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ABSTRACT Discrete interference influences the performance of existing space-time adaptive process-
ing methods in practical scenarios. In order to effectively suppress discrete interference in real clutter
environment, a discrete interference suppression method based on robust sparse Bayesian learning (SBL)
is proposed for airborne phased array radar. In the proposed method, the estimation of spatial-temporal
spectrum and the calibration of space-time overcomplete dictionary are carried out iteratively. During one
iteration, the prominent components of clutter and discrete interference in the spatial-temporal plane are
first estimated by SBL, and then the overcomplete dictionary is calibrated by calculating the error matrix.
Because of the robust estimation of spatial-temporal spectral distribution, both the discrete interference and
the homogeneous clutter profiles can be effectively suppressed with a small number of space-time data. The
effectiveness of the proposed method is verified in the nonhomogeneous environment by utilizing simulated
and actual airborne phased array radar data.

INDEX TERMS Discrete interference suppression, nonhomogeneous clutter, sparse Bayesian
learning (SBL), STAP.

I. INTRODUCTION
Space-time adaptive processing (STAP) is considered as an
effective clutter suppression technique for advanced airborne
phased array radar [1], [2]. Based on the adaptive filtering
in the spatial-temporal domain, the STAP methods can pro-
vide more effective detection performance of low-velocity
targets in clutter than traditional non-adaptive methods. How-
ever, it is well known that conventional STAP methods need
a larger amount of independent and identically distributed
(i.i.d.) training data around the tested range cell for estimating
the clutter covariance matrix, thus the applicability of the
STAP technique is heavily limited in many real nonhomoge-
neous clutter environments, where high towers, high-speed
vehicles and other locally distributed clutter are probably
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located in the tested range cell rather than the surround-
ing range cells. Therefore, conventional STAP cannot form
adaptive nulls in the directions of such discrete interfer-
ence. In this case, great performance loss would occur for
STAP methods [4], [5]. Therefore it is critical to investigate
effective discrete interference suppression methods.

Aiming at this problem, several methods have been pro-
posed for the discrete interference suppression [4]–[7]. It is
known that the direct data domain (DDD) method can adap-
tively suppress the discrete interference while achieving the
target detection [4], [5]. However, as it only utilizes the tested
range cell data, the statistical property of the homogeneous
clutter is ignored, so the homogeneous clutter cannot be
suppressed effectively by the DDD method. Later the hybrid
space-time methods based on adaptive local transformation
were proposed for discrete interference suppression [6]–[8].
By forming the adaptive local transformation matrix with
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a series of DDD weight vector to take the advantage of statis-
tical STAP and DDD method, the hybrid method suppresses
both the discrete interference and homogeneous clutter. How-
ever, it is still hard to collect sufficient i.i.d. space-time train-
ing data in the practical environment, so the performance of
this hybrid method would be severely degraded due to the
inferior clutter estimation.

In the last few decades, by developing the sparse prop-
erty of the clutter in the spatial-temporal domain, several
sparsity-based STAP methods were proposed to realize the
estimation of the spatial-temporal clutter spectrumwithmuch
less training space-time data [9]–[12]. In these methods, the
sparse recovery of spatial-temporal clutter spectrum is usu-
ally formulated as a regularized optimization problem [11].
However the computational complexity will increase rapidly
when the dimension of optimization problem increases, mak-
ing it unrealizable for application. Afterwards many fast
sparse recovery methods were later proposed for STAP
in [13]–[17]. One is the FOCal Underdetermined System
Solution (FOCUSS), which uses the weighted L2-norm mini-
mization to recursively achieve an approximate estimation of
the prominent clutter and discrete interference profiles [13].
However, because the performance is heavily influenced by
the overcomplete dictionary mismatch and the regularization
parameter cannot be adjusted adaptively, the performance
of FOCUSS would degrade in practical application.

In recent years, the Sparse Bayesian learning (SBL) is
used in many areas, such as direction of arrival (DOA)
estimation [19], [20], microwave imaging [20], [21], lin-
ear array synthesis [22] and STAP [17], [23], [24]. Some
SBL methods are developed based on the maximum
a posteriori (MAP) principle [25]–[27], which optimizes a
multi-variable objective function by maximizing the joint
probability density function (PDF). On the other hand, some
other SBLmethods are based on the relevance vectormachine
(RVM) principle, which achieves the optimization with the
help of relevant hyper-parameter [28], [29]. Although the
SBL methods of RVM principle can obtain desirable recon-
struction performance, the computation of hyper-parameters
is extremely complicated, leading to a high computational
complexity for sparse recovery.

