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ABSTRACT In this paper, an adaptive neural network (NN) command filtered tracking control method
is developed for a flexible robotic manipulator with dead-zone input. To deal with the input dead-zone
nonlinearity, it is viewed as a combination of a linear part and bounded disturbance-like term. The Neural
networks (NNs) are used to estimate the uncertain nonlinearities appeared in the control system. By using the
command filter technique, the problem of ‘explosion of complexity’ is overcome. The proposed controller
guarantees that all the closed-loop signals are bounded and the system output can track the given reference
signal. The simulation results are provided to demonstrate the effectiveness of the proposed controller.

INDEX TERMS Adaptive neural network control, robotic manipulator, dead-zone, command-filter
technique, backstepping.

I. INTRODUCTION
Since the control problem of single-link robotic manipulator
widely exist in industry and engineering fields, the investi-
gation on single-link robotic manipulator has caused quite a
lot of attention during the past two decades. So far, various
interesting control approaches have been developed, such
as sliding control [1]–[4], backstepping technique [5], [6]
and intelligent control method [7]–[16]. Backstepping design
method has been considered as one of the most popular and
effective control methods for non-linear systems with strict
feedback form, i.e. those that do not meet the matching condi-
tions. In [5], a backstepping design approach is presented for
single-link flexible robotic manipulator. Noted that the back-
stepping method in [5] is only suitable for solving the control
system being known accurately. However, it is well known
that uncertain nonlinearities exist widely in practical engi-
neering, this means that the precise system model of flexible
joint manipulator is unavailable. Under this circumstance,
many important results have been achieved by combining
fuzzy/neural control together with backstepping and adaptive
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control approach, see, for example [7]–[16]. Nevertheless,
adaptive neural network or fuzzy backstepping control [17]
based on approximation cannot solve the problem of ‘explo-
sion of complexity’ caused by the repeated differential of
virtual input [7]. To overcome this shortcoming, the com-
mand filter backstepping method is first proposed in [18],
and is extended to the adaptive backstepping control of strict-
feedback systems in [19]. As indicated in [19], the problem
of ‘explosion of complexity’ can be eliminated by using the
output of command filter to approximate the derivative of
the virtual control at each step of the backstepping method.
By introducing the compensation signal, the error caused by
the command-filter can be reduced. More recently, the com-
mand filter control algorithm is used to deal with the control
design problem of flexible robotic manipulator with input
saturation [12].

Dead-zone is one of the nonsmooth nonlinear characteris-
tics in many industrial processes. The existence of dead-zone
can severely affect the control performance and even result
in instability of the system. Therefore, dead-zone should be
considered in the design and analysis of control system, and
there exist series of researches for the control systems with
dead-zone [20]. Recker et al. [21] putted forward an adaptive
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control technique for nonlinear systemswith input dead-zone.
In recent years, more and more researchers have considered
the control problem of nonlinear systems with dead zone
input [22]–[32]. For instance, in [22], an adaptive dead zone
inverse algorithm is proposed to control a class of nonlinear
systems with unknown dead zone. In [23], a compensation
scheme is presented for general nonlinear actuator dead zone
of unknown width. The compensator uses two neural net-
works, one to estimate the unknown dead zone and another
to provide adaptive compensation in the feedforward path.
In [25], the adaptive control of sandwich nonlinear system
with unknown dead zone between linear dynamic blocks is
studied. In [27], an adaptive output feedback control problem
for a class of uncertain nonlinear systems with unknown
asymmetrical dead zone is studied. As far as we know, there
are few results on adaptive neural command-filter control for
flexible manipulator with dead-zone input, which motivates
us to carry out this research.

In this paper, the problem of output tracking control is
considered for flexible robotic manipulator with input dead-
zone. By employing adaptive neural control combined with
command filter technique, an output tracking control scheme
is presented for a single-link flexible manipulator with input
dead-zone. The proposed adaptive neural network control
approach can ensure that all the variables in the closed-loop
systems are bounded, and the trajectory tracking error can be
made as small as possible for all bounded initial conditions.
The simulation results are given to verify the effectiveness of
the proposed controller. The main advantage of the developed
scheme is that the command filtered adaptive neural net-
work backstepping control can overcome the problem of the
classical backstepping for the nonlinear systems with input
dead-zone. It also can alleviate the online calculation burden.

