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ABSTRACT Deep learning, such as convolutional neural networks, has been achieved great success in image
processing, computer vision task, and image compression, and has achieved better performance. This paper
designs a multiple description coding frameworks based on symmetric convolutional auto-encoder, which
can achieve high-quality image reconstruction. First, the image is input into the convolutional auto-encoder,
and the extracted features are obtained. Then, the extracted features are encoded by the multiple description
coding and split into two descriptions for transmission to the decoder. We can get the side information by
the side decoder and the central information by the central decoder. Finally, the side information and the
central information are deconvolved by convolutional auto-encoder. The experimental results validate that

the proposed scheme outperforms the state-of-the-art methods.

INDEX TERMS Convolutional auto-encoder (CAE), multiple description coding (MDC), predictive coding,

quality metric.

I. INTRODUCTION
The aim of image compression is to remove the redun-
dant information of the image by using the relevance. The
compressed image can be stored and transmitted at low bit
rates. In recent years, deep learning has been widely used
in lossless and lossy image compression, and has achieved
good performance. Deep convolutional neural networks have
become a universal tool for successfully solving advanced
computer vision tasks. Recently, CNNs have been applied to
the field of low-level computer vision and image processing
to solve the relatively shallow regression problem of most
networks. Machine learning methods are applied to lossy
image compression and have achieved promising results with
auto-encoders. Auto-encoders has been used in dimensional-
ity reduction, compact representation of images. Parameters
in the Auto-encoders can be optimized by the minimized loss
function, and it is desirable to achieve better compression
performance than traditional image compression algorithms,
including JPEG [1] and JPEG2000 [2].

In the training process of the deep learning model, a pre-
diction result is obtained from the input to the output, which
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will get an error compared with the real result. This error
will backpropagation at each level of the model, and the
representation of each layer will be adjusted according to this
error until the model converges or achieves the desired effect.
To solve this problem, end-to-end models are designed.
In [3], a complete image compression method for end-to-
end optimization of rate and transmission performance is
proposed, which is based on nonlinear transform coding. This
compression method improves the rate and outperforms the
performance of JPEG and JPEG 2000. In [4], an efficient
end-to-end compression framework based on two CNNs is
proposed, the first CNN is used to generate a compact inter-
mediate representation for encoding using an image encoder,
the second CNN is used to reconstruct the high-quality
decoded image.

Different from the above end-to-end model, some neu-
ral network methods for image compression are proposed.
The work [5] proposes a general framework for variable
rate image compression and a novel architecture based on
convolution and deconvolution LSTM recurrent networks,
which provides better visual quality than (headerless) JPEG,
JPEG2000 and WebP for compressing 32 x 32 small thumb-
nail images. In [6], a set of full-resolution lossy image com-
pression methods based on recurrent neural networks are
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proposed. These work have achieved promising coding per-
formance, but they do not use a real entropy encoder to
generate the final code. In [7], a novel /2-layer deep convo-
lutional neural network is proposed for compression artifact
suppression in JPEG images with hierarchical skip joins and
training using multi-scale loss functions.

And some approches are proposed to take advantage of the
auto-encoder for image compression. In [8], a lossy image
compression method based on machine learning is proposed,
which is superior to all existing codecs in real-time operation.
In [9], a new method of optimizing auto-encoders for lossy
image compression is proposed, which uses residual net-
works and sub-pixel convolution. This method is inspired by
the work of [10]. In [11],the development of the deep convo-
lutional auto-encoder in the Caffe deep learning framework is
introduced, but the proposed model does not include the pool-
ing/unpooling layers. In [12],a comprehensive performance
comparison was performed on three overall compression
architectures based on convolutional autoencoders (CAE) to
generative adversarial networks (GAN) and super-resolution
(SR) for Image Compression. In [13], a lossy image com-
pression architecture using deep convolutional auto-encoder
to achieve efficient coding is proposed.

MDC encodes the source by multiple independent descrip-
tions for transmission, and any independent code stream can
reconstruct the source, whose quality is within the accep-
tance range at the decoder. Moreover, the more descriptions
obtained by the decoder, the better the quality of the recovered
data. Therefore, it has strong robustness. MDC method is
also gradually being used in the processing of video, image
and various multimedia signals [14]-[21], and has achieved
promising results. MDC can solve the problem of packet
losses in a communication network [23]. The MDC method
can prevent the image and video quality from being seriously
degraded due to packet error or loss.