In this paper, a discrete interference suppression method
is proposed for STAP, which is based on robust SBL with
the MAP principle. In the proposed method, the estimation
of spatial-temporal spectrum and the calibration of space-
time overcomplete dictionary are carried out iteratively. Dur-
ing one iteration, the prominent components of clutter and
discrete interference in the spatial-temporal plane are firstly
estimated by SBL, and then the overcomplete dictionary is
calibrated by calculating the error matrix. Because of the
robust estimation of spatial-temporal spectral distribution,
both the discrete interference and the homogeneous clutter
profiles can be effectively suppressed with a small number of
space-time data. The proposed method improves the perfor-
mance at a low computational cost compared with existing
STAP methods.

FIGURE 1. Configuration of a side-looking array airborne phased array
radar.

FIGURE 2. Procedure of STAP for airborne phased array radar.

II. SIGNAL MODEL AND PROBLEM STATEMENT
The configuration of a side-looking airborne phased array
radar is shown in Fig. 1. The N -element uniform linear array
with inter-element spacing dA aligns with the platformmotion
direction. During each coherent processing interval (CPI),
M identical pulses are transmitted with a pulse repetition
frequency (PRF) of fr . The radar wavelength is λ, the height
of platform is h with a velocity denoted by va, and L range
samples are collected in each pulse repetition interval (PRI).
Each CPI data of the received signal is expressed as an
N × M × L data-cube as shown in Fig. 2. Each slice of the
data cube along with the range is an N×M matrix, which can
be given as an NM×1 vector according to the channel order.
Assume that the lth range cell is under test. Then the space-

time snapshot xl ∈ CNM×1 is given as

xl = xc + xt + xd + xn (1)

where xc is the clutter, xt is the wanted target echo, xd is the
discrete interference and the noise vector xn is assumed to be
zero-mean complexGaussian, spatially and temporallywhite.

According to the configuration in Fig. 1, the clutter in
each range cell is the sum of Nc independent clutter patches
with angle interval 1ϕ = 2π/Nc. In each range cell, each
clutter patch can be denoted by the azimuth angle θ and
elevation angle ϕ. The normalized spatial frequency ϑc,i and
the normalized Doppler frequency ωc,i of the ith clutter patch
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are respectively given as

ϑc,i =
dA
λ

cos
(
θl,i
)
sin (ϕl), ωc,i =

2va
λfr

cos
(
θl,i
)
sin (ϕl)

(2)

Thus, the space-time steering vector of the ith clutter patch
is given as

v(ωc,i, ϑc,i) = b(ωc,i)⊗ a(ϑc,i) (3)

where b(ωc,i) = [1, exp(j2πωc,i), . . . , exp(j(M − 1)
2πωc,i)]T ∈ CM×1 is the temporal steering vector and
a(ϑc,i) = [1, exp(j2πϑc,i), . . . , exp(j(N − 1)2πϑc,i)]T ∈
CN×1 is the spatial steering vector, transposition is denoted by
the superscripts T , and ⊗ represents the Kronecker product.
Thus based on Melvin’s model [3], the space-time clutter
snapshot xc ∈ CNM×1 is denoted as

xc =
Nc∑
i=1

ξ̃iv(ωc,i, ϑc,i) (4)

where ξ̃i is the complex amplitude corresponding to the
ith clutter patch. Denote the target azimuth angle is θt and
the relative velocity as vt . Then, the target echo xt ∈ CNM×1

is given as

xt = ξ̃t (v(ωt , ϑt )) = ξ̃tb(ωt )⊗ a(ϑt ) (5)

where ϑt = dA cos (θt) sin (ϕl)
/
λ is the normalized spatial

frequency and ωt = 2vt cos (θt) sin (ϕl)
/
λfr is the normal-

ized Doppler frequency.
Meanwhile, high towers and high-speed vehicles would

often form discrete interferences in practical environment.
Compared with the true target, the discrete interferences are
usually located at different directions with different Doppler
frequencies. Thus, the discrete interferences xd ∈ CNM×1 can
be modeled similar with target, i.e.,

xd =
Nd∑
p=1

ξ̃d,pv(ωd,p, ϑd,p) (6)

where Nd is the discrete interference number, ξ̃d,p is complex
amplitude of the pth discrete interference and v(ωd,p, ϑd,p) is
the space-time steering vector of the pth discrete interference.
Then theweight vectorw ∈ CNM×1 of the conventional STAP
is expressed as the following

min
w
J (w) = E

{∥∥∥wHxl∥∥∥2
2

}
s.t. wHvt (ωt , ϑt ) = 1 (7)

where vt (ωt , ϑt ) is the space-time steering vector of the target,
||x||2 denotes the L2-norm operations of x, E {·} stands for the
expected value of a random variable, conjugate transposition
is denoted by the superscripts H . Based on [1], [2], the opti-
mal adaptive weighting vector is obtained as

w =
R−1vt (ωt , ϑt )

vHt (ωt , ϑt )R
−1vt (ωt , ϑt )

(8)

where the space-time covariance matrix R ∈ CNM×NM is
estimated from K i.i.d. training data around the lth range
cell, i.e.,