The rest of this article is organized as follows. Section 2
gives the problem statement and preliminaries. Adaptive
neural network control design and the stability analysis are
presented in Section 3. Section 4 gives simulation results to
demonstrate the effectiveness of the proposed scheme. The
conclusion is included in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. SYSTEM DESCRIPTIONS
Consider a single-link robotic manipulator coupled to a
brushed direct current motor with a nonrigid joint, the
dynamic equation is expresses as follows

J1q̈1 + F1q̇1 + K (q1 −
q2
N
)+ mgd cos q1 = 0,

J2q̈2 + F2q̇2 −
K
N
(q1 −

q2
N
) = Kt i,

Li̇+ Ri+ Kbq̇2 = u(v),

(1)

where J1 and J2 denote the inertias, q1 is the angular positions
of the link, q2 displays the motor shaft, R and L express the
armature resistance and inductance respectively. i shows the
armature current, K denotes the spring constant, Kt denotes
the torque constant, u(v) is the armature voltage, g displays

the acceleration of gravity, d expresses the position of the
link’s center of gravity, F1 and F2 are the viscous friction
constants, Kb denotes the back-emf constant, M denotes the
link mass, and N denotes the gear ratio.
By introducing the state variables, x1 = q1, x2 = q̇1, x3 =

q2, x4 = q̇2, x5 = i, and defining KtK = J1J2NL, the
dynamic equation (1) changes into

ẋ1 = x2,
ẋ2 = δ2(x1, x2, x3)+ x3,
ẋ3 = x4,
ẋ4 = δ4(x1, x2, x3, x4, x5)+ x5,
ẋ5 = δ5(x1, x2, x3, x4, x5)− 1

L u,
y = x1,

(2)

where δ2(x1, x2, x3) = −
mgd
J1

cos x1−
F1
J1
x2− K

J1
(x1−

x3
N )−x3,

δ4(x1, x2, x3, x4, x5) = K
J2N

(x1 −
x3
N ) − F2

J2
x4 +

Kt
J2
x5 − x5,

δ5(x1, x2, x3, x4, x5) = −R
L x5 −

Kb
L x4.

Note that system (2) is in non-strict-feedback form.
According to [30], the dead-zone with input v(t) and

output u(t) is described by

u = D(v) =


mr (v− br ), v ≥ br
0, bl < v < br
ml(v− bl), v ≤ bl

(3)

where u ∈ R denotes the control signal of the system, and it
is also the output of an uncertain dead-zone. D(·) denotes a
piecewise function with three zones.

For ease of control design and analysis, the following
assumptions and lemmas are introduced.
Assumption 1 [30]: The dead-zone output u is not available

for measurement.
Assumption 2 [30]: The dead-zone slopes in positive and

negative region are same, i.e. mr = ml = m.
Assumption 3 [30]: The dead-zone parameters br , bl , and

m are unknown, but their signs are known: br > 0, bl < 0,
m > 0.
Assumption 4 [30]: The dead-zone parameters br , bl , and

m are bounded, i.e. there exist known constants brmin, brmax ,
blmin, blmax , mmin, mmax such that br ∈ [brmin, brmax], bl ∈
[blmin, blmax], and m ∈ [mmin,mmax].
Remark 1: From a practical point of view, we can redefine

model (3) as

u = D(v) = mv+ d(v) (4)

where m is called the general slope of the dead-zone,
d(v(t)) can be calculated from (3) and (4) as

d(v) =


−mbr , v ≥ br
−mv, bl < v < br
−mbl, v ≤ bl

(5)

From Assumptions 2 and 4, one can conclude that d(v) is
bounded.
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The purpose of this paper is to construct an adaptive neural
controller as follows:
(1) The system output y can track the given reference signal
yr as close as possible.
(2) All variables within the closed-loop system are bounded.