In [14], a multiple description scalar quantizer(MDSQ)
method is proposed, which involves an index assign-
ment problem. This is the first practical MDC scheme.
Then applied to the entropy-constrained multiple description
scalar quantizers coding scheme [15]. In [16], a two-stage
MDSQ scheme is proposed, whose product of central
and side distortion is closer to the multiple description
rate-distortion bound, and its simple structure can achieve
asymptotic distortion products with a smaller gap from
the rate-distortion boundary. In [17], using multiple descrip-
tion uniform scalar quantization (MDUSQ), robust and
progressive transmission over unreliable channel is per-
formed. In [18], error resilient data compression algorithms
based on wavelets, multiple description scalar quantizers
and erasure-resilient codes are designed. Reference [19]
describes a new algorithm for an optimal generalized multi-
ple description vector quantization(MDVQ),and it performs
well in the case of extensive packet loss. In [20], the prob-
lem of lattice vector quantizer design is solved for the
two-channel multiple description, and the label problem
is solved.In [21], a multi-description image coding scheme
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based on multi-description lattice vector quantization is
proposed to achieve better rate and central/side distortion
performance. In [22], presenting a construction of multi-
ple description trellis-coded quantizer(MD-TCQ), the com-
plexity of the scheme is almost independent of the rate.
In [24], two multi-description coding schemes with random
and uniform offset quantization are proposed, the proposed
scheme is applied to multi-description image coding based
on overlapping transform. Reference [25], [27] are improve-
ments to multiple description coding with randomly offset
quantizers(MDROQ).In [28],a novel multi-description video
coding scheme based on the characteristics of the human
visual system (HVS) is proposed.

In [26], according to image’s context features, a new
standard-compliant MDC framework based on deep convo-
lutional neural network is proposed, this is the first work
using convolutional neural network for multiple description
coding.

In this paper, we propose a MDC framework based on sym-
metric CAE for image compression. Our main contributions
are lists as follows:

1) We designe a symmetric CAE network with convolu-
tion/deconvolution filter pairs to generate feature maps
with low dimensions.

2) MDC is used to replace the traditional codec, avoid-
ing the delay caused by retransmission, and solving
the packet losses problem, thus ensuring the real-time
transmission of information, realizing the robust trans-
mission of image data and improving the image quality
of reconstruction.

3) In this paper, we combine MDC and CAE for image
compression to achieve high quality coding efficiency.

The remainder of this paper is organized as follows. The
section 2 introduces the framework of this paper, including
the CAE network and the MDC framework. The experimen-
tal results are given in the section 3. In the section 4, we
conclusion this paper.

Il. THE PROPOSED FRAMEWORK
In this section, the proposed scheme is introduced firstly, then
CAE network and the MDC framework are presented.

A. ARCHITECTURE OF THE PROPOSED SCHEME

CAE is mainly used for image reconstruction, such as image
compression and denoising. The MDC is used to replace the
traditional compression codec, which is possible to prevent
the image and video quality from being seriously degraded
due to packet loss or bit error. In this paper, we propose
a MDC framework based on symmetric CAE for image
compression. The combination of CAE and MDC for image
compression can improve the coding efficiency, and obtain
a more accurate reconstructed image. As far as we know,
there is only one article combining CNN and MDC for image
compression [26]. Our framework has two components: sym-
metric CAE network and MDC framework, as depticted in the
Fig. 1.
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FIGURE 1. MDC framework based on symmetric CAE.

At the encoder, the input image is subjected to a
convolution operation of CAE to obtain a set of convolution
features, and the extracted features are passed through an
MDC encoder, and are divided into two descriptions and
transmitted to the decoder by different channels. At the
decoder, if all the descriptions are received, we can obtain
the central reconstructed data by the central decoder; If only
one description is received, we can get the side reconstructed
data by the side decoder. Finally, the obtained central data and
side data are processed by the CAE deconvolution operation,
and we can obtain high quality central reconstructed images
and side reconstructed images.