R̃ = E
{
xxH

}
≈

1
K

K−1∑
k=1,k 6=l

xkxHk = R̃c + R̃n (9)

In (9), R̃c is the clutter covariance matrix, and R̃n = σ 2I is
the noise covariance matrix with σ 2 denotes the noise power
and I is the NM×NM identity matrix. Afterwards, the test
statistic can be obtained for target detection.

yl =

∣∣wHxl ∣∣2
wHRw

=

∣∣vHt (ωt , ϑt )R−1xl ∣∣2
vHt (ωt , ϑt )R

−1vt (ωt , ϑt )
(10)

It is obvious that the discrete interference is absent in
the training data thus it cannot be suppressed adaptively.
The hybrid method of STAP method and the DDD method
were proposed to suppress both the homogeneous clutter
and the discrete interference [6]–[8]. However, this method
still requires a large number of i.i.d. training data for the
clutter covariance matrix estimation, which is hard to realize
in a practical clutter environment. This fact motivates us to
develop a new method that robustly suppresses both clutter
and discrete interference in a real clutter environment.

III. CLUTTER SPARSITY AND SPARSITY-BASED
RECOVERY
A. CLUTTER SPARSITY ANALYSIS
It is well known that the space-time covariance matrix R can
be expressed in the following way [30]

R = Uc3cUH
c + σ

2UnUH
n (11)

where Uc is the clutter subspace consisting of the principal
eigenvectors, 3c = diag(ς1, . . . , ςP) is the diagonal matrix
consisting of the P principal eigenvalues of R, and Un is the
noise subspace. Therefore, the clutter covariance matrix can
be denoted by only the P principal eigenvalues instead of the
Nc space-time steering vectors according to the clutter model
in Section II, thus the clutter is sparse in terms of the spatial-
temporal system degrees of freedom (DoFs). In order to
demonstrate the sparsity of clutter, the space-time correlation
coefficient is given as

cor
(
v(ωi, ϑi), v(ωj, ϑj)

)
=

∥∥v(ωi, ϑi)Hv(ωj, ϑj)∥∥
‖v(ωi, ϑi)‖ ·

∥∥v(ωj, ϑj)∥∥ (12)

It describes the degree of correlation between differ-
ent space-time steering vectors. The correlation coefficients
corresponding to three different spatial angles are shown
in Fig. 3. It is seen that the space-time steering vector is highly
correlated to the vectors which are spatially adjacent. It means
that the clutter has a high correlation with components sep-
arated by a close spatial angle, and the space-time steering
vector closed to the clutter ridge can replace all the vectors
in the spatial-temporal plane to approximate the clutter [28].
Therefore the space-time data shows high sparse distribution
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FIGURE 3. Correlations between space-time steering vectors with spatial
angle π/2, π/3, and π/6.

FIGURE 4. Sparse distribution of spatial-temporal spectrum in
angle-Doppler domain.

property in the angle-Doppler domain [13]–[15]. As shown
in Fig. 4, the prominent components of clutter spectrum are
distributed near the clutter ridge, and the discrete interferers
and possible target are located dispersedly. It is evident that
the amplitude of the spectrum in most area is rather small,
showing sparse in the angle-Doppler domain.

B. SPARSITY-BASED CLUTTER SPECTRUM RECOVERY
Based on the sparse property, the homogeneous clutter and
discrete interference can be effectively estimated by the
sparse recovery methods. The spatial-temporal plane is dis-
cretized into a grid consists of Ns spatial bins and Nd Doppler
bins, where each grid point is associated with the spe-
cific space-time steering vector v

(
ωd,i, ϑs,j

)
(i = 1, ..,Nd ,

j = 1, ..,Ns) [13]. Therefore the space-time snapshot can be
rewritten as

xl = xc + xt + xd + xn = 8γ + xn (13)

where γ =
[
γ̃1,1, γ̃1,2, . . . , γ̃Ns,Nd

]T
∈ CNsNd×1 is the com-

plex amplitude of the spectral distribution. The overcomplete
space-time dictionary matrix 8 ∈ CNM×NsNd denotes the
collection of all space-time steering vectors, i.e.,

8=
[
v
(
ωd,1, ϑs,1

)
, . . . , v

(
ωd,i, ϑs,j

)
, . . . , v

(
ωd,Nd , ϑs,Ns

)]
(14)

Therefore, by estimating the complex amplitude of the
spectral distribution and the corresponding space-time steer-
ing vectors their sparsity based on their sparsity, R can be
reconstructed for the clutter suppression. As NsNd is much
larger than NM, the space-time dictionary8 is overcomplete,
thus (13) is underdetermined. However, based on the the-
ory of sparse recovery processing [31], [32], this ill-posed
problem can be solved effectively by the technique of sparse
representation with few training data

γ̂ = argmin ‖γ ‖1
subject to ‖xl −8γ ‖2 ≤ ε (15)

where ||x||1 denotes the L1-norm operations of x. The
L1-norm guarantees the sparsity of γl , and the L2-norm
restrains the estimation error within ε. (15) can also be refor-
mulated as

γ̂ = argmin
γ
‖xl −8γ ‖2 + λγ ‖γ ‖1 (16)

where λγ is the regularization parameter. The spatial-
temporal clutter spectrum can be obtained by averaging each
results of γ , and then R can be constructed for calculating the
adaptive weighting vectors correspondingly.

