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ABSTRACT In this paper, we tackle the problem of random forests for regression expressed as weighted
sums of datapoints. We study the theoretical behavior of k-potential nearest neighbors (k-PNNs) under
bagging and obtain an upper bound on the weights of a datapoint for random forests with any type of splitting
criterion, provided that we use unpruned trees that stop growing only when there are k or less datapoints at
their leaves. Moreover, we use the previous bound together with the concept of b-terms (i.e., bootstrap terms)
introduced in this paper, to derive the explicit expression of weights for datapoints in a random (k-PNNs)
selection setting, a datapoint selection strategy that we also introduce and to build a framework to derive other
bagged estimators using a similar procedure. Finally, we derive from our framework the explicit expression of
weights of a regression estimate equivalent to a random forest regression estimate with the random splitting
criterion and demonstrate its equivalence both theoretically and practically.

INDEX TERMS Random forests, regression, bagging, bootstrap, nearest neighbors, k-potential nearest
neighbors.

I. INTRODUCTION
Random forests is a powerful machine learning ensemble
method that has achieved state-of-the-art performance in clas-
sification and regression tasks. It is computationally fast,
produces high accuracy results, has a low parameter count
for an ensemble and can handle small sample sizes even with
a high number of features. As such, it has earned a wide
interest in the research community that spawned a significant
amount of papers [5]. It operates by training multiple deci-
sion or regression trees each on bootstrapped samples of the
data and combining their predictions most typically by voting
(classification) or averaging (regression). In the process of
building each tree, a randomly selected subset of the total
number of features is used at each time the data is split to
search for the locally optimal splitting point (also referred
to as the cutoff in continuous variables). To determine the
optimal splitting point, a splitting criterion is required. In the
random forest literature, the two most used splitting criteria
for classification are the Gini index and the entropy index.
For regression, it is the predicted squared error.

The associate editor coordinating the review of this manuscript and
approving it for publication was Md Asaduzzaman.

In this paper, we focus on random forests (RFs) [7]
for regression. Initially, we have a training dataset Dn =

{(x1, y1), . . . , xn, yn)} of n i.i.d. samples from a (d + 1)-
dimensional random vector (X,Y ) taking values in Rd

× R.
Our goal is to estimate the regression function f (x) =
E[Y |X = x] for any x ∈ Rd usingDn. In doing so, we attempt
to minimize the mean squared errorMSE = E[f̂ (x)− f (x)]2,
where f̂ (x) is the regression function estimate of f (x). In this
context, we refer to the random forest regression estimate
as f̂RF (x).
While RF desirability has been displayed at a practical

level, soundmathematical understanding of themethod is still
a lacking subject. For the case of RFs with regression trees,
the problem stems from the intricate relationships between
bagging (Boostrap + AGGregatING) [6], [8] and the split-
ting criteria together, which renders individual regression
trees and conventional statistical analyses insufficient for
describing the ensemble. In the direction of mathematical
understanding of the model, some early works include [7],
that offered a widely known upper bound on the general-
ization error based on the strength (individual classifier’s
performance) and correlation (similarity of response of the
individual classifiers for given inputs) of the members of the
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ensemble. More recently, [16] showed that when regression
trees are grown without pruning and with a fixed parameter
k that regulates the tree growth by stopping whenever there
are k or fewer examples in a node, the regression function
estimate given by a RF algorithm can be viewed as a weighted
sum of datapoints:

f̂RF1 (x0) =
n∑
i=1

wi(x0)yi, (1)

where yi is the response value associated with datapoint
xi, wi(x0) is a weight that scales the contribution of yi to
the final prediction and x0 is the target datapoint to be
predicted. Additionally, an equivalence relationship between
RFs and a special type of nearest neighbors ([12], [13]) called
k-potential nearest neighbors (k-PNNs) was found out. It was
shown that if we omit bootstrapping, the regression function
estimate given by RFs can be expressed as

f̂RF2 (x0) =
∑

xi∈Pk (x0|Dn)

wi(x0)yi, (2)

where Pk (x0|Dn) is a set containing the k-PNN datapoints
of x0 in Dn. In this setting, different splitting criteria deter-
mine different wi(x0) values for each datapoint, and different
wi(x0) functions. This work established the foundations for
a path towards a sound understanding of the model. Another
work, [4], extended [16] and achieved consistency results on
a regression estimate that uses the 1-PNN, as well as further
understanding of the bagging technique when applied to the
well-known nearest neighbors algorithm. Both Equation (2)
from [16] and the bagging and 1-PNN analyses of [4] have
been sources of inspiration for this work.

While Equation (1) shows that the regression function
estimate of RFs can be expressed in terms of the weights,
an explicit expression for the weights is still unknown for any
splitting criterion.Moreover, RFs equipped with non adaptive
splitting criteria (i.e., that do not depend on the Y values) such
as random splitting, while being studied and widely regarded
as a simpler case of RF [10], [14], still lack an explicit
expression of these weights. In this direction, while literature
concerning bagged regression estimates as weighted sums of
datapoints is relatively abundant for some selected regression
estimates [9], [17], [19], the general consensus is that the
bagged form of a regression estimate cannot be computed
analytically for most cases and Monte Carlo simulation must
be used instead [18].

An explicit expression for the weights for a given split-
ting criterion would propose an alternative to the need of
training stage for a RF model building algorithm, shifting all
computational burden to the estimation of regression values
of new examples and completely eliminating trees (effec-
tively overcoming the Monte Carlo computational approach).
Additionally, an equivalence between RFs and other more
understood models could provide additional insights that
could help us understand the unknown theoretical underpin-
nings of RFs. To the best of our knowledge, these weights are

more directly discussed in [4], characterized as ‘‘nonnegative
Borel measurable functions of’’ x0 that sum to 1, but no
method for the explicit, analytical expression of these weights
can be found in the literature.

Together with this, [4] and [16] analyses left some open
questions: In [16], the k-PNN equivalence was discovered,
but bootstrapping was discarded as a simplification on the
RF models in order to make the analysis affordable. Thus,
the question of the k-PNNs relationship with RFs equipped
with bootstrapping remained unsolved. In [4], no analysis
was performed on the bagged 1-PNN regression estimate and
results for k > 1 were not considered, both remaining as open
problems.

In this paper we propose a framework for the analysis
and explicit calculation of the weights corresponding to gen-
eral RFs, using bootstrapping and different splitting criteria.
Effectively answering all previously exposed concerns.

