖z(1) − z(2)‖)

p
otherwise

(1)

where the subscript i in zi is omitted for brevity purposes.
Intuitively, the loss function imposes penalties on the model
when

1) latent representations of two images from the same
class fall too far away from each other (beyond the
margins of α0 or α1), or

2) latent representations of two images from different
classes fall too close to each other (within the margin
of α2).
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FIGURE 1. Sample augmentation.

FIGURE 2. Architecture of our custom variant of DCGAN.

The total Siamese loss over a random batch of 2m samples
are given by,

L =
1
2m

m∑
k=1

loss(z(2k−1), z(2k), c(2k−1), c(2k)) (2)

Ideally, L is optimized to its global minimum 0 for any ran-
dom sample batch, thus leading to the following conclusions,

1) latent representation of any negative sample lies within

a ball B0 of radius
β0

2
≤
α0

2
2) latent representation of any negative sample lies within

a ball B1 of radius
β1

2
≤
α1

2
3) positive and negative latent representations are sepa-

rable by uncountably many choices of a hyperplane if

α2 >

√
β20 + β

2
1

2
(see Appendix for proof)

In the scenario where latent representations are linearly
separable, the objective of successive layers is to identify a
hyperplane based on which different sample categories are
separated. Therefore, a simple affine transformation followed
by ReLU activation would suffice, and can be performed with
a single layer of perceptrons.

Note that the Siamese loss imposes a much looser con-
straint than traditional loss functions, such as cross-entropy
computed based on prediction logits against ground truths.
Siamese loss is insensitive to the absolute positions of input
vectors and focuses on their relative distances. Cross-entropy,
however, is susceptible to any rotation or shift of the repre-
sentations as a whole, even if their relative distances remain
constant.

In practice, the Siamese loss cannot always be reduced to
0, yet a latent layer trained to separate representations still
intuitively helps facilitate the training process. Empirically,

even for cases where min(β0, β1) < α2 <

√
β20 + β

2
1

2
,

the latent layer still maintain some weak separability of
the representations, although Siamese loss is therefore very
helpful when dealing with classification tasks where we are
only concerned about the relative distribution of sample rep-
resentations instead of their absolute positions. In practice,
the Siamese loss cannot always be reduced to 0, yet a latent

layer trained to separate representations still intuitively helps
facilitate the training process.

Empirically, even for cases where min(β0, β1) < α2 <√
β20 + β

2
1

2
, the latent layer still maintains some weak separa-

bility of the representations, although representations of the
same class label may be scattered into several clusters that
cannot be separated by a single hyperplane.

A low-dimensional example of such irregularity is shown
in Appendix B. To remedy the irregularity encountered in
practice, there should always be more than one layer of
perceptrons following the latent layer.

IV. EXPERIMETNAL RESULT
A. FEATURE MAGNIFICATION
To expand the set of positive training samples with feature
magnification, we augmented 800 samples images to 6 times
as stated previously, and input the expanded images to the
generative model.

In our case, the generative model is a DCGAN with
inserted custom mute layers. The model was trained for
2,000 epochs, with the generator and discriminator updated
once every epoch.

The batch size was set to 128 for an ideal batch normal-
ization performance. We then split the 891 positive samples
into two categories based on the diagnosis of human experts.
Positive samples that have been correctly identified are used
to form the training set, and positive samples that were falsely
reported as negative were used to form the validation set.
For the negative samples, we employed a 90%-10% training–
validation split based on 2,244 negative samples randomly
cropped from leaf images (which did not contain canker
spots).

We then trained the AlexNet classifier for 100 epochs with
a dropout rate of 0.5 and a batch size of 128. The learning
curve for accuracy based on the validation set is illustrated in
blue with its maximum set at 93.7%.

We then incorporated the generated positive samples into
the training set, and performed the experiment described
above once again. This yielded the red curve with a peak at
96.7%. Apparently, employing the artificial output to expand
the training set can magnify some key features of the image
samples and produce ideal results.

Our generated samples can boost the classification perfor-
mance, as they represent a class of images that are similar
to citrus canker. Therefore, they help train our classifier to
find fine distinctions between the citrus canker and other
diseases. We conducted an experiment where human experts
were requested to identify generated images from real ones.
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FIGURE 3. The model is divided into two parts, each with a different optimization objective. Error signals are not
backpropagated beyond the latent layer.

FIGURE 4. When Siamese loss is reduced to zero for any pair of samples,
fake and real representations are respectively contained in two compact
sets that are linearly separable.

TABLE 1. Best classification performances of human experts.

TABLE 2. Classification performance of human experts on average.

Given that experts fail to make a definite judgment on a few
samples, we summarized their classification performances in
three different charts.

Conversely, our classifier performed far better than human
experts on this task. We trained our classifier for 100 epochs
and obtained the best results, as follows.

The training curves of precision, recall, f-1 scores, accu-
racy, and cross-entropy, are respectively illustrated in Fig. 5,
Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

TABLE 3. Classification performance of human experts at worst.

TABLE 4. Best classification performance of model trained for
100 epochs.

