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ABSTRACT Low-cost 3D imaging, particularly by using laser detection and ranging (LIDAR), is important
for applications such as object recognition, surface mapping, and machine vision. Conventional time-of-
flight LIDAR uses a scanned laser to obtain the intensity and range of targets, which requires a narrow
bandwidth of illumination and high-speed synchronizers. This paper presents a nonscanning prototype of a
pulse-width-free 3D LIDAR which combines single-pixel imaging and diffractive optical elements, for the
first time to our knowledge. Compressive sensing techniques are used to measure echo pulses from the target
and reconstruct the intensity map of the target scene. Diffractive optical elements are also applied to generate
structured illumination and the depth map of the target scene can be obtained from laser spot extraction. The
simulation results are presented to verify the effectiveness of the proposed prototype as well as illustrate
its superiority where traditional 3D imaging methods are unavailable or limited. This novel prototype has
advantages of low cost and flexible structure at wavelengths beyond the visible spectrum and will be highly
interesting for practical applications.

INDEX TERMS Compressed sensing, image reconstruction, infrared imaging, laser radar.

I. INTRODUCTION
Laser detection and ranging (LIDAR) is a surveying method
for measuring the reflectivity and range of a target scene
by illuminating it with a pulsed laser and receiving the
reflected pulses with a sensor [1]. LIDAR is widely
used in target detection and recognition, computer vision
and three-dimensional (3D) scene imaging since it has
the merits of high reliability, longitudinal resolution and
anti-electromagnetic interference ability. In particular, non-
scanning LIDAR systems have been greatly developed in
recent years due to its low complexity, detection ability of
moving target and imaging obscuring targets [2]–[5].

In general, single-pixel nonscanning LIDAR is achieved
by employing a new sensing technology named compressive
sensing (CS), combining sampling and compression into a
single nonadaptive linear measurement process [6]–[9]. Can-
dès and Wakin [10] and Donoho [11] first proposed the CS
theory which is a major breakthrough for signal acquisition
theory. CS theory assumes that the spectrum of a signal in
a selected transform has only a few nonzero components.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhaoqing Pan.

By means of convex optimization in the selected transform
domain, one can recover certain signals and images from far
fewer samples. The CS framework has expanded greatly from
methodology to applications in active imaging after Duarte
and Davenport presented a signal-pixel imaging camera that
can operate efficiently based on a digital micromirror device
(DMD) [12], [13]. In terms of range estimation, time-of-flight
(TOF) techniques are widely used by correlating the detection
time of the back-scattered light with the time of illumination
pulse [14], [15]. Howland et al. [16], [17] combined CS the-
ory with a TOF photon counting LIDAR configuration where
transverse spatial resolution is obtained without scanning.
Via optical multiplexing, Li et al. [18] proposed a CS-TOF
imaging architecture which achieved significant improve-
ment in spatial resolution for natural scene. Although these
frameworks provide simple and low-cost solutions compared
with conventional TOF LIDAR, the range resolution of the
systems depends on narrow bandwidth of illumination laser
pulses and comparative detectors. By applying indirect rang-
ing methods to overcome these limitations, various achieve-
ments have been made. Li et al. [19] presented a prototype
of gated viewing laser imaging with CS where the 3D scene
can be reconstructed by the time-slicing (TS) technique. Gao
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et al. [20] proposed a super-resolution algorithm to acquire
range information of space-continuous targets based on CS
theory and multihypothesis prediction. In addition, range
information can be obtained by analyzing the intensity corre-
lation in the overlapping areas of two range gated, thanks to
narrow rectangular-shaped or triangular-shaped pulses gener-
ated by costly and complicated illuminator [21].

Structured illumination generated by diffractive optical
elements (DOEs) is also common in 3D imaging systems.
There is one special kind of DOEs named Dammann grating
which was first proposed by Dammann and Görtler [22]
with obvious advantages such as low cost, low power con-
sumption and small size. Dammann grating can split one
laser beam into a predesigned beam array where energy of
each beam is equal. Several outstanding 3D imaging efforts
with Dammann grating have received extensive attraction
recently [23]. For example, Wei proposed a binocular camera
to construct 3D profilometry and then proposed a colorful 3D
imaging method using near-infrared laser [24], [25].