Before proceeding to the next step, let’s introduce the
following lemma.
Lemma 1 [18]: The command filter is defined as{

ω̇i = ωnωi,2

ω̇i,2 = −2ςωnωi,2 − ωn(ωi − αi−1)
(6)

where ωn > 0 and ς ∈ (0.1] are positive design parameters
that are the same for all command filters. αi−1 and ωi are the
input and output of the command filter. The initial value of
ωi is equal to αi−1(0), ωi,2(0) = 0.

B. NEURAL NETWORK
In this research, the radial basis function (RBF) neural net-
work will be used to approximate the continuous function
f (x) : Rn→ R. The RBF neural networks is described by:

fnn(x) = θTϕ(x) (7)

where x ∈ �x ⊂ Rq denotes input vector, θ =

[θ1, · · · , θl]T ∈ Rl with l > 1 denotes weight vector, and
ϕ(x) = [ϕ1(x), · · · , ϕl(x)]T means the basis function vector
with ϕi(x) being the Gaussian function in the form

ϕi(x) = exp[−
(x − µi)T (x − µi)

η2
] (8)

where µi = [µi1, · · · , µiq]T for i = 1, · · · , l is the center of
the receptive field and η is the width of Gaussian function.
Lemma 2 [33]: For given accuracy ε > 0, with sufficiently

large node number l the RBF NN (7) can approximate any
continuous function f (x) over compact set�x ⊂ Rq such that

f (x) = θ∗Tϕ(x)+ ε(x),∀x ∈ �x ∈ Rq (9)

where ε(x) denotes the approximation error and satisfies
|ε(x)| ≤ ε∗, θ∗ denotes the ideal constant weight vector and
defined as

θ∗ = arg min
θ∈R̄l
{ sup
x∈�x
| f (x)− θTϕ(x) |} (10)

Lemma 3 [34]: Let S(x̄q) = [S1(x̄q), · · · , Sl(x̄q)]T be the
basis function vector of a RBF NN and x̄q = [x1, · · · , xq]T

be the input vector. Then, for any positive integer k ≤ q, let
x̄k = [x1, · · · , xk ]T , the following inequality holds:

‖S(x̄q)‖2 ≤ ‖S(x̄k )‖2 (11)

III. ADAPTIVE NEURAL NETWORK CONTROL
DESIGN AND STABILITY ANALYSIS
In this section, an adaptive neural network state-feedback
controller, the compensation signal and the parameter adap-
tive law are obtained via command filter.

The 5-step adaptive neural network backstepping state
feedback control devise is obtained by the following coor-
dinate changes {

λi = xi − ωi

νi = λi − ri
(12)

where ω1 = yr , for i = 1, · · · , 5, λi is the tracking error for
command filter, ωi indicates the output of command filter,
ri denotes the compensating signal of command filter, yr dis-
plays the desired trajectory, νi expresses the compensating
tracking error signal.
Step 1: From the coordinate transformation (12), the time

derivative of ν1 is

ν̇1 = λ̇1 − ṙ1

= ẋ1 − ẏr − ṙ1

= x2 − ẏr − ṙ1

= λ2 + ω2 − ẏr − ṙ1

= ν2 + r2 + ω2 − ẏr − ṙ1 (13)

Choose a Lyapunov function candidate as

V1 =
1
2
ν21 (14)

The time derivative of V1 is

V̇1 = ν1(ν2 + r2 + α1 − α1 + ω2 − ẏr − ṙ1) (15)

Next, consider a virtual control signal α1 and a compensating
signal ṙ1 as

α1 = −c1λ1 + ẏr (16)

ṙ1 = −c1r1 + r2 + (ω2 − α1) (17)

where c1 ≥ 0 is a design parameter. By substituting (16)-(17)
into (15), we obtain

V̇1 = ν1(ν2 + r2 − c1λ1 + ẏr − α1 + w2

− ẏr + c1r1 − r2 − ω2 + α1)

= −c1ν21 + ν1ν2 (18)