In Section 2 we review in detail the concept of k-PNNs and
outline some of its most interesting properties.

In Section 3 we solve the problem of determining the influ-
ence of bootstrapping on bagged estimators (including RF)
in terms of weights using k-PNNs. We call these weights
bootstrapped weights and obtain results for k = 1.
In Section 4 we analyze the addition of splitting criteria to

our previous developments. We first derive an upper bound
on the final weights for any type of splitting criterion, and
follow it by the proposal of a regression estimate called
Random k-PNN Selection. We then extend the results of
Section 3 for arbitrary k by means of a proposed notation on
the bootstrap variations, denominated b-terms. Additionally,
we use this notation to derive explicit weights for the Random
k-PNN Selection regression estimate. Finally, we introduce a
framework to derive bagged estimators for the general case
of a splitting criterion and with it, we obtain a regression
estimate that correspondswith a RF that uses random splitting
criterion and stops at k datapoints in its leaves.
In Section 5 we validate the predictive behavior of both the

random k-PNN selection regression estimate and the obtained
RF-equivalent regression estimate with some practical exper-
iments, to illustrate the results of our work.

Finally, in Section 6 we summarize our work and present
our conclusions.

The Appendix contains the proofs of our results.

II. k-POTENTIAL NEAREST NEIGHBORS
Intuitively, a datapoint xi in the feature spaceRd is considered
a k-potential nearest neighbor (k-PNN) [16] of another, x0,
if the hyperrectangle defined by xi and x0 as opposing vertices
(x0 not included) contains k or less datapoints in the feature
space. Formally:
Definition 1: Let R(x0, xi) denote the set of datapoints con-

tained in the hyperrectangle defined by x0 and xi as opposing
vertices (x0 not included) in the feature space in Dn. Then
xi is a k-PNN of x0 in Dn if and only if |R(x0, xi)| ≤ k
(xi ∈ Pk (x0|Dn)).
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FIGURE 1. X = (X1, X2) feature space plot where we outline the datapoints in F1(x0) (red) and in F2(x0) (blue), with
x0 = (0, 0). The number of concentric circles around a datapoint represents the number of times the datapoint is
selected as a k-PNN in the plot for k = 1, 2. Notice how the dashed rectangular area does not contain any other
datapoint for the datapoints in F1(x0) and the dashed dot rectangular area contains just one for the
datapoints in F2(x0).

|.| denotes the cardinality of a set and k ∈ N. Additionally,
we now define Fk (x0) as the set of datapoints ofDn that have
exactly k datapoints contained in the hyperrectangle that goes
from each of them to x0. That is, Fk (x0) = {xi ∈ Dn such that
|R(x0, xi)| = k}.
Figure 1 shows an example of the k-PNN points of a

point x0 for two different values of k (k = 1, 2). Note
that |Pk (x0)| (we use Pk (x0) instead of Pk (x0|Dn) when the
context is clear) can be clearly more than k . For a more
precise study of the cardinality of the k-PNNs, the number of
the 1-PNNs to be expected for uniform and arbitrary finitely
bounded densities in Rd have been studied in [4] and [16],
respectively.
k-PNNs have a number of interesting properties:
k-PNNs correspond to a special case of nearest neighbors

where the distance value is defined as the number of data-
points selected by all monotone distances [16]. A monotone
distance satisfies the following property: Given datapoints xa
and xb and the hyperrectangle defined by both as opposing
vertices, any point xc inside the hyperrectangle would be
considered ‘‘closer’’ to xa or to xb than xa to xb, (for example,
all p-norm ||.||p distances are monotone distances).
With this we can define the PNN distance between data-

points x0 and xi as a function in N that outputs the number
of datapoints inside the hyperrectangle defined by both as
opposing vertices.

The particular case 1-PNN has received special attention
and is commonly referred to as the layered nearest neighbors
in the literature. It was initially proposed as an example of
scale invariant metric in [11]. Biau and Devroye [4] showed
that the layered nearest neighbors are closely related to the
notions of maximum [2] and dominance [1] in high dimen-
sional spaces. A point xa dominates another xb if xai ≥ xbi for
all i = 1, . . . , d and a point is a maximum if no point dom-
inates it. The relationship between k-PNNs and dominance
is the following: If we consider each quadrant separately and
apply absolute value to the coordinates, 1-PNNs or layered
nearest neighbors are precisely the points that do not dom-
inate any other point. For arbitrary k , while not explicitly
mentioned in [4], the k-PNNs are the points that dominate
k or fewer points.
Finally, k-PNNs exhibit a property that links them directly

to RFs that grow non-pruned trees stopping at leaves with
k or less datapoints. Regression tree cuts at splitting points
define hyperrectangular partitions of the feature space, and
the number of possible partitions in a RF that include a
point x0 with k or fewer datapoints, is finite and determined
by the distribution of the datapoints. As proven in [16] we
have that, for a fixed dataset (i.e., without bootstrapping) the
datapoints xi that can be selected with |R(x0, xi)| ≤ k , are the
k-PNNs of x0 (Pk (x0)), that is, the voting points of a RF
(as in Equation (2)).
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III. BAGGING AND k-PNN
Biau et al. [3] analyzed the regression estimate resulting from
bagging the 1-NN regression estimator. It was shown that
the bagged 1-NN takes the form of a weighted NN estimator
where each point contributes to the regression estimate of x0,
f̂ ∗1−NN (x0), according to

f̂ ∗1−NN (x0) =
n∑
i=1

vi(x0)yi, (3)

where all xi datapoints are here sorted by increasing distance
to x0 in the feature space, the ∗ symbol denotes a bagged
estimator and vi(x0) is the probability that the i-th NN of x0,
xi inDn, is the closest neighbor in a bootstrapped dataset. The
set of vi’s is in this case a decreasing sequence given by the
expression

vi(x0) =
(
1−

i− 1
n

)n
−

(
1−

i
n

)n
. (4)

We will refer to the set VNN = {v1(x0), . . . , vi(x0), . . . ,
vn(x0)} as the bootstrap weights for the NN regression
estimate.