In this paper, a prototype of CS based nonscanning LIDAR
with general illumination and structured illumination is pro-
posed. The prototype combines the single-pixel camera tech-
nology with the diffractive optical elements. Laser pulses
are emitted toward the target and then the scattered light
from the target returns to the system. Peak values of the
total echo pulses are recorded for reconstructing the range-
intensity profile which consists of a depth map and an inten-
sity map. On the one side, the depth map of the target can be
estimated based on laser spot extraction by structure illumi-
nation. On the other side, the intensity map of the target can
be recovered by either integral sparse sampling or comple-
mentary sparse sampling by uniform illumination. The novel
solution to the ranging problem in 3D LIDAR imaging lies
in the proposed prototype that can overcome the limitation
imposed by hardware, by depending on numerical processing
power. Numerical simulations for 3D imaging with various
subrates are presented to demonstrate the performance of the
proposed prototype.

This paper is organized as follows. Section 2 reviews CS
theory and its reconstruction model. Section 3 presents a
prototype of the dual illumination LIDAR and its mathemat-
ical model. Section 4 presents the 3D reconstruction method
to estimate the depth map and recover the intensity map.
Section 5 shows simulation experiments which are carried
out to validate the proposed prototype. Finally, Section 6 is
the conclusion.

II. COMPRESSIVE SENSING
CS techniques have previously designed to use prior
knowledge to determine original signals from significantly
reduced measurements compared with conventional sam-
pling [26]–[28]. To be more specific, the goal of CS is to
recover the signal vector x ∈ Rn from the measurements
vector

y = 8x (1)

where an m × n measurement matrix 8 (such that
m� n) is prearranged. The subsampling rate is defined by
subrate = m/n and general recover method is incapable since
subrate� 1.

According to CS theory, signals have a sparse representa-
tion by some linear transform coding in terms of the coeffi-
cients {αi} of an orthonormal basis expansion x =

∑n
i=1 αiψi

where {ψi}ni=1 are the n × 1 basis vectors. Let x = 9α,
where the n×n transforming matrix9 is the stack of vectors
{ψi}

n
i=1 as columns and α is a sparse coefficient vector. For

natural images, finding a good transform has been studied
extensively and notable achievements such as discrete cosine
transform (DCT) and discrete wavelet transform (DWT) are
widely used.

Then, the reconstruction of x is synthesized by recovering
α̂ and processing the mathematics problem: x̂ = 9α̂. α̂ is
recovered by solving the convex optimization problem:

α̂ = argmin
α
‖α‖0 s.t. y = 89α (2)

where ‖·‖0 is the l0-norm that counts the number of nonzero
entries of α and can be transformed into either l1-norm or l2-
norm by convex relaxation techniques.

Various CS algorithms have been developed to tackle this
kind of inverse problems and the exact recovery of x is guar-
anteed by solving the problem with total variation (TV) reg-
ularization [29]. The TV minimization based on augmented
lagrangian and alternating direction algorithms (TVAL3)
scheme is able to handle different boundary conditions for
α and is widely used as the reconstruction algorithm in CS
systems [30].

III. SYSTEM DESCRIPTION
The prototype of a pulse-width-free LIDAR with dual illu-
mination is illustrated in Fig. 1. It combines classical single-
pixel imaging framework with two laser transmitters where
one of them is with DOEs. As is shown in Fig. 1, the prototype
mainly consists of two transmitters, a camera lens as the
receiver, a narrowband filter (NBF), a beam splitter, a digital
micromirror device (DMD), a series of focus lens, a one-
pixel avalanche photodiode (APD) detector and a PC. There
is red light path with white arrows and orange data path in
dotted line. One of the transmitters emits flat-top Gaussian
beam and uniform beam illuminates the integral scene. In the
other transmitter, a near-infrared (NIR) Dammann grating
is embedded in the projection unit and output laser beam
is split into dot array to illuminate the scene. The beam
splitter is used for changing the propagation direction of
light and avoiding apparent focus error on DMD. First, one
transmitter emits laser beam toward the target scene. Second,
reflected light returns to the system collecting by the camera
lens. Third, a DMD is applied to conduct spatial modula-
tion shown as a series of 0-1 patterns defined beforehand.
Forth, a narrowband filter is used to remove background
radiation from sunlight and other sources and the reflected
light arrives at the one-pixel APD detector. When the other
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FIGURE 1. Schematic of dual illumination compressive LIDAR.