Step 2: The time derivative of ν2 is

ν̇2 = λ̇2 − ṙ2

= ẋ2 − ẇ2 − ṙ2

= δ2(x̄3)+ x3 − ω̇2 − ṙ2 (19)

Choose the following Lyapunov function

V2 = V1 +
1
2
ν22 +

1
2η2

θ̃22 (20)

where η2 > 0 is a parameter to be designed, θ̃2 =
θ2− θ̂2 displays the approximation error. The time derivative
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of V2 is

V̇2 = −c1ν21 + ν1ν2 + ν2
(
δ2(x̄3)+ x3

− ω̇2 − ṙ2
)
−

1
η2
θ̃2
˙̂
θ2 (21)

Since δ2(x̄3) is unknown, and cannot be applied to design
virtual control signal α2 directly. Neural network θ∗T2 ϕ2(x̄3) is
thus used to estimate δ2(x̄3), such that, for any given positive
constant ε∗2 > 0.

δ2(x̄3) ≤ θ∗T2 ϕ2(x̄3)+ ε2(x̄3) (22)

where ε2(x̄3) satisfies |ε2(x̄3)| ≤ ε∗2 . Then, with the consider-
ation of (22), we can rewrite (21) as

V̇2 ≤ −c1ν21 + ν1ν2 + ν2
(
θ∗T2 ϕ2(x̄3)+ ε2

+ x3 − ω̇2 − ṙ2
)
−

1
η2
θ̃2
˙̂
θ2

≤ −c1ν21 + ν1ν2 + ν2
(
θ∗T2 ϕ2(x̄3)+ ε2

+ λ3 + ω3 − ω̇2 − ṙ2
)
−

1
η2
θ̃2
˙̂
θ2

≤ −c1ν21 + ν1ν2 + ν2
(
θ∗T2 ϕ2(x̄3)+ ε2

+ ν3 + r3 + ω3 − ω̇2 − ṙ2
)
−

1
η2
θ̃2
˙̂
θ2 (23)

By applying Young’s inequality and according to Lemma 3,
we conclude

ν2θ
∗T
2 ϕ2(x̄3) ≤

1

2a22
ν22θ2ϕ

T
2 (x̄3)ϕ2(x̄3)+

1
2
a22

≤
1

2a22
ν22θ2ϕ

T
2 (x̄2)ϕ2(x̄2)+

1
2
a22 (24)

ν2ε2 ≤
1
2
ν22 +

1
2
ε∗22 (25)

where ‖θ∗2 ‖
2
= θ2. By substituting (24)-(25) into (23),

we have

V̇2 ≤ −c1ν21 + ν2
( 1

2a22
ν2θ2ϕ

T
2 (x̄2)ϕ2(x̄2)

+α2 − α2 + ν3 + r3 + ω3 − ω̇2 − ṙ2

+ ν1 +
1
2
ν2

)
+

1
2
a22 +

1
2
ε∗22 −

1
η2
θ̃2
˙̂
θ2 (26)

Choose a virtual control signal α2, the command filter ω̇2 and
the compensating signal ṙ2 as

α2 = −c2λ2 −
1

2a22
ν2θ̂2ϕ

T
2 (x̄2)ϕ2(x̄2)

−
1
2
ν2 − ν1 + ω̇2 (27)

ω̇2 = ωnω2,2 (28)

ω̇2,2 = −2ςωnω2,2 − ωn (ω2 − α1) (29)

ṙ2 = −c2r2 + r3 + (ω3 − α2) (30)

By substituting (27)-(30) into (26), we can get

V̇2 ≤ −c1ν21 + ν2
( 1

2a22
ν2θ2ϕ

T
2 (x̄2)ϕ2(x̄2)

− c2λ2 −
1

2a22
ν2θ̂2ϕ

T
2 (x̄2)ϕ2(x̄2)−

1
2
ν2

− ν1 + ω̇2 − α2 + ν3 + r3 + ω3 − ω̇2

+ c2r2 − r3 − ω3 + α2 + v1 +
1
2
v2
)