MDC assumes that there are multiple channels between
the source and the receiver, and multiple descriptions are
transmitted to the receiver by different channels, ensuring that
acceptable image quality is still obtained when only some
descriptions are received. It can be seen that the more descrip-
tions obtained, the better the reconstructed image quality.
Since a part of the information can be used to reconstruct
acceptable-quality image, MDC is widely used in the field of
image processing and image compression. CAE can extract
the compression features of the image and input the fea-
tures into the MDC for further compression, thereby improv-
ing compression efficiency. By combining MDC with CAE,
higher quality reconstructed images can be obtained.

B. ARCHITECTURE OF CONVOLUTIONAL AUTO-ENCODER
NETWORKS

CAE can be used to learn the missing part of the image or
denoising for image reconstruction. CAE defines the task
of the filter: the best filter is learned by minimizing recon-
struction errors for the model. Using the convolution and
pooling operations of CNNs to achieve unsupervised feature
extraction of feature invariant extraction, the process of its
implementation is consistent with the idea of an auto-encoder.
Deconvolution is usually used to map low-dimensional

VOLUME 7, 2019

features into high-dimensional inputs, which is the opposite
of the convolution operation, that is, the forward propagation
process of the convolutional layer is the back propagation
process of the deconvolution layer.

CAE is a neural network that uses a backpropagation
algorithm [29] to make the output value equal to the input
value. Firstly, it compresses the input image into a latent
spatial representation, and then the output is reconstructed by
this characterization.

In this paper, a symmetric CAE network is designed
(as shown in Fig. 2). In order to obtain a compressed rep-
resentation of the input image, the CAE encoding/decoding
process requires downsampling/upsampling operations.
Ni represents the number of filters for convolution or decon-
volution. In [10], it points out that the super resolution can
be achieved more efficiently by convolving the image and
then upsampling, rather than upsampling and then convolving
the image. Continuous downsampling reduces the quality of

‘ Input ’—» Conv1 DeConv6 —>{ Output ‘
HxWx1 ¥ HXWxN;  Hxwn, HXWx1
Conv2 DeConv5
¥ HI2xW/2xN3 } Hi2xW/2xN,
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¥ H/2XW/2xN3 4 H/2xW/2xN3
Conv4 DeConv3
PH/AXW/4XN, T H/axwyaxn,
Convs DeConv2
JH/4xW/4xN5 F HiaxW/4xNs
Conv6 DeConv1
[H/8xW/8xNs ¥

FIGURE 2. The framework of CAE network. Instead of the pooling layer,
the convolution layer with stride set to 2 is utilized to preserve image
information as much as possible.
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the reconstructed image, so this paper uses a convolution/
deconvolution filter pair for downsampling or upsampling.

The number of filters in the convolutional layer is set to
{32, 32, 64, 64, 64, 32}, and the number of deconvolution
layer filters is inverse to the convolutional layer. Instead of
the pooling layer, the convolution layer with stride set to 2 is
utilized to preserve image information as much as possible.
All convolutional layer activation functions use the ReLU
function.

When performing a convolution operation, convolution
operation between each input data having a depth D,

.,Xp, and a set of convolution kernels

K (1) , Ky (1) t0 produce a set of feature maps. In order
to 1mpr0ve the generalization ability of the network, each
convolution is activated by the nonlinear function a(), and the
resulting network can learn some nonlinear characteristics of
the input data:

fo=aX*KP+bD), m=1,...,n 1)

where X is input data, K,(,,l) is m-th convolution kernel,
bﬁ) indicates the bias of the m-th feature map. The recon-
structed image X is the result of convolution between the
dimension of the feature F and the deconvolution filter K®.