Our interest now lies in understanding how bootstrap
weights behave in a similar setting but using the set of k-PNN
points instead of the k-NNs. We start by understanding that
similarly to the previous case, each point must be weighted
by an additional vi(x0) factor where vi(x0) is the probability
that xi is a k-PNN of x0 in a bootstrapped dataset (xi’s are
not sorted here). Our bootstrap weights vi(x0) would appear
in the bagged version of

fk−SA(x0) =
∑

xi∈Pk (x0)

yi, (5)

that is, f ∗k−SA(x0).
We will refer to Equation (5) as ‘‘select all’’ point selection

strategy, hence the SA subindex. Notice that Equation (5) is
not an estimator of E[Y |X = x]. The normalized version,
f̂k−PNN (x0) = 1

|Pk (x0)|
∑

xi∈Pk (x0) yi is a regression estimate

and is studied in [4] for k = 1 as the layered NN estimate.
In order to calculate f̂ ∗k−SA(x0), additional results and def-

initions are needed, with the final solution, for arbitrary k ,
provided in section 4. We now continue with the following
lemma and the case k = 1:
Lemma 2: Let us define the set Rm(xi) = R(x0, xi) \ {xi},

where x0 and xi are datapoints and x0 is our prediction
target. Then xi is a k-PNN of x0 for all bootstrap variations
such that |D∗j ∩ Rm(xi)| ≤ k − 1 where D∗j ∈ B(Dn)
and B(Dn) = {D∗1,D

∗

2, . . .D
∗
nn} is the set of all bootstrap

variation selections of Dn.
Proof: See Appendix.

Intuitively, Lemma 2 establishes for a datapoint xi such that
|R(x0, xi)| = p, p ∈ N to be a k-PNN with p > k , then
p − k points of R(x0, xi) need not to appear in a considered
bootstrap variation, or differently said, xi is a k-PNN only
in the fraction of the bootstrap variations that satisfy the
requirement of Lemma 2 (for p ≤ k , the only difference is

that xi is already a k-PNN inDn). Therefore, we only need to
be concerned with the bootstrap variations that alter Pk (x0).

A. THE 1-PNN CASE
For the remainder of this section and for purposes of simplic-
ity, we will analyze the case of bootstrap weights for 1-PNN.
Notice that in this case we need Rm(xi) = ∅ for xi to be a
1-PNN.

For purposes of explanation, let us consider a dataset plot
(Figure 2) and analyze both the cases of using 1-NN and
1-PNN point selection strategies of f̂1−NN (x0) [3] and
fk−SA(x0) (Equation (5)), respectively. Using 1-NN as our
criterion and in a continuous feature space, we can arrange all
datapoints in a ranking type hierarchy (from lowest to highest
Euclidean distance to x0), where the point to be selected
as 1-NN is always the highest ranked that appears in the
bootstrapped variation. In other words, the i-th ranked point
will be selected as the 1-NN in the bootstrap variations that
do not include the first i− 1 ranked points.
For 1-PNNs, distances between points are discrete (PNN

distance) and multiple point selections occur in the general
case (that is, multiple 1-PNNs for a given x0 are expected).
The result is a seemingly complex hierarchy where some
points are linked to certain others by a ‘‘+1 PNN distance’’
relationship that determines the bootstrap requirements for a
datapoint to be selected as a 1-PNN (Figure 2 and Figure 3).

We are now prepared for the following theorem:
Theorem 3: Let m be the minimum value of k for which all

datapoints are m-PNN. Then f ∗1−SA can be written as

f ∗1−SA(x0) =
m∑
i=1

 ∑
xj∈Fi(x0)

vj(x0)yj

, (6)

where the set of bootstrap weights VSA are of the form:

vj(x0) =
(
1−
|R(x0, xj)| − 1

n

)n
−

(
1−
|R(x0, xj)|

n

)n
where |R(x0, xj)| = i.

Proof: See Appendix.
Notice that as expected from multiple point selections,

we do not necessarily have
∑n

i=1 vi(x0) = 1, and in most
of the cases

∑n
i=1 vi(x0) > 1. Generalization of this theorem

for k > 1 will be provided in Section 4.
Our achievement here, described in terms of hierarchies

for bootstrap variation requirements, is that it makes the
bootstrap weights of 1-PNNs accessible for calculation as
they are effectively expressed in Theorem 3 and by Lemma 2,
in the same way as the resulting VNN from bagging the 1-NN
regression estimate. Its importance lies in that it describes the
voting points (1-PNN) variations under bootstrapping, thus
making it a useful tool for RF analysis.

IV. REGRESSION ESTIMATES AS A WEIGHTED
SUM OF k-PNNS
We are now interested in obtaining the final weights,
that is, the set of weights WRF , that accounts for both
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FIGURE 2. Feature space plot showing the outlining of Fk (x0) of x0 = (0, 0) for values of k from 1 to 5.

FIGURE 3. Graphical representation of the hierarchical precedence order for 1-PNN for the datapoints
in Figure 2. In the plot, original points are arranged in a hierarchy that shows the precedence relationships
for the 1-PNN. Similarly, we can see that the k − 1 points connected by the arrows from another xi are the
points that need not to be included in a bootstrapped sample for xi to be selected as a 1-PNN. For example,
x29 will be selected as 1-PNN if and only if x1, x2, x12 and x20 are not included in the bootstrapped sample.

bootstrapping and splitting criterion in a RF algorithm, where
wi(x0) ∈ WRF is the probability that xi is selected in a
RF algorithm.

In [16] it was shown that the splitting criteria can be
viewed as weight redistributors for the obtained k-PNNs,
corresponding to some particular solutions for the weights in
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Equation (2). Also, for a fixed dataset, the splitting criterion
can be interpreted as a selector of k points from Pk (x0).

We add the following result to the previous considerations
by understanding the relationship between bootstrap weights
and the final weights:
Lemma 4: Let f̂RF (x0) be a RF regression estimate that

uses bootstrapping and unpruned trees that stop at k = 1
datapoints in the leaves. Let xi be a datapoint in Dn and x0
the datapoint to predict. Then

vi(x0) =
(
1−
|R(x0, xi)| − 1

n

)n
−

(
1−
|R(x0, xi)|

n

)n
is an upper bound of the final weight wi(x0) (that is,
vi(x0) ≥ wi(x0)).

Proof: See Appendix.
Lemma 4 holds independently of the chosen split. Thus,

it also holds for all RFs growing unpruned trees stopping
when there is k = 1 datapoint in the leaves. Intuitively, we can
think of the splitting criterion as a second point selection
strategy applied after the selection of the k-PNNs for a given
x0, which causes only up to k k-PNNs to be selected. In the
general case, splitting criteria can be viewed as some form of
weight shrinking procedure of bootstrap weights VSA (that is,
the bootstrap weights for the f ∗k−SA(x0) regression estimate),
that bounds the resulting wi(x0) to

∑n
i=1 wi(x0) = 1. That is,

a normalized regression estimator.