The computational complexity of conventional sparsity-
based STAP methods based on the L1-norm optimization
is on the order of O((NsNd )3), which is impractical for
practical application [8]. Several fast approximation meth-
ods can be used to reduce the complexity. In the FOCUSS
method [14], [16], based on the weighted L2-norm optimiza-
tion, the spectrum is iteratively estimated by using Lagrange
multipliers. However, the regularization parameter in the
FOCUSS method cannot be adjusted dynamically according
to the received data, thereby degrading the estimation under
practical environments.

In recent years, the sparse recovery problem is developed
by the SBL processing based on the MAP and RVM prin-
ciple [23]. The MAP method optimizes the multi-variable
objective function iteratively by maximizing the joint PDF.
On other hand, the RVM method can obtain desirable per-
formance, but the computational complexity of determining
hyper-parameter is extremely high, making it very difficult
for practical application. Motivated by this, in the next sub-
section, we propose a robust STAP method based on the
MAP principle by investigating the sparsity of the clutter and
discrete interference [25]–[27].

IV. PROPOSED DISCRETE INTERFERENCE SUPPRESSION
METHOD BASED ON ROBUST BAYESIAN
COMPRESSIVE SENSING
In order to avoid the target being suppressed as a discrete
interference, the target echo should be firstly removed by the
orthogonal projection before performing the discrete interfer-
ence suppression [33], i.e.,

x̃l = Bxl (17)
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where B = I−V
(
VHV

)−1
V denotes the orthogonal block-

ingmatrix,V =
[
v
(
ωd,i−Ñ , ϑs,j−Ñ

)
, . . . , v

(
ωd,i, ϑs,j

)
, . . . ,

v
(
ωd,i+Ñ , ϑs,j+Ñ

)]
, v
(
ωd,i, ϑs,j

)
= vHt (ωt , ϑt ) denotes the

set of spatial-temporal steering vectors covering the region
of interest, and Ñ decides the number of the spatial-temporal
steering vectors for constructing the block matrix. Because
clutter may not be exactly located exactly on a gird point of
the dictionary, thus in order to further improve the estimation
performance, the off-grid mismatch between the space-time
overcomplete dictionary and the actual clutter distribution
needs to be considered [17], [34], [35]. In the proposed
method, the space-time snapshot of the range cell under test
is rewritten as

x̃l = xc + xd + xn = 2γ + xn (18)

where the actual overcomplete dictionary is 2 = 8 + 38

and the mismatch matrix is 3. Then the sparse recovery of
clutter and discrete interference becomes

γ̂ = argmin
γ
‖x̃l −2γ ‖2 + λγ ‖γ ‖1 (19)

Based on the above formulations, the estimation of the
clutter spectrum and the calibration of overcomplete dictio-
nary error are achieved iteratively. The details of the proposed
method are provided in the following two subsections.

A. SPARSE RECOVERY OF SPATIAL-TEMPORAL
SPECTRUM
As known in [26] and [27], the likelihood of a space-time
snapshot in (18) can be given as

x̃l ∼ CN (2γ , ηI)

p
(
x̃l |γ , η

)
= (2πη)NM exp

(
−
‖x̃l −2γ ‖22

2η

)
p (η) ∝ 1 (20)

where p
(
x̃l |γ , η

)
is a sparsity promoting prior, and η denotes

the estimated noise power with the probability over the
range [0,∞) [27], [28]. The complex amplitude γ is subject
to the Laplace prior distribution

p
(
γ |κ

)
=
κ

2
exp

(
−
κ

2
‖γ ‖1

)
(21)

where κ is the parameter that represents the sparsity of γ .
Based on the MAP principle, the spares recovery solution
in (19) can be given as

γMAP = argmax
γ

(p (x̃l, γ , η|κ)) (22)

Because p (x̃l, γ , η|κ) ∝ p (x̃l, γ , η, κ), (22) is equivalent
to

γMAP = argmax
γ

(p (x̃l, γ , η|κ))

= argmax
γ

(
p
(
x̃l |γ , η

)
p
(
x̃l |κ

)
p (η)

)

= argmax
γ

(
(2πη)−NM exp

(
−
‖x̃l −2γ ‖22

2η

)