FIGURE 5. Training curve of precision.

B. MUTE LAYERS
Mute layers prove to be very important to model perfor-
mance as indicated in the following experiment. We trained
two models with exactly the same input as described in
Section 4.1. These models share the same choice of hyper-
parameters and only differ slightly in their discriminator net-
work architectures. Specifically, one of them is implemented
with an architecture which contained additional customized
mute layers, and the other has no such layers. Both models
were sufficiently trained (with 2,000 epochs) and yielded

49684 VOLUME 7, 2019



M. Zhang et al.: Classification of Canker on Small Datasets Using Improved Deep Convolutional Generative Adversarial Networks

FIGURE 6. Training curve of recall.

FIGURE 7. Training curve of F-score.

meaningful results. Shown below are some image samples
generated by both models as well as the real samples used
to train them.

FIGURE 8. Training curve of accuracy.

FIGURE 9. Training curve of loss.

Closer examination of these photos empirically shows that
samples generated by the first model (withmute layers) is less
blurry in shape and more realistic in color (more samples are
shown in the Appendix).

FIGURE 10. Real images and generated images.
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FIGURE 11. MAD curves of pixel-wise mean and standard deviation on a [0, 256) scale.

FIGURE 12. F1 score of five parallel experiments against the benchmark in association with the trendlines of a 10-epoch moving
average.

We quantitatively evaluated how well the model mimicked
the real distribution with the use of the mean and standard
deviation. These two metrics were computed on a pixelwise
basis across all images in a batch of 128 samples.

Obviously, without themute layer themean absolute differ-
ences (MAD) of the metrics of the real distribution indicated
how poorly themodel performed.We plotted theMADcurves
because the model has been stabilized (after the 1,000th
epoch), and fitted them to an exponential curve in the fol-
lowing figure.

It is immediately apparent from these curves that mute
layers do help in the assessment of the overfitting of the dis-
criminator network and thus improve the quality of generated
samples. More importantly, the generative model does not
even converge without the mute layers.

C. OPTIMIZATION OBJECTIVE BREAKDOWN
We now experimentally prove that the optimization objective
breakdown helps improve the performance of the classifica-
tion networks.

For illustration purposes, we still use the AlexNet in
this experiment, and choose the first dropout layer (a.k.a.
dropout–6) as the latent layer.

Hyperparameters α0, α1 and α2 are set to 4, 3 and
5
√
2

respectively, which satisfies the constraint

√
α20 + α

2
1

2
≤ α2.

We executed and compared our model against a bench-
mark. In this case, Siamese training was not applied, and
the sole objective of all parameters was the minimization of
cross-entropy computed on the last layer.

Given that Siamese loss was not monotonically decreasing
during training, we took a snapshot of model parameters in
conjunction with current Siamese loss computed on valida-
tion set in each epoch.We then sorted these losses in descend-
ing order. Subsequently, a total of five parallel experiments
were conducted with sets of parameters which corresponded
to the five lowest losses.

These five candidate models were tested against a bench-
mark. Siamese training was not involved, and all layers
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FIGURE 13.

were merely updated as the back-propagated error signal
dictated.

The technique of optimization objective breakdown does
not guarantee a high performance on a consistent basis.
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Therefore, hypertuning is recommended. In our experiment,
the F-score of the model without this technique reaches a
value at approximately 70%, as shown in Fig. 12. This is prob-
ably because the model failed to update its weight in the right
direction.

V. GENERALIZATION OF MODEL
Our model used for the identification of positive samples
of citrus canker can also be applied to other biomedical
applications where the scarcity of visual samples makes it
difficult for normal deep learning models to capture relevant
features without overfitting.

Herein, are some general ideas on how to build a good
model. The first measure to be considered is performing
feature magnification by selecting a generative model that
captures the distribution of authentic samples. In the iden-
tification of citrus canker, our choice is a model with a
custom-architecture based on DCGAN, yet a model from
the GAN class is not always required. However, it is worth
pointing out that if a GAN is chosen, the prevention of
discriminator overfitting is crucial to the generator’s perfor-
mance. In our case, we employed data augmentation and
mute layers to limit the performance of the discriminator
that in turn served to enhance the quality of the generator’s
output.

When the generative model is sufficiently trained, a mod-
erate amount of artificial samples can be input to the classifier
model along with the genuine samples. In the case where
only a small number of class labels are of concern, breaking
down the optimization objective is helpful. We recommend
employing a similar Siamese loss function on one or more
latent layers because we are able to mathematically interpret
the behavior of the model. Such methods help reduce model
redundancy and prevent overfitting, provided that appropriate
choices are made for the marginal parameters.

The Siamese training process on the latent layer has draw-
backs. During Siamese training, a considerable number of
possible pairs can be drawn from the training set. Therefore,
the gradient descent on some arbitrary pairs of data points
does not guarantee better latent representations. The only way
to combat stochasticity in this procedure is to increase batch
size during training. However, this requires a tremendously
large hardware memory.