A. ANALYSIS OF POINT SELECTION STRATEGIES
USING WEIGHTED B-TERMS
Now let us consider a regression estimate that applies a
random selection over the k-PNNs, that is, k random k-PNN
points are uniformly selected among the existing k-PNNs for
each bootstrapped sample. We have

f̂RkS (x0) =
1
k

∑
xi∈Pk (x0)

1[xi∈D(Pk (x0),k)]yi, (7)

where D(Pk (x0), k) is a set containing k uniform draws
without replacement of datapoints from Pk (x0). We call this
criterion, random k-PNN selection (hence the RkS subindex
on the regression estimate).

In a setting with a fixed dataset, the probability of selection
for each k-PNN is equal to 1

|Pk (x0)|
. However, when consider-

ing bootstraping, different bootstrap variations have different
number of k-PNNs. Classical analysis suggests we write the
final weight of a point xj under bootstrapping as

wj(x0) =
1
nn

nn∑
i=1

1[xj∈Pk (x0|D∗i )]
1

|Pk (x0|D∗i )|
(8)

A first look at Equation (8) can be regarded as disappointing
from a computational perspective, since it seems we are bur-
dened with the need to calculate each individual |Pk (x0|D∗i )|
value.

Here we present an analysis framework that exploits the
hierarchy of the PNNs and combinatorics regarding the boot-
strap variations to arrive at a better calculation scenario.
We introduce now the concept of b-term (bootstrap term).

Definition 5: A b-term bi = xa . . . xb . . .¬xc . . .¬xd
written as a list of datapoints of Dn, denotes the propor-
tion of bootstrap variation selections of Dn that include
the datapoints xa, . . . , xb and do not include (¬) datapoints
xc, . . . , xd .
Also, we define S(bi) as a function that outputs the numer-

ical value associated with a b-term bi. To further understand
b-terms and function S(.), we present here some of their
properties (proofs of these properties are not included for the
sake of brevity):

1) Commutativity:Writing order is commutative. That is,
bi = xa . . . xb¬xc . . .¬xd = xa . . .¬xc . . .¬xd . . . xb.

2) Reduction by contradiction: For a b-term of the form
bi = xa . . . xb¬xa . . .¬xd we have S(bi) = 0. This can
be interpreted as ‘‘no bootstrap variation selection can
include and not include a point’’ (xa in the example).

3) Reduction by default: For an ‘‘empty’’ b-term bi we
have S(bi) = 1. That is, without restrictions (empty
b-term) all bootstrap variations are included.

4) Equivalence class: Let us define E[lp,lm] as the set of
all possible b-terms in Dn that have lp ∈ N included
datapoints restrictions and lm ∈ N non-included data-
points restrictions. Then for all bi, bj ∈ E[lp,lm] we have
S(bi) = S(bj).

5) Sum:We define the sum of two b-terms bi, bj as bi+bj
and S(bi + bj) = S(bi)+ S(bj).

6) Subtraction: Similarly, we define the subtraction of two
b-terms bi, bj as bi− bj and S(bi− bj) = S(bi)− S(bj).

7) Concatenation:We define the concatenation of b-terms
bi, bj as bt = bibj. That is, another b-term containing
all bi and bj datapoint restrictions.

8) Concatenation of the sum: (bi + bj)(ba + bb) = biba +
bibb+bjba+bjbb. That is, the concatenation of the sum
works in the fashion of a classical product operation.

9) Reduction by sum: For the sum of b-terms, restric-
tions of different type over the same datapoint can be
canceled. That is, xaxdbi + ¬xaxdbi = xdbi; since
(xa +¬xa) covers all possible cases for datapoint xa.

10) Reduction by subtraction: Similar rules apply for
defining and using the subtraction of b-terms.
That is, xdbi −¬xaxdbi = xaxdbi.

11) Reduction by redundancy: Redundancy is canceled in
b-terms. That is, bj = xaxabi = xabi.

12) Constant extraction: Constants multiplying b-terms
can be computed outside the S(.) function. That is,
S(Abi) = AS(bi),A ∈ Z.

We can now use b-terms to write the bootstrap weights
of Equation (4) (bagged 1-NN with datapoints sorted by
increasing Euclidean distance) as

vi(x0) = S(¬x1¬x2 . . .¬xi−1xi),

and accounting for the decomposability showed in property 9,
and property 6, we can rewrite

vi(x0) = S(¬x1 . . .¬xi−1)− S(¬x1 . . .¬xi−1¬xi),

The following lemma can now be introduced:
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Lemma 6: The numerical value of a b-term bi =
lp︷ ︸︸ ︷

xa . . . xb

lm︷ ︸︸ ︷
¬xc . . .¬xd ∈ E[lp,lm] can be calculated as

S(bi) =
lp∑
i=0

(
lp
i

)
(−1)i

(
1−

i+ lm
n

)n
(9)

Proof: See Appendix.
It turns out that this notation allows us to express the final

weights in a more accessible way than the direct computa-
tion of Equation (8). To illustrate this, let us break down
Equation (8) into its pieces: We can see that vj(x0) =
1
nn
∑nn

i=1 1[xj∈Pk (x0|D∗i )] (as these are all the cases where xj
is a k-PNN) and then see that 1

|Pk (x0|D∗i )|
models the inclu-

sion of the random k-PNN selection for each bootstrapping
case. However, by Lemma 2, it is clear that this expression
computes many unnecessary cases (as it iterates over all
possible bootstrap variations without regard for changes in
Pk (x0|D∗i )). Since b-terms cover subsets of the total bootstrap
variation cases (those who satisfy the b-term), it is possible to
cover the set of bootstrap variations for which xj is a k-PNN
using b-terms or sums of b-terms. For example, let us consider
in isolation datapoints x0, x1, x2 and x12 of Figure 2, with x0
as our prediction target and k = 1. Clearly, x1, x2 ∈ F1(x0)
and x12 ∈ F2(x0) since x1 is in the way. Then, we can
simply write the bootstrap weights of x12 using b-terms as:
v12(x0) = ¬x1x12. Now, we need to account for the inclusion
of the random 1-PNN selection using the b-terms notation.
It turns out that by the property of reduction by sum, it is
possible to expand a b-term into the different cases where
the random 1-PNN selection takes different values for select-
ing a given datapoint. Continuing with our example, it is
possible to do ¬x1x12 = ¬x1x12x2 + ¬x1x12¬x2 which
effectively accounts for the cases where x2 is present and
absent. Then, the final weight of x12 can be expressed as:
w12(x0) = 1

2S(¬x1x12x2)+ S(¬x1x12¬x2). This shows how
weighted sums of b-terms can be used to express the final
weights WR1S .

