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ABSTRACT Colorectal cancer is the second most frequently diagnosed cancer in women and the third
most frequently diagnosed cancer in men. At least 80%–95% of the colorectal cancers are evolved from
intestinal polyps. Although colonoscopy is regarded as themost effectivemethod for screening and diagnosis,
the success of the procedure is highly dependent on the level of hand-eye coordination and the operator
skills. Thus, we are primarily motivated by the need for obtaining an early and accurate diagnosis of
polyps in the colonoscopy images. In this paper, we employed the powerful object detection neural network
‘‘Mask R-CNN’’ to identify and segment polyps in the colonoscopy images. Also, we proposed an ensemble
method to combine the two Mask R-CNN models with different backbone structures (ResNet50 and
ResNet101) to enhance the performance. Mask R-CNNs in our model were first trained on COCO dataset,
and then finely tuned using intestinal polyp dataset since a large number of annotated colonoscopy images
are not easily accessible. In order to evaluate our proposed model, we used three open intestinal polyp
datasets, CVC-ClinicDB, ETIS-Larib, and CVC-ColonDB. Our results show that our transfer learning-based
ensemble model significantly outperforms state-of-the-art methods.

INDEX TERMS Polyp segmentation, transfer learning, medical image analysis, deep learning, machine
learning, artificial intelligence.

I. INTRODUCTION
Colorectal cancer is the third most frequently diagnosed
cancer after lung cancer and breast cancer [1]. Therefore,
prevention of colorectal cancer by detecting and remov-
ing colorectal adenomas (i.e., paraneoplastic lesions) is of
paramount importance and has become a global public
health priority. The prevention of colorectal cancer has been
mostly done with the help of regular colonoscopy screenings.
Colonoscopy is an endoscopic procedure for the screening
and diagnosis of colorectal cancer. During this procedure,
a long, flexible tube that has a light and a camera on the
end is inserted into the rectum to remove polyps or other
types of abnormal tissue inside of the entire colon. However,
depending on the type and size, roughly 8-37% of polyps are
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missed during colonoscopic examination [2]. Missed polyps
are potential precursors to colorectal cancer, which causes
the thirdmost commonly occurring cancer globally [3]. Thus,
we conducted the recent research to develop an automatic
polyp segmentation system that can encourage clinical endo-
scopists to detect tiny and flat polyps more effectively.

Several research groups have developed computer-aided
system for automatic polyp segmentation to provide early
clues of colorectal cancers. Some of these systems are
focused on reducing the inspection time and segmenting
polyp region using algorithms such as fuzzy clustering,
region growing, level-set, and machine learning techniques
(e.g., linear and quadratic discriminant classifiers and neural
network classifiers) [4]. Polyp segmentation is challenging
given the polyps texture and shape. Some computer-aided
polyp segmentation systems use texture and morphologi-
cal features to differentiate the polyp regions from folding
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regions on the colon wall which mimic them [5]. More
recently, deep learning models such as convolutional neural
networks have been applied to the task of automatic poly
segmentation with promising results [6], [7].

Mask R-CNN [8] is one of the best deep-learning models
for instance segmentation which first detects targets in the
image, and produce the predicted mask for each detected
target. Mask R-CNN outperforms other approaches in some
of the COCO’s challenging tasks, including person keypoint
detection, instance segmentation, and bounding-box object
detection. However, defining and training a Mask R-CNN
architecture from the beginning is not a trivial task. The train-
ing process typically requires an excessive amount of labeled
data, something that is generally difficult to be obtained for
colonoscopy images. To overcome this problem, a transfer
learning technique can be used. Transfer learning is amachine
learning technique where information that is learned in one
setting is exploited to improve generalization in another
setting.

In this work, we proposed a transfer learning-based
ensemble model for polyp segmentation. In our model,
we ensembled the two Mask R-CNN models with different
backbone structures including ResNet50 and ResNet101 to
get better performance. In order to achieve polyp segmen-
tation on colonoscopy images, Mask R-CNNs in our model
were first trained on COCO dataset, and then fine-tuned using
intestinal polyp dataset. We validated our method using well-
known three public available datasets: CVC-ClinicDB [27]
and ETIS-Larib [10] from the MICCAI 2015 polyp detection
challenge [9], and CVC-ColonDB [28]. To this end, the con-
tributions of this work are as follows:

1) We presented transfer learning based Mask R-CNN for
polyp segmentation. To the best of our knowledge, this
is the first work to use Mask R-CNN for the task of
polyp segmentation.