+
1
2
a22 +

1
2
ε∗22 −

1
η2
θ̃2
˙̂
θ2

≤ −c1ν21 − c2ν
2
2 + ν2ν3 +

1
2
a22 +

1
2
ε∗22

+
1

2a22
ν2θ̃2ϕ

T
2 (x̄2)ϕ2(x̄2)−

1
η2
θ̃2
˙̂
θ2

≤ −c1ν21 − c2ν
2
2 + ν2ν3 +

1
2
a22 +

1
2
ε∗22

+
1
η2
θ̃2

( η2
2a22

ν22ϕ
T
2 (x̄2)ϕ2(x̄2)−

˙̂
θ2

)
(31)

In the present, we design an adaptive law ˙̂θ2 as
˙̂
θ2 =

η2

2a22
ν22ϕ

T
2 (x̄2)ϕ2(x̄2)− σ2θ̂2 (32)

By substituting (32) into (31), we have

V̇2 ≤ −c1ν21 − c2ν
2
2 +

1
2
a22 +

1
2
ε∗22 + ν2ν3 +

σ2

η2
θ̃2θ̂2

(33)

Step 3: The time derivative of ν3 is

ν̇3 = λ̇3 − ṙ3
= ẋ3 − ω̇3 − ṙ3
= x4 − ω̇3 − ṙ3
= λ4 + ω4 − ω̇3 − ṙ3
= ν4 + r4 + ω4 − ω̇3 − ṙ3 (34)

Choose a Lyapunov function candidate as

V3 = V2 +
1
2
ν23 (35)

The time derivative of V3 is

V̇3 = V̇2 + ν3ν̇3
= V̇2 + ν3 (ν4 + r4 + ω4 − ω̇3 − ṙ3)

≤ −c1ν21 − c2ν
2
2 +

1
2
a22 +

1
2
ε∗22

+
σ2

η2
θ̃2θ̂2 + ν3(ν4 + ν2 + r4 + ω4

+α3 − α3 − ω̇3 − ṙ3) (36)

Choose a virtual control signal α3, the command filter ω̇3 and
the compensating signal ṙ3 as

α3 = −c3λ3 − ν2 + ω̇3 (37)

ω̇3 = ωnω3,2 (38)

ω̇3,2 = −2ςωnω3,2 − ωn (ω3 − α2) (39)

ṙ3 = −c3r3 + r4 + (ω4 − α3) (40)
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Substituting (37)-(40) into (36) results in

V̇3 ≤ −c1ν21 − c2ν
2
2 +

1
2
a22 +

1
2
ε∗22 +

σ2

η2
θ̃2θ̂2

+ ν3(ν4 + ν2 + r4 + ω4 − c3λ3 − ν2 + ω̇3

−α3 − ω̇3 + c3r3 − r4 − ω4 + α3)

≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 +

1
2
a22 +

1
2
ε∗22

+ ν3ν4 +
σ2

η2
θ̃2θ̂2 (41)

Step 4: The derivative of ν4 can be expressed as

ν̇4 = δ4(x̄5)+ x5 − ω̇4 − ṙ4 (42)

Choose a Lyapunov function candidate as

V4 = V3 +
1
2
ν24 +

1
2η4

θ̃24 (43)

From (42)-(43), we can get the time derivative of V4 as
follows

V̇4 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 +

σ2

η2
θ̃2θ̂2

+
1
2
a22 +

1
2
ε∗22 + ν4

(
δ4(x̄5)+ x5

− ω̇4 − ṙ4
)
−

1
η4
θ̃4
˙̂
θ4 (44)

Since δ4(x̄5) is unknown, and cannot be applied to design
virtual control signal α4 directly. Neural network θ∗T4 ϕ4(x̄5)
is used to estimate δ4(x̄5), such that, for any given positive
constant ε∗4 > 0.