Formally, we define for bi ∈ E[lp,lm]:

PR1S (xi, bi) = LR1S (xi, bi)S(bi) (10)

where

LR1S (xi, bi) =
1
lp

.

and for which following property is verified:

PR1S (xi, bi + bj) = PR1S (xi, bi)+ PR1S (xi, bj).

Using the function PR1S (xi, bi), it is possible to pair each
b-term in isolation or in a sum of b-terms with the weight
obtained by LR1S (xi, bi). Thus, final weights WR1S of any
datapoint can be expressed using this function as long as the
necessary b-terms are known.

Notice that in here, it was possible to define the random
1-PNN selector as a function LR1S (., .) requiring only the

local information of the b-term to output its corresponding
value.

The S(bi) function, on the other hand, accounted for the
k-PNN hierarchy and the selectability and bootstrap varia-
tions all together. In this sense, b-terms can be looked at as
bootstrap variations themselves and hence our target is to find
all relevant bootstrap variations for the calculation of wi(x0).

B. RANDOM k-PNN SELECTION REGRESSION ESTIMATE
Here we solve the problem of calculating the expression of
the bagged version of the regression estimate in Equation (7),
that is f̂ ∗RkS (x0), and the explicit form of its final weightsWRkS .
Considering our work so far, all that remains open is to find
regularized way to write the expression that we obtain by
expanding the b-terms of vi(x0) using the reduction by sum
property until all datapoints are considered. For this, we add
to the previous work on b-terms the following definition:
Definition 7: We define the restricted concatenation

operator

[xaxb . . .¬xc¬xd , . . . , xf xg . . .¬xh¬xi]

(xjxk . . .¬xm¬xn . . .)

as a special type of concatenation operator which specifies
in brackets [., . . . , .] to which other b-terms the expression
(xjxk . . .¬xm¬xn . . .) is concatenated.
For Definition 7, let us consider the example

(x1 +¬x1)(x2 +¬x2)([x1¬x2,¬x1¬x2](x3 +¬x3)).

This results in:

x1x2 + x1¬x2(x3 +¬x3)+¬x1x2 +¬x1¬x2(x3 +¬x3),

where only the b-terms x1¬x2 and ¬x1¬x2 are concatenated
with (x3 +¬x3).
Then, the following theorem holds:
Theorem 8: Let us consider a datapoint x0 as our predic-

tion target. Weights WR1S for the f̂ ∗R1S (x0) regression estimate
have the form

wi(x0) = PR1S (xi, zi(x0))

where

zi(x0) = (xi)(Req1(xi))
∏

xj∈Ind(xi)

[Req1(xj)](xj +¬xj),

Req1(xi) = {¬xa¬xb . . .¬xs} with Rm(xi) = {xa, xb . . . , xs}
and Ind(xi) = Dn \ R(x0, xi) as the complementary set of
points of R(x0, xi) w.r.t. the data Dn.

Proof: See Appendix (Proof of Theorem 10).
The expression of zi(x0) shows ‘‘a sum expansion of vi(x0),

where each added datapoint is restricted to be concatenated
to the b-terms that can be expressed as btReq1(.) (that is, the
b-terms that contain their Req1(.) set)’’. This guarantees that
we only consider the inclusion or non inclusion of the data-
point in the subset of cases where it is relevant for the final
weight calculation, while ignored otherwise.
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Our goal is now to generalize the previous results for
arbitrary k . With the b-terms notation, this turned out to be
a natural step forward. We start with the introduction of the
following lemma, that generalizes Lemma 4 for arbitrary k
Lemma 9: Let f̂ ∗RF (x0) be a RF regression estimate that uses

bootstrapping, unpruned trees and stops at arbitrary k ∈ N
datapoints in the leaves. Let x0 be our prediction target and
xi another datapoint. Then

vi(x0) = S

xi

 ∑
c∈Reqk (xi)

ric


is an upper bound of wi(x0) (that is, vi(x0) ≥ wi(x0)), where
Reqk (xi) = {ri1, ri2, . . . , rih}, h ∈ N, is defined as the set of
b-terms listing all possible bootstrap variationswhere a subset
of the datapoints in Rm(xi) allows for xi to be selectable as a
k-PNN.

Proof: See Appendix (Proof of Theorem 10).
For Theorem 8, we first notice that Equation (10) does

not need to change to account for the b-terms weights in the
k > 1 case, since for a b-term bi ∈ E[lp,lm] the corresponding
weight in a random k-PNN selection would be LRkS (xi, bi) =(
1
k

) (
k
lp

)
=

1
lp
. We can then define

PRkS = PR1S

and write:
Theorem 10: Let us consider a datapoint x0 as our predic-

tion target. WeightsWRkS for the f̂ ∗RkS (x0) regression estimate
with arbitrary k have the form

wi(x0) = PRkS (xi, zi(x0))

where

zi(x0) = (xi)

 ∑
c∈Reqk (xi)

ric

 ∏
xj∈Ind(xi)

[Reqk (xj)](xj +¬xj)

Proof: See Appendix.
We finally have:
Theorem 11: Let us consider a datapoint x0 as our predic-

tion target. The f̂ ∗RkS (x0) regression estimate has the form

f̂ ∗RkS (x0) =
n∑
i=1

wi(x0)yi (11)

where wi(x0)’s are regarded as in the form of Theorem 10.
Proof: See Appendix.

By proving Theorem 11 we have succeeded in our original
objective of finding a more direct and accessible approach
to compute the weights that in Equation (8). Also, with this
theorem we have solved an open problem in [4], since for the
random k-PNN selection, the case k = 1 corresponds to the
final weightsW of the bagged layeredNN regression estimate
detailed in that paper, that is,

f̂ ∗R1S (x0) = f̂ ∗1−PNN (x0).

For the general case (since LRkS = LR1S ), we also have

f̂ ∗RkS (x0) = f̂ ∗k−PNN (x0).