2) We presented an ensemble method to combine the
two Mask R-CNN models with different backbone
structures (ResNet50 and ResNet101) to get better
performance.

3) We demonstrate that our proposed method outperform
state-of-the-art methods using dataset from MICCAI
2015 polyp detection challenge.

The rest of this work is organized as follows. In Section 2,
we briefly present related works on polyp segmentation
approaches. Then, we describe our proposed method for
polyp segmentation in Section 3. The experimental results
are presented in Section 4. Finally, Section 5 summarizes and
concludes this work.

II. RELATED WORK
The first approach for polyp segmentation is using image
processing methods. Many image processing methods have
been applied to various medical domain such as brain imag-
ing [41]–[44] and polyp segmentation [10]–[13], [45], [46].
Karargyris and Bourbakis [45] extracted features by per-
forming Log–Gabor filters for automatic polyp segmentation.

Jia [46] used K-means clustering method to localize and
segment polyp contours. Bernal et al. [10] proposed method
using depth of valleys (DoV) image for automatic polyp
segmentation. They used the watershed algorithm to segment
images into polyp candidate regions and then classifies each
region into polyp and non-polyp. This classification is based
on regions information and DoV in each region. Region
information contains mean and standard deviation of each
region and DoV is based on calculation of eigenvalues and
eigenvectors of the gradient image. Ganz et al. [11] pro-
posed a method based on Hough transform to find region
of interest (ROI) and specular reflection suppression with
exemplar-based image inpainting as a preprocessing method.
After preprocessing, they use a method using ultrametric con-
tour map (UCM), called shape-UCM [12] for image segmen-
tation. Shape-UCM works based on image gradient contours
and spectral clustering. After performing shape-UCM algo-
rithm, they use a scheme to improve edges resulted from the
shape-UCM algorithm. Also, they use images transformed
into LAB color space and the image texture as a feature
to refine edges. Ellipse fitting method is used to extract
polyp regions from all candidate regions. The method pro-
posed in [13] uses an improved watershed algorithm, called
‘‘marker-controlled watershed’’ method, as the initial stage
for segmenting polyps. Hwang et al. [13] also use the region-
maxima method for selection of an initial point in the water-
shed algorithm. After that, they use elliptical fitting to discard
unwanted regions resulted in the previous step.

The second approach in polyp segmentation is feature
extraction from image patches and labeling of patches
as polyp and non-polyp based on extracted features.
Tajbakhsh et al. [14] suggested a method based on Canny
edge detector in each of the three color channels of the image
and the work of [15]. This is done to construct edge maps.
After that, oriented patches for each pixel are extracted to
classify them as polyp or non-polyp. The feature extrac-
tion method proposed in [14] extracts sub-patches with 50%
overlap and calculates their average vertically, which results
in 1D intensity signal. After that, they used discrete cosine
transform (DCT) coefficients as a feature for each extracted
patch. Finally, they used the two-stage random forest clas-
sifier to assign a label to each patch. The first stage of the
classifier converts low-level features into high-level features
and feed them to the second stage classifier for classifying
each patch into polyp and non-polyp.

The third approach for polyp segmentation is using Con-
volutional Neutral Networks (CNN). CNN is a well-known
deep learning architecture where complex features of raw
images are extracted by applying trainable filters and pool-
ing operations [16]. In CNN, the extracted features are
fed into a subsequent classifier. CNN has been successfully
applied to various object detection tasks [30]–[32], classifi-
cation tasks [33]–[35], and medical image segmentation task
such as coronary artery calcifications [36], the pancreas [37],
brain regions [38], [39], knee cartilage [40], and polyp
regions [17]–[19]. In [17], they analyzed CNN results to
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FIGURE 1. Overall architecture of our proposed framework.

see whether a fine-tuned CNN, or CNN from scratch, per-
forms better in medical imaging applications such as polyp
detection in colonoscopy videos. They showed that fine-tuned
CNNworks better than CNN from scratch. Park et al. [7] uses
CNN as a feature extractor in three scales patch representation
to segment polyp region. CNN calculates 60 features for each
input patch, and then uses fully-connected layer with 256 neu-
rons for classification of each input patch. Moreover, Gaus-
sian filter is employed to smooth the segmentation results and
decrease noise after performing CNN. Ribeiro et al. [19] uses
two pooling layers and three convolution layers to extract
features from RGB patches, and fully-connected layer to
classify 1024 extracted features.