transmitter works, the system perform the same modulation
and sampling procedure. Throughout the whole prototype,
no temporal modulation of structure light and reflected light
is needed during measurements which is quite novel in 3D
laser imaging.

To generate structured light, the illuminator with
Dammann grating is an important part in the whole prototype.
Two-dimensional (2D) Dammann grating is capable to split
most of the illumination power into a desired diffractive spot
matrix with equal intensity as is shown in Fig. 2. The spot
pattern has the advantage of high brightness and high com-
pression ratio. According to diffraction theory, the structured
light is a rectangular dot matrix by mx × my dots and the
original half divergence angle is

θm = arcsin
(m− 1) λ

d0
, m = mx , my (3)

where m is even, λ is the wavelength of laser and d0 is
the period of the Dammann grating. Generally, the output
divergence angle θ of the transmitter is extended by a lens
andmodulated by grating fabrication.We can have the area of
each diffractive spot A as a function of the range to reference
plane R by theoretical derivation:

A = πR2 tan2 θ (4)

To be more specific, the system model is presented as
follows. The time propagation and pulse energy distribution
U in 3D space from the transmitter is of the form:

U (a, b, t) = I0 · I (a, b) · pt (t) (5)

where I0 is the total power constant of the laser pulse, (a, b)
represents a particular position under rectangular coordinate
system perpendicular to the direction of laser propagation,

I (a, b) is the normalized function for special distribution
of the pulse and pt (t) is the normalized function for time
propagation of the pulse. Moreover, pt (t) is represented as:

pt (t) =

{
(t/τ)2 e(−

t
τ ) t ≥ 0

0 t < 0
(6)

where τ = T1/2
/
3.5 and T1/2 is the full width at half

maximum (FWHM) of the pulse. Assuming that the target is
a Lambert diffuse point-like reflector, the power of the echo
signal Pr can be represented as the following formula:

Pr (R) =
I0I (a, b) τtτrτ 2a ρ cosβ

π�tR4
(7)

where τt and τr are the efficiencies of the optical transmitting
and receiving systems, respectively; τα is the single-pass
atmospheric transmittance; ρ is the reflectance of the target; β
is the angle between the detecting direction and the normal of
the Lambert surface; �t is the scattering solid angle of target
in steradians and R is the range between the target and the
receiver [31].

Then the range-discretized form of the total power of
echo pulses by sparse sampling in the view of field can be
described as a sum of pulse from each pixel with different
amplitudes and delay times:

pr,j (t) =
n∑
i

8(j,i)Pr (Ri) p (t − ti) (8)

where ti = 2Ri
/
c and c is the speed of light and 8 is the CS

measurement matrix.
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FIGURE 2. Generation of a diffractive spot matrix with a 2D Dammann grating.

IV. 3D RECONSTRUCTION METHOD
For 3D compressive imaging, a 2D extended mathematical
model of measuring process is presented as follows according
to formula (8) in a discretized matrix form:

Y = 8E (9)

where 8 is a measurement matrix, E is a n × l matrix with
n = p × q and Y is a m × l matrix as total echo waveform.
The target scene is supposed to be recovered as an intensity
map with a transverse resolution p × q. The ith row of E
(i = 1, 2, · · · n) represents the echo pulse from the scene
corresponding to the ith pixel on DMD and the jth row of Y
(i = 1, 2, · · ·m) represents the total echo pulse with jth DMD
pattern’s modulation recorded by the detector.

The task of 3D imaging is to determine a range value and
a gray value for each pixel in the target scene. This section
presents a depthmap estimationmethod and alternative inten-
sity map reconstructionmethods to achieve 3D imaging in CS
framework.