×
κ

2
exp

(
−
λ

2
‖γ ‖1

))
(23)

Maximizing the log-likelihood function yields

argmin
γ

J (γ , η) = argmax
γ

(− ln (x̃l, γ , η|κ))

= argmax
γ

(
NM ln (2πη)+

‖x̃l −2γ ‖22
2η

− ln
κ

2
+
λ

2
‖γ ‖1

)
(24)

According to [27], the objective function can be given as

J (γ , η) = NM ln (2πη)+
‖x̃l −2γ ‖22

2η
− ln

κ

2
+
λ

2
‖γ ‖1

(25)

Therefore when γ is subject to the Laplace prior distribu-
tion, the SBL based on the MAP is equivalent to L1-norm
optimization. Afterwards, the sparse recovery result of the
spatial-temporal spectrum is achieved iteratively. In practice,
the initial value of γ is assumed as the result of the Fourier
spectrum estimation, i.e. γ (0) = 8H x̃l , and then at the
estimations at the kth iteration, γ (k) and η(k) will be computed
iteratively. By fixing η(k−1), the complex amplitude γ at the
kth iteration is obtained by solving the gradient equation as
follow [26](
d
/
dγH

)
J
(
γ , η(k−1)

)
=
2H
(k−1)2(k−1)γ

2η(k−1)
−
2H
(k−1)x̃l

2η(k−1)
+W (k−1)γ = 0 (26)

where W (k−1) = diag
(
|γ1|(k−1) , . . . ,

∣∣γNsNd ∣∣(k−1)). Thus
γ is updated as

γ (k) = W (k−1)2
H
(k)

(
2(k)W (k−1)2

H
(k) + η(k−1)I

)−1
x̃l
(27)

Then the noise η can be updated by the same processing(
d/
dη
) (
J
(
γ (k), η

))
=
NM
η
−

∥∥x̃−2(k)γ (k)
∥∥2
2

η2
= 0

(28)

Thus the noise η can be calculated as

η(k) =

∥∥x̃−2(k)γ (k)
∥∥2
2

NM
(29)

The estimation of the clutter spectrum can be executed
iteratively according to (27) and (29). In the SBL, the PDF
of the spatial-temporal spectrum is given to reduce the uncer-
tainty error during the estimation, and the number of local
minimum is much smaller than FOCUSSmethod [26]. More-
over, the noise vector η can be adjusted adaptively, thus the
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proposed method can provide improved performance com-
pared with the FOCUSS method. Comparing with the sparse
learning processing based on the RVM, the proposed method
does not require the computation of the hyper-parameters,
and therefore less computational complexity is demanded.

B. MISMATCH CALIBRATION OF SPATIAL-TEMPORAL
SPECTRUM
After getting γ (k) at the kth iteration, the overcomplete space-
time dictionary is calibrated at the beginning of the kth itera-
tion as

2(k) = 8+3(k−1)8 (30)

Then the mismatch matrix 3 can be obtained according to
the objective function [29], which is expressed as

3 = argmin
3

J (3) = ‖38‖2 +
∥∥x̃l −2(k)γ (k)

∥∥
2 (31)

By defining e(k) = x̃l − 8γ (k), and p(k) = 8γ (k),
the objective function of (30) can be given as

J (3) = ‖38‖2 +
∥∥e(k) −3p(k)∥∥2 (32)

Minimizing the above cost function yields 3

3(k) = e(k)
(
p(k)

)H (p(k) (p(k))H +2(k)2
H
(k)

)−1
(33)

As such, the overcomplete dictionary can be calibrated
iteratively by minimizing the cost function, thus the error
between the dictionary and the real clutter distribution is
reduced effectively. Compared with the mismatch calibration
method in [35], the constraint conditions of mismatch cali-
bration in the proposed method is less, the proposed method
does not need to set the range of mismatch parameters, thus
it is much more convenient to be applied.

It should be noticed from (27) and (33) that the matrix
inversion is still needed in each iteration, which will signifi-
cantly compromise the convergence performance. However,
during the iterations, the prominent components in γ are
gradually reinforced, while the remaining small components
gradually approach to zero, resulting in asymptotically neg-
ligible influence on the recovery performance. Therefore,
it is unnecessary to calculate the small components in each
iteration processing. In order to reduce the computational
complexity, the complex amplitude γ can be updated based
on a specific threshold, which is expressed as

0 =
{
γi ∈ γ (k) : |γi| ≥ Th

}
, i = 1, 2, . . . ,NsNd (34)

where γ (k) is obtained at the kth iteration, Th is the specific
updating threshold for selecting the complex amplitude and
the column in the dictionary 2 to be updated in the subse-
quent iteration, and 0 records the indices of elements over
the threshold. Based on the specific threshold, the matrix
inversion does not need to incorporate the entire dictionary,
thereby significantly reducing the computational complexity