The fourth approach for polyp segmentation is using Fully
Convolutional Networks (FCN) [20]. Over the last few years,
FCN is one of the best deep learning algorithms for improv-
ing polyp segmentation, because of their computational effi-
ciency for dense prediction. FCN is new generation of CNNs,
which is implemented by replacing fully connected layer
with deconvolution and using the information of previous
layers for increasing segmentation accuracy. Chen et al. [47]
combined the fully convolutional neural network with a
fully connected conditional random field to sharpen object
boundaries and improve segmentation performance. Chen
et al. [18] then improved their network by using pooling
operations and convolution filters at multiple rates and mul-
tiple effective fields-of-view, to extract better multi-scale
contextual information. After that, they used the second net-
work to refine the segmentation regions, gradually recover
the spatial information, and sharpen object boundaries. In
the field of polyp segmentation, Akbari et al. [21] adopted
FCN to find potential polyp candidates, and then segment
polyp regions by using the Otsu thresholding method which
significantly improves segmentation accuracy. The method
proposed in [22] use FCN for segmentation of polyp region
candidates. Those candidates are further refined by using

texton features and random forest classifier. Texton features
are obtained by using k-means clustering on the convolution
of input patch and Gabor filter bank for different orientations.

In this study, we compare our proposed method for polyp
segmentation with FCN with six different architectures:
AlexNet [23], GoogLeNet [24], VGG [25] and three ver-
sions of the ResNets architecture with 50, 101 and 152 layers
of depth [26].

III. METHODS
In this section, we first describe the architecture of the pro-
posed method. Then we outline the details of three key com-
ponents in following subsections.

The overview of the proposed method can be seen
in Figure 1. The proposed method consists of three com-
ponents: 1) data augmentation, 2) two Mask R-CNNs with
different backbone structures (Resnet50 and 101) pre-trained
on the COCO dataset, and 3) the bitwise combination of
two masks to enhance the segmentation performance as our
ensemble method.

A. DATA AUGMENTATION
For an automated polyp segmentation method using deep
learning networks, data augmentation is an essential step
in improving segmentation performance. Because the
endoscopy procedures involving moving camera control,
color calibration are not consistent, the appearance of
endoscopy images significantly changes across different
laboratories. The data augmentation step brings endoscopy
images into an extended space that can cover all their
variances. Since access data is limited due to privacy con-
cerns, the deep networks used for polyp segmentation were
often trained with insufficient training datasets. As a con-
sequence, the polyp segmentation performance is hindered
by this lack of training data. Recent work has demonstrated
the effectiveness of data augmentation in increasing the

26442 VOLUME 7, 2019



J. Kang, J. Gwak: Ensemble of Instance Segmentation Models for Polyp Segmentation

FIGURE 2. Examples of data augmentation used in this work.

FIGURE 3. Detailed framework of Mask R-CNN.

amount of training data based on our original limited training
dataset. By augmenting training data, we can also reduce
the over-fitting problem on training models. Figure 2 shows
the examples of data augmentation method applied to the
original polyp image (Figure 2.a). In our model, the applied
methods of augmentation are: Vertical flipping (Figure 2.b),
horizontal flipping (Figure 2.c), random rotation between -
45 and 45 degrees (Figure 2.d), random scaling ranging from
0.5 to 1.5 (Figure 2.e), random shearing between -16 and
16 degrees (Figure 2.f), random Gaussian blurring with a
sigma of 3.0 (Figure 2.g), random contrast normalization by
a factor of 0.5 to 1.5 (Figure 2.h), random brightness ranging
from 0.8 to 1.5 (Figure 2.i), and random cropping and padding
by 0–25% of height and width (Figure 2.j).

B. MASK R-CNN WITH TRANSFER LEARNING
Mask R-CNN [8] is a flexible, small generic object instance
segmentation method which first detects targets in the image,
and produces a high-quality segmentation result for each
target. It is an extension to the Faster R-CNN [29], and adds
a new branch to predict an object mask that is parallel with

bounding box recognition branch. Also, it is easily extended
to other tasks, such as person keypoint recognition for esti-
mating a person’s posture. It has achieved the best results in
some of the COCO’s challenging tasks, including person key-
point detection, bounding-box object detection, and instance
segmentation.