Finally and as a completing remark, we can now express the
generalized bootstrap weights for f ∗k−SA as:
Theorem 12: Let m be the minimum value of k for which

all datapoints are m-PNN. The bagged version of fk−SA is of
the form

f ∗k−SA(x0) =
m∑
i=1

 ∑
xj∈Fi(x0)

vj(x0)yj

 , (12)

where vj(x0)’s are regarded as in the form of Lemma 9.
Proof: See Appendix (Proof of Theorem 10).

C. BAGGED ESTIMATORS FRAMEWORK
From Equation (10), it is not difficult to imagine that other
regression estimates may adjust to this model with a different
P.(xi, bi) function. The P.(xi, bi) function general form is, for
an estimator f̂.(x0) in the calculation of the weight of xi:

P.(xi, bi) = L.(xi, bi)S(bi). (13)

We have seen how the weight calculation obtained in Theo-
rem 10 accounts for all the bootstrap cases of interest within
the k-PNNs, thus, the different ways in which we can specify
the L.(xi, bi) function correspond to the different regression
estimates. As an example, let us define

L1−NN (xi, bi) =

{
1 if bi = ¬x1¬x2 . . .¬xi−1xibj
0 otherwise

(14)

where here, datapoints are sorted by increasing Euclidean
distance, (x1 being the closest to x0 and xn the furthest away)
as the L.(., .) function that produces a bagged NN estimate
for k = 1.

FIGURE 4. Feature space plot showing four datapoints and Fk (x0) of
x0 = (0, 0) for values of k from 1 to 3.

We will show now how we can use, in this case,
the P1−NN (xi, bi) function, to deduce the weights of
Equation (4). We use the simple dataset of Figure 4.
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For the dataset of Figure 4 and k = 1 we can write the
b-terms sum expansion per datapoint as follows:

z1(x0) = x1x2x4 + x1¬x2x4 + x1x2¬x4 + x1¬x2¬x4
z2(x0) = x1x2x4 +¬x1x2x4 + x1x2¬x4 +¬x1x2¬x4
z3(x0) = ¬x1¬x2x3x4 +¬x1¬x2x3¬x4
z4(x0) = x1x2x4 + x1¬x2x4 +¬x1x2x4

+¬x1¬x2x3x4 +¬x1¬x2¬x3x4

where here, the b-term sums were obtained using zi(x0) of
Theorem 8. For this example, we have the Euclidean distance
sorting of the datapoints as x1, x2, x4, x3 (thus, the L1−NN (x0)
function will compute them as x1, x2, x3, x4, respectively).
If we now apply P1−NN (xi, bi) we obtain:

w1(x0) = S(x1x2x4 + x1¬x2x4 + x1x2¬x4
+ x1¬x2¬x4)

w2(x0 = S(¬x1x2x4 +¬x1x2¬x4)

w3(x0) = S(¬x1¬x2x3¬x4)

w4(x0) = S(¬x1¬x2x3x4 +¬x1¬x2¬x3x4)

Now using the properties of the b-terms we can do:

w1(x0) = S(x1x2x4 + x1¬x2x4 + x1x2¬x4
+ x1¬x2¬x4)

= S(x1x4 + x1¬x4)

= S(x1)

w2(x0) = S(¬x1x2x4 +¬x1x2¬x4)

= S(¬x1x2)

w4(x0 = S(¬x1¬x2x3x4 +¬x1¬x2¬x3x4)

= S(¬x1¬x2x4)

which effectively yields the weights of the bagged 1-NN as
were known in [3]. Using our framework and operations on
the b-terms, we were able to deduce the form of the weights
of the bagged estimator and reduce it to its known-form,
requiring only one b-term per datapoint.

We argue here that any point selection strategy within the
set of the k-PNNs can be adapted to this format, and by
applying the b-terms properties to the result of the P.(., .)
function, we can observe how the interplay between the
b-terms and the L.(., .) function gives rise to the bagged
version of many known regression estimates (for example,
for all regression estimates using p-norm ||.||p distances as
point selectors, their bagged versions can be easily derived in
a similar way than with the Euclidean distance in the 1-NN
example). This includes the well-known predictive square
error splitting criterion, considering that for an adaptive split-
ting criterion, decisions are made using an additional set of
values Y .

D. RANDOM FOREST WITH RANDOM
SPLIT REGRESSION ESTIMATE
Now, we are looking to attain one of the main goals of this
work: inducing the LRF function that would allow us to build

a regression estimate that outputs similar predictions to those
obtained by the RF algorithm with random split. Using this
framework, we reformulated the problem of inducing the RF
estimator by traditional means to that of finding an expression
for P(xi|bi) for any bi in Dn.
We found a recursive procedure that allows us to calculate

LRF (xi, bi), with bi ∈ E[lp,lm] and for arbitrary k as:

LRF (xi, bi) =



GRF (xi, bi) if bi includes xi, bi ∈ E[lp,lm]
and lp > k

1
lp

if bi includes xi, bi ∈ E[lp,lm]

and lp ≤ k
0 otherwise,

where

GRF (xi, bi)

=
1
d

d∑
l=1

( lp∑
k=1

I (k + 1, l, bi,Dn)− I (k, l, bi,Dn)
Is(l, bi,Dn)

×LRF (xi,C(xi, k, l, bi,Dn))
)

,

I (k, l, bi,Dn) outputs the value in the l-th feature/column
of the k-th datapoint in a sorted sample (from lowest to
highest values) of the datapoints listed in x0bi that appear in
Dn ∪ x0. Is(l, bi,Dn) outputs the range of values of the l-th
feature/column for the datapoints listed in x0bi that appear in
Dn ∪ x0. C(xi, k, l, bi,Dn) outputs a b-term bs that contains
a subset of the listed datapoints of bi. b-term bs is defined as
follows: Let us consider the sorted sample of Dn datapoints
listed in bi by their values in the l-th feature/column. We can
then divide bi into two b-terms bs1 and bs2 by splitting the
sorted sample at the k-th position. Then we can define bs1 to
be the b-term that lists the datapoints that in the sorted sample
appeared before the k-th position, and bs2 containing the rest
so that bs1bs2 = bi. Finally, we define bs as bs = bs1 if the
interval covered by the l-th feature values of the datapoints
listed in bs1 includes the l-th feature value of x0. If it doesn’t,
we define it as bs = bs2.
Intuitively, LRF (xi, bi), accounts for all possible cases

that the classical RF algorithm with random split may
produce. For GRF (xi, bi), modeling the random subspace
method implies d possible choices of coordinate. Each choice
weighted by 1