FIGURE 5. Processing procedure of the proposed robust SBL
method (R-SBL).

compared with the method given in [17]. Afterwards, the iter-
ation continues until the convergence condition ξ is satisfied.∣∣∣∣∣γ (k) − γ (k−1)γ (k)

∣∣∣∣∣ ≤ ξ (35)

The processing procedure of the proposedmethod, referred
to as the robust SBL method (R-SBL), is summarized
in Fig. 5. In order to obtain a better estimation of the clutter
and the discrete interference profiles, several snapshots of
adjacent range cell can be utilized in the same processing.
Afterwards, the covariance matrix R can be reconstructed
as

R=
1
P

P∑
p=1

Nd∑
i=1

Ns∑
j=1

∣∣γ̃p,i,j∣∣2 vp (ωd,i, ϑs,j) vHp (ωd,i, ϑs,j)+σ 2I

(36)

where P is the number of training snapshot, vp
(
ωd,i, ϑs,j

)
is

the space-time steering vector in the overcomplete dictionary
corresponding to the recovery result of each training data.
Then the weight vector w and detection test statistic can be
obtained according to (9) and (10) accordingly. Because of
the robust estimation of the clutter and discrete interference
profiles, the discrete interference and the clutter component
can be both effectively estimated.
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TABLE 1. The computational complexity of M-FOCUSS, SBL, G-SBL,
FB-SBL and proposed R-SBL methods.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, the computational complexity of the
proposed R-SBL method is investigated and compared
with some sparsity-based STAP methods such as the
M-FOCUSS method [16], the G-SBL method [21], the
FB-SBL method [37] and the SBL method without error
calibration [26]. The computational complexity of the
M-FOCUSS, SBL, G-SBL, FB-SBL and R-SBL methods are
summarized in Table 1, where Ns and Nd are the numbers of
spatial and Doppler bins, KFOCUSS , KSBL , KG-SBL , KFB-SBL
and KR-SBL are respectively the numbers of iterations of the
M-FOCUSS, SBL, G-SBL, FB-SBL and proposed R-SBL
method, and DFOCUSS , DSBL , DG-SBL , DFB-SBL and DR-SBL
are the numbers of updated elements at each iteration for the‘
four methods. Note that, as the L1-norm optimization by the
convex optimization [16], [17] has already been discussed
in a number of papers and its computational complexity is
much larger than that of other sparsity-based STAP methods,
thus it is not included in the comparison. In the simulations,
Ns = 6N and Nd = 6M , the number of DoFs NM ranges
from 16 to 256, All the results are averaged over 500 Monte
Carlo simulations. The other simulation parameters are listed
in Table 2 in the next section.

It can be found from Table 1 that the total computational
complexity of all the methods are determined by the iteration
numbers required in each iteration. As shown in Fig. 6,
because of the robust sparse recovery processing, the pro-
posed method can achieve convergence with the least number
of iterations. On other hand, due to a lack of the mismatch
calibration, the SBL method requires more iterations com-
pared with the proposed method and the M-FOCUSS
method. It should be aware that the G-SBL method and
FB-SBL method need to add (or delete) atoms to the model
until all relevant atoms are included for reconstruction, thus
more iterations are needed, and the FB-SBL method uses

TABLE 2. Simulation parameters.

FIGURE 6. The residual error of M-FOCUSS, SBL, G-SBL, FB-SBL and
proposed R-SBL methods versus the number of iterations.

the block sparsity and the intra-correlation of the sparse
signal [37], [38], the number of iterations can be reduced.

The computational complexity is simulated and the cor-
responding results are shown in Fig. 7. It can be found that
the G-SBL method costs the most computational complex-
ity, the FB-SBL method uses the block sparsity and the
intra-correlation of the sparse signal, thus the computational
complexity is reduced compared with the G-SBL method.
On the contrast, the computational complexity of the pro-
posed method is lower than G-SBL and FB-SBL methods
because of the least number of iterations. According to the
simulation, when the number of DoFs is 128, the computa-
tional complexity of G-SBL method and FB-SBL method is
1.463×104 MFLOPs and 1.162×104 MFLOPs respectively
and the computational complexity of the proposed method
is 0.942 ×104 MFLOPs. That is, the computational com-
plexity of the proposed method is reduced by about 55%
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FIGURE 7. Computational complexity of M-FOCUSS, SBL, G-SBL, FB-SBL
and proposed R-SBL methods.

FIGURE 8. Computational complexity of the proposed R-SBL method
versus different updating thresholds Th.

and 23%. Meanwhile, the proposed method and the
M-FOCUSS method require nearly the same computational
complexity. As shown in the next section, however, the pro-
posed method provides better performance.