Nevertheless, there are some limitations associated with
this study. First, we only chose mute layer owing to the
scarcity of our data. Different ways of preventing GANs from
overfitting can be used when the circumstances permit the use
of larger datasets. Wasserstein GAN, for example, updates
the generator network by minimizing the Wasserstein-1 dis-
tance between real and fake distributions. This approach also
proves to be effective with large datasets. Second, for multil-
abel classification, the corollary in Appendix A indicates that
the breakdown of the optimization objective with Siamese
training is still an ideal tool for the linear separation of
the latent representations. However, it should be noted that
the number of required marginal parameters quadratically

increases as a function of the label count. This increases the
difficulty of hyperparameter grid searching. However, it must
be noted that most biomedical tasks do not involve classifi-
cations of too many labels, and the technique should work as
expected.

VI. CONCLUSION
In essence, feature magnification is a tool that generates more
label samples to balance the dataset for classification. When
sufficiently fine-tuned, the tool replicates the essential traits
of the label and helps the subsequent classifier to capture the
contour of each label in the sample space.

The breakdown of the optimization objective revolution-
ized the way model parameters are updated based on the
addition of one or more internal optimization objectives for
the model. These objectives collectively contributed to the
refinement of the overall objective function, which is typ-
ically cross-entropy computed on ground truths and model
outputs.

Possible defects include a slower training process if there
are many available data points for sampling. However, for
cases where training samples are scarce, the method is
expected to outperform pure gradient-based training both in
classification metrics and in the training speed.

To summarize, feature magnification and the optimization
objective breakdown are effective auxiliary for the classifica-
tion CNNs when the
• number of training samples is scarce
• dataset is unbalanced or even extremely skewed
• samples from different datasets share considerable sim-
ilarities and differ only in minor traits

APPENDIX A
PROPOSITION AND COROLLARY
A. PROPOSITION
Let X ,Y ∈ Rn be nonempty sets in the Euclidean space, and
αx , αy, αxy be some positive real numbers.
There are uncountably many choices of a hyperplane by

which X and Y are separable if
1) ∀x, x ′ ∈ X , ρ(x, x ′) < αx ,
2) ∀y, y′ ∈ Y , ρ(y, y′) < αy, and

3) ∀x ∈ X ,∀y ∈ Y , ρ(x, y) > αxy >

√
α2x+α

2
y

2 .

B. PROOF
Let x0 ∈ X and y0 ∈ Y be two points such that ρ(x0, y0) =
inf

x∈X ,y∈Y
ρ(x, y) = ρ0, where S denotes the closure of set S.

Let B1 be a ball of radius αx with a center at x0, B2 be a
ball of radius αy with a center at y0, and B3, B4 denote two
open balls with common radii αxy with centers at x0 and y0,
respectively.

It is obvious that X ⊂ B1,Y ⊂ B2 and that X ∩ B4 =
Y ∩ B3 = ∅.
We now prove that X and Y are respectively contained in

some disjoint convex sets that are both compact.
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1) Closed balls B1 and B2 are disjoint.
Accordingly, ρ0 > αx + αy is valid. Given that
B1 and B2 are convex and compact, according to the
hyperplane separation theorem, there exist two parallel
hyperplanes in between B1 and B2 separated by a gap
of ρ0 − αx − αy > 0.

2) Closed balls B1 and B2 are not disjoint.
Because X ⊂ B1 ⊂ B1, Y ⊂ B2 ⊂ B2, and X ∩ B4 =
Y ∩B3 = ∅, it follows that X ⊂ B1\B4 and Y ⊂ B2\B3,
where both B1\B4 and B2\B3 are compact.
LetC1 andC2 be respectively the convex hulls ofB1\B4
and B2\B3.
By construction, C1 and C2 are disjoint and compact.
Based on the hyperplane separation theorem, there
exist two parallel hyperplanes in between C1 and C2

separated by a gap of
2α2xy − α

2
x − α

2
y

2ρ0
> 0.

In both of these cases, there are uncountably many hyper-
plane choices that separate two convex sets in which X and Y
are contained.

Q.E.D.

C. COROLLARY
Let F = {Xi ⊂ Rn

: i = 1, 2, . . . ,m} be a finite family of
nonempty subsets of the Euclidean space and A = (αij)m×m
be a positive symmetric matrix such that

1) ∀xi, x ′i ∈ Xi, ρ(xi, x
′
i ) < αii, and

2) ∀xi ∈ Xi,∀xj ∈ Xj, ρ(xi, xj) > αij >

√
α2ii + α

2
jj

2
for

i 6= j.
There exist uncountably many choices of a partition ofRn,

denoted as {Si}mi=1, such that
1) Xi ⊂ Si, where i = 1, 2, . . . ,m, and
2) Si and Sj (i 6= j) are separable by some hyperplane Hij.

APPENDIX B
GENERATED SAMPLES
In addition to the samples shown on page 49685, more sam-
ples are illustrated on page 49687. On the top, there are
128 images generated by a model with mute layers. In the
middle, there are 128 images acquired from the real world.
On the bottom, there are 128 images generated by a naive
DCGAN. Both generative models are sufficiently trained
based on 2,000 epochs.
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