In our proposed framework, we used two different back-
bone structures (ResNet50 and ResNet101) for each Mask
R-CNN. The detailed framework of Mask R-CNN was illus-
trated in Figure 3. Mask R-CNN is a two-stage framework.
The first stage is region proposal networks (RPN). RPN
is a new proposal generation network from Faster R-CNN.
It replaces the selective search algorithm in the Fast R-CNN
and previous R-CNN. Also, it integrates all the content in one
network to improve the detection speed. The second stage
has two parallel branches. The first one is the bounding box
branch for detection. It contains bounding box regression
and classification. The second one is the mask branch for
segmentation. In Mask R-CNN, the loss function is defined
as follows:

L = Lcls + Lbox + Lmask , (1)
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FIGURE 4. The two loss graphs for the warm-up phase and the full-training phase.

where L is loss, Lcls is the classification loss, Lbox is the box
regression loss, and Lmask is the mask loss. Loss for classi-
fication and box regression is same as Faster R-CNN [29].
To each mask, a per-pixel sigmoid is applied. The mask loss
is then defined as the average binary cross entropy loss.

Despite the clear advantages that Mask R-CNN offers,
defining and training a Mask R-CNN architecture from the
beginning is not a trivial task. The training process typically
requires an excessive amount of labeled data, something that
is generally difficult to be obtained for colonoscopy images.
In addition, selecting the architecture that provides the best
compromise between inference ability and the convergence
speed is both challenging and time consuming. Finally, poten-
tial issues of convergence and overfitting often require sig-
nificant tuning of the learning parameters [17]. Alternatively,
it has been suggested [17] that fine-tuning deep-learned
architectures for specific tasks (e.g. image segmentation and
detection), provides better performance than designing and
training a new network model. Such an approach can be
applied in segmentation tasks involving colonoscopy images,
despite being substantially different from the natural images
used in training the initial network, by using a smaller
set of images to retrain (fine-tune) a pre-existing network.
We adhere to this strategy using COCO dataset since a
large number of annotated colonoscopy images are not easily
accessible.

C. ENSEMBLE METHOD
Deep neural networks are notorious for having extremely
high-dimensional, non-convex loss functions with many local
minima. If Mask R-CNN was initialized with different pre-
trained model with different backbone structure, the network
is therefore virtually guaranteed to converge to different solu-
tions, although it uses the same training data. For instance,
Mask R-CNN with ResNet101 produced better segmentation
results than Mask R-CNN with ResNet101 for some polyp
images, and vice versa. Based on this observation, we use
an ensemble method that combines two predicted masks by
bitwise operation as illustrated in Figure 1.

D. TRAINING DETAILS
The training set is split into 90 % for learning the weights
and 10 % for validating our model during the training
step. Training of our proposed model is divided into two
phases: (1) the warm-up phase and (2) the full-training
phase. Furthermore, all compared algorithms have been pro-
grammed/trained using Keras and Tensorflow backend on a
PC with a GTX-Titan X GPU. Also, the two loss graphs are
shown in Figure 4.

1) Warm-up Phase: Pre-trained weights of the backbone
model (ResNet50 or ResNet101) using COCO dataset
are loaded as the training begins. Furthermore, we tem-
porarily freeze the backbone model and update only
the rest part of the network via stochastic gradient
descent (SGD) with momentum. The learning rate,
weight decay, and momentum of SGD is set to 10-3,
10-4, and 0.9, respectively. This phase lasts 20 epochs.
The total computation time in this phase was around
1 hour.

2) Full-training Phase: We unfreeze the backbone model
and update the entire network via SGD with momen-
tum. The learning rate, weight decay, and momentum
of SGD is set to 10-3, 10-4, and 0.9, respectively. At the
epoch 40 of this phase, the learning rate is dropped
by half. This phase lasts 80 epochs. After this phase,
the model generated at the epoch with lowest validation
loss is used as our final model. The total computation
time in this phase was around 8 hours and 10 minutes.

IV. EXPERIMENTS AND RESULTS
In this section, we demonstrate the effectiveness of our
proposed methods of polyp segmentation in colonoscopy
images. We used 3 datasets to evaluate our methods and com-
pared our results with those of state-of-the-art algorithms.