A. DEPTH MAP ESTIMATION
However, only peak values of the total echo pulses are
required to recover the intensity information in CS framework
rather than recording the whole waveform. In this instance,
we define vector y = (y1, y2, · · · ym)T as the measurements
when the transmitter with Dammann grating embedded illu-
minates the target scene, diagonal matrix I ∈ Rn×n as the
discretized intensity distribution matrix of the diffractive spot
and vector x = (x1, x2, · · · xn)T as the original gray values of
pixels in the target scene. The sampling process is modeled
as follows:

y = 8Ix = 8x ′ (10)

where x ′ = Ix depends on associative in matrix product.
Firstly, we enforce the sparsity of x ′ in some domains

as a prior and solve the l2-regularzied non-negativity

constrained inverse problem:

x̂c=argmin
xc
‖Dixc‖2+

µ

2
‖8cxc − yc‖22 , s.t. xc ≥ 0 (11)

where Dix ′ ∈ R2 is the discrete gradient of x ′ at pixel i,
by TVAL3 solver with default setting µ. Then, the recovered
distribution matrix of diffractive spot Î can be estimated by
proper threshold operation considering that there is no echo
pulse if there is no laser spot on the target. Finally, a s × s
depth map d̂ , which is consistent with the beam-splitting
ratio of Dammann grating, is generated based on block-wise
estimation. The recovered signal Î ∈ Rn×1 is reshaped into
a p × q matrix and then split into a series of s × s blocks
with the size of

(
p
/
s
)
×
(
q
/
s
)
. The value of each pixel in d̂

is estimated depending on the intensity distribution in each
block, respectively.

B. INTENSITY MAP RECONSTRUCTION BY INTEGRAL
SPARSE SAMPLING
Intensity map shows the gray value of the object obtained
by transmitting and reflecting laser pulses. When the trans-
mitter with Dammann grating embedded works, the inten-
sity information obtained by the prototype is from some,
but not all, pixels of the target scene. To achieve integral
imaging, a procedure of sparse sampling and reconstruction,
which is called integral sparse sampling (ISS) for the sake of
comparison with another procedure, is carried out with the
transmitter emitting flat-top Gaussian beam and illuminating
the whole target scene. The procedure is similar to typi-
cal compressive single-pixel LIDAR that combines pattern
projection and single-pixel detector to reconstruct intensity
map x̂.

C. INTENSITY MAP RECONSTRUCTION BY
COMPLEMENTARY SPARSE SAMPLING
Since a considerable part of gray values of the pixels are
obtained when the transmitter with Dammann grating works,
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FIGURE 3. 3D scene ranged from 1.50 m to 1.80 m. (a) is the conceptual graph of the target; (b) and (c) are the original
range-intensity profiles; (b) is the original intensity map; (c) is the original depth map.

we only need sample the echo pulses from the missed pixels
and reconstruct the integral intensity map x̂ based on the
existing pixels in x̂ ′. This procedure is called complementary
sparse sampling (CSS) and the number of measurements can
be significantly reduced comparing with ISS. Depending on
x̂ ′ and Î ′, the original gray value of the target x can be divided
into two vectors xd ∈ Rnd×1 and xc ∈ Rnc×1 which are mea-
sured and reconstructed respectively. xd represents the pixels
that are capable to be recovered as a byproduct of depth map
estimation in x and xc represents the pixels that is going to
be reconstructed by CSS in x respectively. For convenience,
the results of optimization reconstruction are denoted as x̂d
and x̂c accordingly. CSS is carried out with the transmitters
emitting flat-top Gaussian beam which illuminates the whole
target scene and modeled as:

yc = 8′cx (12)

where8′c is amc×nmeasurement matrix with some specific
all-zero columns and yc is the CSS vector. A proven and
universal measurement matrix 8c ∈ Rmc×nc is revealed
if we omit the specific all-zero columns in 8′c. Therefore,
we apply TVAL3 solver with default settings to solve the
inverse problem:

x̂c=argmin
xc
‖Dixc‖2+

µ

2
‖8cxc − yc‖22 , s.t. xc≥0. (13)

x̂ is finally obtained combining x̂d and x̂c.
In total, the reconstructed 3D image of the target scene can

be achieved as a combination of an intensity map x̂ and a
depth map d̂ .