X =a(F «K? +b?) )
The mean square error(MSE) between the original image X
and the reconstructed image X is expressed as

1 .
me=?w—m@ )

The CAE consists of two parts: (1) convolutional layer,
represented by the encoding function y = f(x),which can be
used to compress the input into a latent spatial representation.
(2) deconvolutional layer, represented by the decoding func-
tion x = g(y),which can be used to reconstruct the input from
the latent spatial representation. Therefore, the entire auto-
encoder can be described by the function g(f (x)) = x, where
the output x is close to the original input x. The loss function
of CAE is defined as

1 .
L=§Hx—ﬂV+MWW

1 2 2
= 5 [ = g CDI” + A “

A controls rate-distortion tradeoff. In this paper, the CAE
network is optimized with the Adam algorithm [30]

C. FRAMEWORK OF MULTIPLE DESCRIPTION CODING
MDC is used to replace the traditional compression codec,
which can solve the problem of packet losses in a communi-
cation network. In the MDC framework applied in this paper,
the input source is divided into M subset, and M descriptions
can be got. The general expectation distortion expression of
MDC, which can be written as

M
D= Zkak (5)
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FIGURE 3. The data-set is used for our testing.

where py is the probability of received k descriptions, and Dy,
is the corresponding expected distortion. When k = 0, Dy, is
the variance of input.

At the encoder, the features extracted from the CAE are
divided in to M subset. For one description, uses a smaller
quantization step size to quantify a subset, and the other
subsets are sequence predicted by the encoded subsets in the
same description, and prediction redundancy is encoded with
a larger quantization step size.

As shown in Fig. 1, we apply two descriptions coding. For
Description 1, subset 1 is quantized with a smaller quanti-
zation step size qg, subset 2 is predicted with reconstructed
subset 1, and prediction redundancy e; is quantized with a
larger quantization step size q;. For Description 2, subset 2 is
quantized with a smaller quantization step size gg, subset 1 is
predicted with reconstructed subset 2, and prediction redun-
dancy e; is quantized with a larger quantization step size q;.
In the i-th description, ¢; is used to identify reconstruction
redundancy, therefore, the reconstructed value in the i-th
description is

yi=Jyitei (6)

y is the feature extracted from the CAE, y; represents the
predicted value of y in the i-th description.

Description 1 and Description 2 are transmitted to the
decoder by two separate channels, respectively. If all the
descriptions are received completely, the central decoder is
used to obtain high quality reconstruction data; If only one
description is received, the missing information can also be
recovered by the side decoder using the received information,
we can get the acceptable information. The more descrip-

tions received by the decoder, the better the quality of the
reconstructed source.

Ill. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed scheme,
the objective and visual experimental results are given in this
section.

A. DATASETS FOR TRAINING AND TESTING

Our whole framework is implemented on the Tensorflow [31]
platform. The 400 images with size 180 x 180 from [32] are
used as our training data-set,which are cropped, flipped, and
rotated to get the final number 3,200 of images with size of
128 x 128 used for our training data set. In our experiments,
H and W are set to 128; therefore the input image in the CAE
is split into non-overlapping 128 x 128 patches,which can be
compressed independently. The test image is given in Fig. 3.
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FIGURE 4. Objective metrics comparison for side reconstruction and central reconstruction of PSNR and SSIM of
the image(a) and (b) in Fig.3 with the state-of-the-art approaches.

Please note that the test image is not included in the training
datasets. The learning rate of training is initially set as 0.0001.

B. EXPERIMENTAL RESULTS

We use four  state-of-the-art  artifact  removal
techniques [33]-[36] and super-resolution techniques based
on very deep convolutional neural networks [37] to form
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four baselines “MDBla-MDB4a”. At the same time,
the super resolution of [38] is combined with artifact
removal [33]-[36] to construct the other four baselines
“MDB1b-MDB4b”. Based on the image context feature,
the new CNN network based on the MDC framework [26],
which is denoted as ‘“Zhao[24]”. In addition, in order to
fully prove the efficiency of the proposed method, Zhao’s
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FIGURE 5. Objective metrics comparison for side reconstruction and central reconstruction of PSNR and SSIM of
the image(c) and (d) in Fig.3 with the state-of-the-art approaches.

replaces the multiple description generating network MDGN
with poly-phase downsampling technique in [39], forming
a baseline model, which is expressed as ‘““Zhao-base”. For
the sake of convenience, “Ours” denotes our proposed
framework. To verify the efficiency of the framework, we
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use Peak Signal to Noise Ratio (PSNR) and structural
similarity index measure (SSIM) to measure the objective
quality.