Moreover, as the proposed method utilizes the threshold
to accelerate the iteration processing, thus the computational
complexity versus the different updating thresholds Th is also
analyzed and the corresponding results are shown in Fig. 8.
It can be found that when the threshold Th is small, the dimen-
sion of sparse recovery is huge, thus it costs more computa-
tions. On the other hand, when the threshold Th is too large,
a large number of elements would be disregarded, thus the
computational complexity is reduced. However, it should be
noticed that much elements would be undesirably disregarded
by inappropriate threshold, which would lead to degraded
reconstruction performance, therefore the threshold should
be carefully set in practical application, the clutter perfor-
mance against different thresholds will be analyzed in the
next section.

FIGURE 9. Output SINRs of proposed method versus different updating
thresholds Th.

VI. CLUTTER SUPPRESSION PERFORMANCE
In this section, by using the simulated data, the MCARM
data, and one actual measured airborne phased array radar
data, the performance of the proposed method is investigated
and compared with the M-FOCUSS method, conventional
SBL method and the G-SBL method. The output SINR is
employed as the metric for the performance comparisons,

when the target power is denoted as σ 2
t = E

{∣∣∣ξ̃t ∣∣∣2}, the out-
put SINR is defined as

SINRout =
σ 2
t |w

Hvt (ωt , ϑt )|2

wHRw
(37)

A. SIMULATED DATA
The performance verification is firstly carried out by a simu-
lated side-looking ULA array. The simulation data is gener-
ated based onMelvin’s model [3] and the detailed parameters
are listed in Table 2. In the simulations, the noise power is
assumed to be 0dBm, the number of spatial bins is Ns = 6N
and the number of Doppler bins is Nd = 6M , and all results
are averaged over 500 Monte Carlo runs.

1) EFFECT OF UPDATING THRESHOLD
Firstly, as the updating threshold is used in the proposed
method, the SINR output of the proposed method versus the
updating thresholds in each iteration should be simulated
accordingly and the corresponding results are shown in Fig. 8.
It is found that the SINR degrades when the threshold Th is
selected inappropriately. When the threshold Th is too small,
the dimension of sparse recovery is huge, thus it costs more
computations. On the other hand, when the threshold Th is
too large, a large number of elements would be undesirably
disregarded, leading to degraded reconstruction performance.
It can be found from Fig. 9 that the proposed method pro-
vides desirable performance when the threshold Th is about
1e-3 time of the noise level, which is applied in the following
simulations.

VOLUME 7, 2019 26747



X. Yang et al.: Discrete Interference Suppression Method Based on Robust Sparse Bayesian Learning for STAP

FIGURE 10. Sparse recovery performance of spatial-temporal spectrum. (a) Optimum results. (b) M-FOCUSS method. (c) SBL method. (d) G-SBL
method. (e) FB-SBL method. (f) Proposed R-SBL method.

2) SPARSE RECOVERY PERFORMANCE OF
SPATIAL-TEMPORAL SPECTRUM
The sparse recovery performance of the spatial-temporal
spectrum obtained by the proposed method is simulated
and compared with the M-FOCUSS method, SBL method,
G-SBL method, FB-SBL method and the optimum spatial-
temporal spectrum. The corresponding results are shown
in Fig. 10. It is observed that the target profile is removed
by all the methods because of the orthogonal projection
processing. The spatial-temporal spectrum obtained by the
M-FOCUSS and conventional SBL methods are spread
and contain some false peaks, which will affect the clut-
ter suppression performance. On the other hand, the pro-
posed method, the G-SBL method and the FB-SBL method
obtain similar spectrum to the optimum result. However, the
G-SBL method costs more computational complexity than
the proposed method.

3) PERFORMANCE OF CLUTTER AND DISCRETE
INTERFERENCE SUPPRESSION
The output SINR of the proposed method is simulated
with respect to the number of training data and com-
pared with the M-FOCUSS method, G-SBL method, and
SBL method. The results are shown in Fig. 11. It is clear
that the proposed method outperforms the M-FOCUSS and
the conventional SBL methods. Meanwhile, comparing with
the G-SBL method and the FB-SBL method, the proposed
R-SBL method can achieve comparable performance with

FIGURE 11. Output SINRs of M-FOCUSS, SBL, G-SBL and proposed
R-SBL methods versus the number of training data.

less computational complexity cost, which is shown and ana-
lyzed in the previous section.

Then the output SINRs by 4 training data and the range
detection performance at target normalized Doppler fre-
quency are simulated and the corresponding results are shown
in Fig. 12 and Fig 13. It is found that all sparsity-based
methods can effectively suppress the clutter and discrete
interference, thus the proposed method can obtain better
suppression performance than M-FOCUSS method and
SBL method because of the robust iterative sparse recovery
processing. Meanwhile, comparing with the G-SBL method
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FIGURE 12. Output SINRs of M-FOCUSS, SBL, G-SBL, FB-SBL and
proposed R-SBL methods versus the target Doppler frequency.