V. SIMULATION RESULTS AND DISCUSSION
In this section, a simulation system is established and the
simulation results are presented to validate the effectiveness
of the proposed prototype and the pulse-width-free 3D active
imaging method. The numerical simulations are done with
CPU of Intel Core i3-3220 and 4.00GB RAM by matlab
2016a (64bits). The pulsed laser works at low repetition
rate, high pulse energy to illuminate the target scene and a
32× 32 array illuminator with Dammann grating embedded
are carried out for depth estimation as well. A series of DMD
patterns derived from 2D Hadamard transform are used to
modulate the echo pulses for CS measurements [18]. The
main parameters of the LIDAR system are given in Table 1.
Generally, the range resolution of TOF compressive LIDAR
with similar parameters is about 6 meters. The proposed
prototype can provide range super-resolution ability if we use
it as the standard.

As is shown in Fig. 3 (a), a 3D scene is designed as
the target which consists of two square cardboards with let-
ters ‘U’ and ‘R’ printed on and a white cardboard as the
back-ground. This is a typical target scene in CS-based 3D
imaging [16], [17], [32], [33]. The boards are distinguished
and located parallelly towards the imaging system. The dis-
tance between the imaging system and the cardboard with
‘U’ is 1.50 m and so is the distance between the imaging
system and the cardboard with ‘R’. The distance between
the imaging system and the background is 1.80 m. The 3D
scene is modeled by a combination of two matrixes, which
are shown as the intensity map in Fig. 3 (b) and the depth
map in Fig. 3 (c). The intensity map shows the reflectivity
distribution of the target and the depthmap shows the distance
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FIGURE 4. Visual comparison of the estimated depth maps of the target scene with various subrates (from 4% to
36%) in the absence of noise. From left to right and top to bottom: the subrate increases successively by 4%.

TABLE 1. Parameters of the simulation experiments.

(in pixels) between the target and the imaging system. Colors
correspond to the value of the estimated depth and a bar on
the right side is added as an annotation.

Fig. 4 illustrates the visual comparison of the estimated
depth maps of the target scene by the proposed prototype
with various subrates from 4% to 36% in the absence of
noise. When the target is illuminated by the transmitter with
Dammann grating embedded, an intensity map of the target
is reconstructed with high quality owing to the effective
performance of TVAL3. Laser spot extraction and depth
map estimation are proceeded along on the basis of the

FIGURE 5. NMSE for estimated depth map with various subrates.

reconstructed intensity map. The quality of estimated depth
map is getting better along with the subrate increase. With
extremely low subrate in Fig. 4 (a) and (b), depth values of the
pixels in the cardboards are not estimated correctly although
it seems there are two boards in the target scene. With higher
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FIGURE 6. Visual comparison of the reconstructed intensity maps of the target scene by ISS with various
subrates (from 4% to 12%) in the absence of noise. From left to right and top to bottom: the subrate
increases successively by 4%.

FIGURE 7. Visual comparison of the reconstructed intensity maps of the target scene by CSS with various
subrates (from 4% to 40%) in the absence of noise. From left to right and top to bottom: the subrate
increases successively by 4%.

subrate in Fig. 4 (c) – (f), only parts of the pixels in the
cardboards are estimated with high accuracy and in the case
of subrate greater than around 30% in Fig. 4 (g) – (i), accurate
estimated depth maps are achieved. And then, a normalized
mean squared error (NMSE) metric is adopted to compare the
estimated depth maps with the original depth map [34].

NMSE =

∑n
i=1

(
d (i)− d̂ (i)

)2
∑n

i=1 (d (i))
2 (14)

where d (i) and d̂ (i) are the depth of the ith pixel correspond-
ing to the original depth maps and the estimated depth maps,
respectively.