d (Notice that in this type of RF, this is always
the case regardless of how we tune this parameter). Then, for
bi ∈ E[lp,lm], lp splits are possible (lp − 1 provided by the lp
datapoints listed in bi and 1 provided by x0) per coordinate.
Each split is weighted by its probability of occurrence on the
selected coordinate. After choosing the split, two mutually
exclusive subsets of datapoints are created. Then, the one
not containing x0 is discarded, while the other is selected.
Repeating this process recursively for the selected subset of
datapoints as a new bi produces GRF (xi, bi). The second case
of LRF (xi, bi) accounts for the stopping criteria, which can be
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plugged directly, and the third case accounts for the b-terms
that do not contribute to the final weight of xi.
With this, we are ready to present the following theorem:
Theorem 13: Let us consider a datapoint x0 as our predic-

tion target. The f̂RF (x0) regression estimate has the form

f̂RF (x0) =
n∑
i=1

wi(x0)yi (15)

where wi(x0)’s have the form

wi(x0) = PRF (xi, zi(x0))

with

PRF (xi, zi(x0)) = LRF (xi, zi(x0))S(zi(x0))

and zi(x0) is regarded as in the form of Theorem 10.
Proof of this result is considered trivial after the proofs of

Theorem 10 and Theorem 11.
This regression estimate, as we will show in Section 5,

offers similar predictions to those of a RF in all cases and
problems.

V. TOWARDS PRACTICAL IMPLEMENTATION
AND RF EQUIVALENCE
After Section 4, we are provided with the means to rewrite
bagged estimators that select points in the k-PNN set as
sums of weighted b-terms. Additionally, we have succeeded
in finding the explicit expression for these weights in the
cases of a RF with random splitting criterion and our pro-
posed f̂RkS (x0) regression estimate. In this section, we seek to
validate our findings at a practical level.

We started by implementing f̂RkS (x0) with an algorithm
that closely follows Theorem 11. In order to do so, we first
noticed that function S(.) as shown in Equation (9) displays
a clear exponential growth with respect to lp (in the binomial
coefficient) and n (in the denominator inside the summation,
as it is nn) in computational complexity. In order to alleviate
the complexity of both variables we use an easy workaround
as any expression of the type e(i) =

(
1+ i

n

)n
satisfies

limn→∞ e(i) = ei. We can take advantage of this simply by
approximating Equation (9) with

S(bi) ≈
lp∑
i=0

(
lp
i

)
(−1)ie−i−lm , (16)

offering an approximate result (
∑n

i=1 wi(x0) ≤ 1) that
improves its accuracy the higher n becomes. We now do

S(bi) ≈
1
elm

lp∑
i=0

(
lp
i

)
(−1)ie−i

=
1
elm

lp∑
i=0

(
lp
i

)(
−1
e

)i
=

1
elm

(
e− 1
e

)lp

which shows much clearly the relationship between boot-
strapping and the b-terms. Also, this implies that final weights
W are, when n → ∞, a sum of weighted exponential
functions.

As for the number of b-terms to be computed, we can see
that the b-terms expansion grows exponentially in the worst
case scenario: Examining zi(x0) in Theorem 10, the number
of b-terms doubles at each iteration of the product in the
subset of b-terms allowed by the [Reqk (.)] set of the datapoint
to be computed. This is still an improvement with respect to
classical analysis and Equation (8) for the complete compu-
tation of weights (from O(nn) to O(2n)) and in some cases,
as we have seen in subsection 4.1, the choice of the L.(., .)
can reduce final complexity to a sub-exponential form. For
our testing, however, we limited ourselves to small sample
sizes and k = 1.
In setting up our experimental environment, we use two

datasets from UCI data repository (Bike and Concrete,
with 5 and 6 variables, respectively) and six datasets from
the R package mlbench (Ozone, Boston Housing,
Friedman1 with sd = 1, Friedman2 with sd =125 and
Friedman3 with sd = 0.1, with 12,14,11,5 and 5 variables,
respectively). For each dataset, we normalized the response
values Y subtracting the mean and dividing by the standard
deviation in order to control the scale of MSE values. Addi-
tionally, we implemented a full random RF that for each tree
at each node to split, selects a random feature and performs
a random split between its maximum and minimum values
until there is a single datapoint in the leaves (k = 1).
We computed the MSE statistics between the true values

and predictions given by the models to assess their perfor-
mance. We additionally computed other statistics for analysis
purposes. The results of the experiments are shown in Table 1.

TABLE 1. Comparisons of the results of f̂ ∗R1S and f̂RF estimates for the
selected datasets. The first two rows contain mean square error
comparisons between real values and predicted values of both
estimators, the range (±) is simply the standard deviation of the
predictions, the third is the average of the average PNN distance that
each testing point obtained w.r.t. the rest of the points in the dataset and
the fourth is the ratio between the dimension of the dataset d and the
sample size n.

In Table 1, most remarkable results come from analyz-
ing the included statistics. In f̂ ∗R1S evaluations, four of the
seven datasets present no variability between predictions,
independently of the test point. In those sets, the average PNN
distance is 0, result that can only occur if all datapoints in all
cases were 1-PNNs of each datapoint used in testing. This is
expected, as f̂ ∗R1S only distinguishes between predictions by
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FIGURE 5. Two different cases showing maximum k-PNN distance arrangement and minimum k-PNN distance
arrangement between a set of datapoints and the point to predict.

differences in the k-PNN distances. Additionally, this case
seems to occur at the highest levels of the d

n ratio.
It is not difficult to notice that increasing dimensional-

ity (d) while maintaining sample size could reduce the aver-
age PNN distance in the general case. To see this clearly,
lets imagine a set of datapoints distributed in the perimeter
of a circle around the testing datapoint x0 in a 2-dimensional
setting (Figure 5, case B). It can be verified that all datapoints
in this setting exhibit a PNN distance of 0 w.r.t. x0. If we now
project all datapoints onto a line by eliminating one of the
dimensions, the result is that at most only the two immediate
neighbors of x0 have PNN distance of 0.

To illustrate this practically, we removed all but two fea-
tures on the previous datasets and repeated the computations,
see Table 2.

TABLE 2. Comparisons of the results of f̂ ∗R1S and f̂RF estimates for the
selected datasets and the reduced number of variables.