FIGURE 13. Range detection performance at target Doppler frequency of
M-FOCUSS, SBL, G-SBL, FB-SBL and proposed R-SBL methods.

and FB-SBL method, comparable performance is obtained
by the proposed method, a desirable range detection perfor-
mance is achieved.

B. MEASURED DATA
In this section, by utilizing the MCARM data and the actual
measured airborne radar data, the proposed R-SBL method is
verified and compare with the M-FOCUSS, G-SBL, FB-SBL
and conventional SBL methods.

1) MCARM DATA
In this example, the MCARM data is utilized for verifica-
tion [36]. The array was an L-band phased array antenna con-
sisting of 22 elements arranged as 2×11 configuration. The
PRF of the radar is 1984Hz, the platform velocity is 100m/s,
and the platform height is 3078m. 12 pulses and 8 elements
data are applied. It is known from [36] that a target is located
at the 299th range cell with a normalized Doppler frequency
of -0.15. A made discrete interference is inserted in the
CUT, whose INR is set 35 dB, with the normalized Doppler
frequency of 0.25. The range-Doppler spectrum of received

FIGURE 14. The range-Doppler spectrum of MCARM data.

FIGURE 15. Output SINRs of M-FOCUSS, SBL, G-SBL, FB-SBL and
proposed R-SBL methods based on MCARM data.

data is shown in Fig 14, it can be found that the true target is
covered by the clutter and the discrete interference is obvious
at different Doppler frequency. In the verification, the number
of spatial bins and Doppler bins are Ns = 6N and Nd = 6M ,
4 range cell data around the 299th range cell are selected as
the training data. The loading factor is set to 10 dB above the
noise power level and the threshold is 10−3 time of the noise
power.

Fig. 15 shows the output SINR with respect to the
normalized Doppler frequency. It is observed that the
proposed method can obtain better SINR compared with
the M-FOCUSS method and the SBL method. The
proposed R-SBL method achieves almost identical perfor-
mance as the G-SBL method and the FB-SBL method
with much less computations. Afterwards, we depict
the range detection performance at target Doppler fre-
quency in Fig. 16. It is evident all sparsity-based
STAP methods can obtain desirable detection, and com-
pared with the M-FOCUSS and the SBL methods, the pro-
posed R-SBL method achieves improved range detection
performance.

VOLUME 7, 2019 26749



X. Yang et al.: Discrete Interference Suppression Method Based on Robust Sparse Bayesian Learning for STAP

FIGURE 16. Range detection performance at target Doppler frequency of
M-FOCUSS, SBL, G-SBL, FB-SBL and proposed R-SBL methods based on
MCARM data.

FIGURE 17. The range-Doppler spectrum of actual measured airborne
radar data.

2) ACTUAL MEASURED AIRBORNE RADAR DATA
Afterwards, 8 channels and 16 pulses of the actual airborne
radar data are utilized. A strong target is located at the
231th range cell with a normalized Doppler frequency of
about 0.07 [16]. in the verification, we use Ns = 6N
and Nd = 6M , and the INR of the discrete interference
is 30 dB. The normalized Doppler frequency is -0.3. The
range-Doppler spectrum of received data is shown in Fig 17,
it can also be found that the true target is covered by the clutter
and the discrete interference is obvious at different Doppler
frequency. 4 range cell data around the 231st range cell are
used as the training data. The loading factor is 10 dB above
the noise level and the threshold is set to about 10−3 time of
the noise level.

From the output SINR results shown in Fig. 18, it is
seen that the proposed R-SBL method achieves better perfor-
mance especially in the main-lobe region compared with the
M-FOCUSS and the SBL methods. Fig. 19 compared the
range detection performance at target Doppler frequency,
which is similar to that obtained from the simulated data

FIGURE 18. Output SINRs of M-FOCUSS, SBL, G-SBL, FB-SBL and
proposed R-SBL methods based on actual measured airborne radar data.

FIGURE 19. Range detection performance at target Doppler frequency of
M-FOCUSS, SBL, G-SBL and proposed R-SBL methods based on actual
measured airborne radar data.

example, i.e., the proposed method offers better range
detection performance. It thus verifies that the proposed
R-SBL method gives improved performance in a practical
clutter environment.

VII. CONCLUSION
In this paper, a space-time discrete interference suppression
method based on robust SBL has been proposed by investigat-
ing the sparse property of spatial-temporal clutter spectrum.
In proposed method, the spectral distribution is estimated
based on the MAP principle and the mismatch of overcom-
plete dictionary is calibrated by calculating the error matrix.
Due to the robust clutter spectrum estimation, the proposed
method can simultaneously suppress the discrete interference
and homogeneous clutter effectively. The proposed method
can improve the detection performance with less computa-
tional complexity compared with existing STAP methods.
The effectiveness of the proposed method was verified based
on the simulated and actual airborne phased array radar data.
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