Fig. 5 provides a plot of NMSE as a function of subrates.
It can be seen that the NMSE values decrease visibly when
the subrates increase and accurate estimated depth maps are
achieved after the subrate reaches 30%. From both subjec-
tive observation and objective evaluation, we can assert that
the depth estimation method for the proposed prototype is
effective.
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FIGURE 8. Comparison of PSNR and number of measurements between ISS and CSS. (a) Number of measurements as
a function of subrates. (b) PSNR for reconstructed intensity maps as a function of subrates.

Fig. 6 is the visual comparison of the reconstructed inten-
sity maps of the target scene by ISS. The sampling subrates
varies from 4% to 12% as shown in Fig. 6 (a) to Fig. 6 (c).
For the specific target consisted of square cardboards with
letters, high-quality intensity map is obtained by ISS when
the subrate is selected with equal or greater value of 8% in
CS framework.

Fig. 7 is the visual comparison of the reconstructed inten-
sity maps of the target scene by ISS. The sampling subrates
varies from 6% to 34% as shown in Fig. 7 (a) to Fig. 7 (i).
For the specific target consisted of square card-boards with
letters, high-quality intensity map is obtained by ISS when
the subrate is selected with equal or greater value of 30% in
CS framework.

Fig. 8 compares the performance of two intensity recon-
struction methods introduced in Section 4, integral sparse
sampling and complementary sparse sampling. Fig. 8 (a)
shows that the number of measurements to reconstruct inten-
sity map of the target increases with increasing subrate for
both the intensity reconstruction methods and the number is
always greater when ISS is applied. The phenomenon, natu-
rally, results from the fact that all of the pixels in the scene are
considered as the target for ISS, but only the missed pixels for
CSS. Fewer measurements and corresponding smaller size
of measurement matrix can lead on to efficient engineering
implementation and low-complexity computation. Fig. 8 (b)
shows that the Peak Signal to Noise Ratio (PSNR) of the
reconstructed intensity map of the target scene increases with
increasing subrate for both intensity reconstruction methods
and the number is always greater when ISS is applied. The
quality of reconstructed intensity map by CSS is poor because
a portion of the recovered pixels and the missed pixels for
CSS are based on the results of the depth map estimation
which are not good enough with lower subrates. The two
figures show the trade-off between number of measurements,
quality of recovered intensity maps and size of measurement
matrixes.

TABLE 2. Performance of several CS-based 3D imaging methods.

Table 2 is provided for comparison with the performance
of several CS-based 3D imaging methods. The main aim
of 3D imaging is a achieving the range resolution of 0.3 m,
as is shown in the simulation results above. Compared
with conventional methods, the proposed method can obtain
specific resolution without significantly increased numbers
of acquired frames. More than that, the required width of
the transmitting laser pulses and the required sampling fre-
quency of the detector are irrelevant to the range resolution,
which means that the proposed method can achieve range
super-resolution to reconstruct the range-intensity profile free
from the previous limitation of narrow-bandwidth pulsed
lasers and high-frequency sampling.

VI. CONCLUSION
In this paper, we have presented a compressive sensing-
based pulse-width-free LIDAR prototype that uses dual illu-
mination, including a uniform illumination and a structured
illumination for nonscanning 3D imaging to overcome the
limitation of traditional methods. A 2D Dammann grating is
applied to generate structured light in the form of diffractive
spot matrix with equal intensity. Depth map of the target is
obtained by recovering the distribution matrix of diffractive
spot in CS framework. Intensity map of the target is obtained
by integral sparse sampling under the proposed prototype.
Alternately, it can be achieved by complementary sparse
sampling as a trade-off between PSNR and the size of mea-
surement matrix. Finally, the range-intensity profile of a 3D
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scene is achieved as a combination of the estimated depth
map and the reconstructed intensity map. The simulation
results demonstrate that the proposed prototype is able to
achieve a high-quality range-intensity profile of a 3D scene.
In special, it has the advantage of range super-resolutionwhen
TOF LIDAR fails, i.e. echo pulses from targets with different
ranges are indistinguishable. Beyond the simulations, build-
ing a realizable dual illumination system and using for 3D
imaging to identify natural targets are future tasks.
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