In Fig. 4, (al,bl), (a3,b3) are the side reconstruction PSNR
and the central reconstruction PSNR of the image (a) and (b)
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(h3)

FIGURE 6. Comparison of visual quality of different methods of image (d) in Fig. 3. Where (a1) represents the original image of the input, (a2) represents
multiple descriptions created by poly-phase down-sampling techniques,and (a3) represents multiple description networks generated by Zhao's proposed
MDGN, (a4) represents differences between a pair of images in (a2) and (a3), respectively, (a5)and (a6) represent compressed images of (a2) and

(a3).respectively; (b-h) description the reconstructed image, where the (b1-h1, b2-h2) and (b4-f4, b5-f5) represents side reconstructed images, the (b3-h3)

and (b6-f6) represents central reconstructed images; (b1-b3) MDB1a (27.808/0.824/0.232(s) and 31.319/0.861/0.463(c)), (b4-b6) MDB1b
(27.843/0.825/0.232(s) and 31.367/0.862/0.463(c)); (c1-c3) MDB2a (28.524/0.832/0.232(s) and 31.526/0.857/0.463(c)), (c4-c6) MDB2b
(28.579/0.833/0.232(s) and 31.601/0.858/0.463(c)); (d1-d3) MDB3a (28.642/0.827/0.232(s) and 31.288/0.850/0.463(c)), (d4-d6) MDB3b
(28.700/0.828/0.232(s) and 31.352/0.851/0.463(c)); (e1-e3) MDB4a (29.244/0.846/0.232(s) and 29.428/0.850/0.463(c)), (e4-e6) MDB4a
(29.270/0.846/0.232(s) and 29.471/0.850/0.463(c)); (f1-f3) Zhao-base (32.040/0.865/0.232(s) and 33.098/0.881/0.463(c)), (f4-f6) Zhao[24]
(31.913/0.874/0.229(s) and 33.865/0.889/0.458(c))); (h1-h3) Ours (33.597/0.902/0.229(s) and 34.496/0.914/0.458(c)).

in Fig.3, respectively. (a2,b2), (a4,b4) are the side reconstruc-
tion SSIM and the central reconstruction SSIM of the image
(a) and (b) in Fig.3, respectively. And in Fig. 5, (cl,dl),
(c3,d3) are the side reconstruction PSNR and the central
reconstruction PSNR of the image (c) and (d) in Fig.3, respec-
tively. (c2,d2), (c4,d4) are the side reconstruction SSIM and
the central reconstruction SSIM of the image (c) and (d)
in Fig. 3, respectively.

From the Fig. 4 and Fig. 5, it can be seen that our method
has more PSNR and SSIM gain than MDBla-MDB4a,
MDB1b-MDB4b, Zhao[24] and Zhao-base. In (cl-c4) of
Fig. 5, Ours may have a litter lower PSNR and SSIM than
MDB4a, MDB4b, Zhao-base or Zhao[24] at low bit rates.

In this paper, we compare the visual quality of
the proposed method with MDBla-MDB4a, MDBIb-
MDB4b, Zhao-base and Zhao[24], as shown in Fig. 6.
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Among these images, MDB1a (27.808/0.824/0.232(s) and
31.319/0.861/0.463(c)) represents PSNR/SSIM/bpp metrics
for side reconstruction and center reconstruction based on
the MDB 1a method. In the Fig. 6, the visual quality compar-
ison of the proposed method with state-of-the-art methods
of (d) in Fig.3 is given. It can be seen that the side recon-
struction image and the central reconstruction image of the
proposed method have more detail preservation than the other
methods.

From the above comparison of objective and visual
quality, we can see that our method is better than the
state-of-the-art methods. It is shown that the combi-
nation of CAE and MDC for image compression can
improve the image reconstruction efficiency and obtain high-
quality side reconstructed images and central reconstructed
images.

26019



IEEE Access

H. Li et al.: Multiple Description Coding Based on Convolutional Auto-Encoder

IV. CONCLUSION

In this paper, we propose a MDC framework based on
CAE for image compression. Firstly, a symmetric CAE net-
work using downsampling/upsampling pairs is designed to
replace the conventional transforms. Secondly, MDC is used
to replace the traditional compression codec, avoiding the
delay caused by retransmission, and solving the packet loss
problem, thereby ensuring the real-time performance of infor-
mation transmission.The experimental results show that the
proposed framework can achieve better coding efficiency.
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