For Table 2, MSE results lie in favor of f̂ ∗R1S for most cases,
decreasing with respect to Table 1, in opposition with the
tendency shown by MSE results of f̂RF . Variability in f̂ ∗R1S ,
as expected, has increased yet remains substantially inferior
to that of f̂RF . This seems to indicate that the reason for f̂ ∗R1S
to perform better is that the effects of bootstrapping have a
higher influence on the outcome of the estimator when the
average PNN distance increases.

Further understanding allows for the following charac-
terization: consider point arrangement cases of Figure 5.
Computing the b-terms of any weight with any splitting
criteria that requires to select k = 1 datapoints will output

the bootstrap weights (case limit of equality in Lemma 4)
for case A, as for any given setting, the splitting criterion
always selects 1 out of 1 datapoints. Thus, the influence
of the employed L.(xi, bi)S(bi) function degenerates to its
form of minimum variance, L.(xi, bi) = 1. For case B, the
b-terms sum expansion is the same for every datapoint, and
differences in weights can be attributed exclusively to the
L.(xi, bi) function variability.
Thus, we can safely argue that for any given problem,

each prediction will fall between cases A and B, and thus
the average PNN distance could be a good indicator of the
overall contribution of each part of the estimator to the final
outcome (and partially explain the results of Tables 1 and 2).
Also this implies that the differences between bagged ||.||p
norm estimators (always case A) are governed exclusively
by the differences in order in the ranking of datapoints. Our
analysis seems to concur with literature [15] in the use of
bootstrapping in high d

n ratio (case B) problems as having
a mild to poor effect on the overall quality of the predictions.

Finally, we repeated the experiments in Table 2 substituting
LR1S for LRF and k = 1, to show that we can achieve a
functional practical implementation of a RF using sums of
weighted b-terms (Figure 6).

In Figure 6, it is clearly noticeable that virtually identical
results were achieved for all datasets, where the minimal
divergences inMSE can be safely attributed to a finite number
of trees (less than all its possible variations) used to train
f̂RF , together with the approximation of the bootstrap weights
values shown in Equation (15).

With this we have shown that our results can produce mod-
els that are equivalent to traditional versions of RFs through
an alternative path, without computing a single tree and effec-
tively opening a new way of analyzing regression estimates
that conform to the proposed framework. While we believe
that the ideal use of b-terms and Equation (13) is analytical,
on a practical sense we believe to have uncovered a way for
new classes of algorithms to arise, perhaps taking advan-
tage of heuristics to overcome the exponential expansion

25670 VOLUME 7, 2019



P. Fernández-González et al.: Random Forests for Regression as a Weighted sum of k-PNNs

FIGURE 6. MSE comparisons between our regression estimate equipped with the LRF (green triangles) and the RF method f̂RF
(orange circles) across the seven selected datasets.

of b-terms while making affordable compromises in
MSE values.

VI. SUMMARY AND CONCLUSIONS
In this work we have shown advances in our understanding of
the statistical forces behind RFs, by means of their analogy
with the k-PNNs. We first discovered that the developments
to obtain the bagged 1-NN regression estimate in [3] could
be extended to show the calculation of the bootstrap weights
for k-PNN based regression estimates when substituting the
corresponding monotone distance for its alternative PNN
distance.

Then, we analyzed the influence of adding a point selection
strategy to the previous results. A point selection strategy,
such as any splitting criterion in a RF, turned out to act as
an additional selector of k datapoints within the k-PNNs,
causing some of k-PNNs to be finally selected, and some
others to be not. Thus, the weights assigned to each data-
point had to be updated from bootstrap weights to the final
weights. We first proved that the bootstrap weights act as
upper bounds of the final weights for a RF equipped with
any splitting criterion. Furthermore, we obtained an explicit
expression for the final weights considering a specific point
selection strategy in the k-PNN, the random k-PNN selection,
which induces the bagged regression estimate f̂ ∗RkS (x0), and
showed that f̂ ∗RkS (x0) = f̂ ∗k−PNN (x0). In doing so, we created
the concept of b-terms as a list of inclusion/non-inclusion
restrictions on the datapoints present in all bootstrap varia-
tions, defined the value of a b-term to be the proportion of
bootstrap variations that comply with the list (and derived
a mathematical expression to calculate that value). We then
showed that datapoint weights can be expressed as sums of
b-terms coupled with a local weight on each b-term.

Further understanding uncovered a framework for bagging
estimators that included all classes of RF with a k data-
points stopping criterion. With this, we derived the regression
estimate that corresponds with a RF equipped with random

splitting criterion and showed the case of k = 1 at a practical
level, where MSE values of our regression estimate and a full
RF implemented in the classical way w.r.t. the real values
were virtually identical. We were also able to conduct addi-
tional practical experiments that revealed how b-terms and
k-PNN distance can be used to analyze the effect of boot-
strapping in bagged regression estimators in contrast with
the effect of the point selection strategy (splitting criterion
in RF). With this, we validated the f̂ ∗RkS (x0) for k = 1 as a
competent regression estimate. Our results suggest that it is
recommended for problemswith high scale disparity between
features (since PNN are distance invariant) and high PNN .
Additionally, it is fast to implement (k-PNN calculation for a
given datapoint with arbitrary k was O(n2) in our methods)
and intuitive to work with. It may also be a considerable
choice over 1-NN (or bagged 1-NN) when the nearest neigh-
bors assumptions (namely, that datapoints close in distance
have also close y-associated values) do not hold.

We believe that the ideal use of our work would be as
an analysis tool for other regression estimates and as a
design platform for variants of random forests. In this setting,
a researcher may follow a similar path to the one shown in
the paper to write a regression estimate as a weighted sum
of datapoints were the weights are expressed as weighted
sums of b-terms. Then, analysis on the particular form of
that expressionmay allow for simplifications previously inac-
cessible, detection of grouping patterns/regularities in the
addends of the sum and in general, to enjoy a higher degree
of algebraic manipulation than in the initial proposal for that
regression estimate.

This work opens numerous possibilities for regression esti-
mates to have an alternative written form (as weighted sums
of b-terms) that has desirable properties. Perhaps reductions
in computational complexity for the calculation of well-
known methods, that have remained hidden so far, can now
be unlocked, and Monte Carlo simulation as the preferred
method for computation of those regression estimators can
be eschewed.
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As a future work, we believe to have obtained the necessary
tools to tackle the specification of other splitting criteria in
RFs in terms of weighted PNNs, as well as have provided
access to a new form of analysis of RF models and other
regression estimates
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