A. DATASET
In order to demonstrate the model performance of
our proposed approach, we used three public available
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FIGURE 5. Example of three different segmentations produced by the six FCN networks and proposed method.

datasets: CVC-ClinicDB [27] and ETIS-Larib [10] from
the MICCAI 2015 polyp detection challenge [9], and
CVC-ColonDB [28]. There are similar image frames within
the same colonoscopy dataset. If we use one dataset and
divide that into training and testing sets, then exaggerated
classification performance can be obtained. Therefore, for
more reliable evaluation, we assign the above-mentioned
different datasets into training and testing set separately as
the recommendation of the MICCAI challenge guidelines:
CVC-CLINIC for training and ETIS-Larib for testing. Fur-
thermore, we also report results from other public available
dataset (CVC-ColonDB) as a testing set. The datasets were
obtained with different imaging systems and contain binary
masks as the ground truths to indicate the location of the
polyps for each image. All ground truths of polyp regions
for these datasets were annotated by expert video endo-
scopists from the corresponding associated clinical institu-
tions. We specifically used the following grouping of images
for training (fine-tuning) and testing:

1) CVC-ClinicDB [27]: contains 612 polyp image frames
with SD (standard definition) resolution of 388 ×
284 pixels from 31 different colonoscopy video
sequences with 31 unique polyps.

2) ETIS-Larib [10]: contains 196 polyp image frames
with HD (high definition) resolution of 1225 ×
966 pixels from 34 different colonoscopy video
sequences. This dataset contains 44 different polyps
with various sizes and appearances. At least one polyp
existed in all 196 images, with the total number of
polyps being 208.

3) CVC-ColonDB [28]: contains 379 polyp image frames
with SD (standard definition) resolution of 574 ×
500 pixels from 15 different colonoscopy video
sequences with at least one polyp each.

B. PERFORMANCE METRICS
The proposed model was formulated to produce dense
pixel-wise polyp segmentations. As such, we report results

using three common segmentation evaluation metrics:
1) mean pixel precision (PR), 2) mean pixel recall (RC) and
3) interception over union (IU). If a pixel of polyp is correctly
classified, it is counted as a true positive (TP). Every pixel
segmented as polyp that falls outside of a polyp mask counts
as a false positive (FP). Finally, every polyp pixel that has
not been detected counts as a false negative (FN). The three
evaluation metrics are calculated as follows.

PR =
TP

TP+ FP
(2)

RC =
TP

TP+ FN
(3)

IU =
TP

TP+ FP+ FN
(4)

TABLE 1. Comparison with six FCN on the ETIS- LaribPolyp DB dataset.

C. RESULTS
Our results using ETIS- LaribPolypDB dataset are presented
in the Table 1. Table 1 shows that our proposed model
achieved the highest both precision and recall criterion among
the other models on ETIS- LaribPolypDB dataset. When it
comes to the model performance on CVC-ColonDB dataset,
the dataset contains images all with polyps of different
shapes which are annotated by clinicians. Table 2 shows
that our approach totally outperformed FCN based methods
on CVC-ColonDB dataset. This is because Mask R-CNNs

VOLUME 7, 2019 26445



J. Kang, J. Gwak: Ensemble of Instance Segmentation Models for Polyp Segmentation

TABLE 2. Comparison with six FCN networks on the CVC-colon
DB dataset.

used in our proposed approach can be viewed as a two-stage
method that could reduce the negative influence of diverse
size of polyp. In contrast, FCN based methods are one-stage
segmentation methods that are sensitive to the size of the
lesion. In addition, our ensemble model has the ability to
aggregate the results from two different backbone structures,
which can further improve the segmentation results.

Moreover, examples of three different segmentations pro-
duced by the six FCN networks and proposed method could
be depicted in Figure 5. Figure 5 describes that our model
can recognize the tumor boundary as much as possible what
others could not do.

V. SUMMARY AND CONCLUDING REMARKS
We have proposed a transfer learning based ensemble model
for colorectal polyp segmentation. The proposed framework
consists of three elements: 1) data augmentation, 2) twoMask
R-CNNs with different backbone structures (ResNet50 and
ResNet101) pre-trained on the COCO dataset, and 3) the
bitwise combination of two masks as our ensemble method.
Our method is validated using well known dataset from
MICCAI 2015 polyp detection challenge. Our experimental
results demonstrated the superiority of our proposed method
against state-of-the-art approaches for polyp segmentation.

Our research is still flawed, but we hope to try to break
through existing research results in a variety of ways. In the
colorectal polyp segmentation, a good classification algo-
rithm and high quality data are complement each other. In the
exploration of Mask R-CNN, we can explore other backbone
structure. Besides, we will also continue to collect more high
quality colorectal polyps dataset.
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