δ4(x̄5) ≤ θ∗T4 ϕ4(x̄5)+ ε4(x̄5) (45)

where |ε4(x̄5)| ≤ ε∗4 . By taking (45) into account, one has

V̇4 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 +

σ2

η2
θ̃2θ̂2 +

1
2
a22

+
1
2
ε∗22 + ν4

(
θ∗T4 ϕ4(x̄5)+ α4 − α4 + x5

+ ε4 − ω̇4 − ṙ4 + ν3
)
−

1
η4
θ̃4
˙̂
θ4 (46)

By using Young’s inequality and according to Lemma 3,
we obtain

ν4θ
∗T
4 (x̄5) ≤

1

2a24
ν24θ4ϕ

T
4 (x̄5)ϕ4(x̄5)+

1
2
a24

≤
1

2a24
ν24θ4ϕ

T
4 (x̄4)ϕ4(x̄4)+

1
2
a24 (47)

ν4ε4 ≤
1
2
ν24 +

1
2
ε∗24 (48)

By substituting (47)-(48) into (46), we can get

V̇4 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 +

σ2

η2
θ̃2θ̂2 +

1
2
ε∗22

+
1
2
a22 + ν4

( 1

2a24
ν4θ4ϕ

T
4 (x̄4)ϕ4(x̄4)

+
1
2
ν4 + ν3 + ν5 + r5 + ω5 + α4 − α4

− ω̇4 − ṙ4
)
−

1
η4
θ̃4
˙̂
θ4 (49)

Choose a virtual control signal α4, the command filter ω̇4 and
the compensating signal ṙ4 as

α4 = −c4λ4 −
1

2a24
ν4θ̂4ϕ

T
4 (x̄4)ϕ4(x̄4)

−
1
2
ν4 − ν3 + ω̇4 (50)

ω̇4 = ωnω4,2 (51)

ω̇4,2 = −2ςωnω4,2 − ωn (ω4 − α3) (52)

ṙ4 = −c4r4 + r5 + (ω5 − α4) (53)

Substituting (50)-(53) into (49) results in

V̇4 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 +

σ2

η2
θ̃2θ̂2 +

1
2
ε∗22

+
1
2
a22 + ν4

( 1

2a24
ν4θ4ϕ

T
4 (x̄4)ϕ4(x̄4)

+
1
2
ν4 + ν3 + ν5 −

1

2a24
ν4θ̂4ϕ

T
4 (x̄4)ϕ4(x̄4)

+ r5 + ω5 − c4λ4 − ν3 − ω̇4 −
1
2
ν4 − α4

− ω̇4 + c4r4 − r5 − ω5 + α4

)
+

1
2
a24

+
1
2
ε∗24 −

1
η4
θ̃4
˙̂
θ4

≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

σ2

η2
θ̃2θ̂2

+
1
2
a22 +

1
2
ε∗22 + ν4ν5 +

1
2
a24 +

1
2
ε∗24

+
1
η4
θ̃4

( η4
2a24

ν24ϕ
T
4 (x̄4)ϕ4(x̄4)−

˙̂
θ4

)
(54)

In the present, we design an adaptive law ˙̂θ4 as

˙̂
θ4 =

η4

2a24
ν24ϕ

T
4 (x̄4)ϕ4(x̄4)− σ4θ̂4 (55)

Substituting (55) into (54) results in

V̇4 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

1
2
a22 +

1
2
ε∗22

+
σ2

η2
θ̃2θ̂2 +

σ4

η4
θ̃4θ̂4 +

1
2
a24 +

1
2
ε∗24 + ν4ν5 (56)

Step 5: According to (2) and (12), we can get

ν̇5 = δ5(x̄5)−
1
L
u− ω̇5 − ṙ5 (57)

Choose the following Lyapunov function

V5 = V4 +
1
2
ν25 +

1
2η5

θ̃25 (58)
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From (57)-(58), we obtain

V̇5 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

σ2

η2
θ̃2θ̂2

+
σ4

η4
θ̃4θ̂4 +

1
2
a22 +

1
2
ε∗22 +

1
2
a24 +

1
2
ε∗24

+ ν5

(
δ5(x̄5)−

1
L
u− ω̇5 − ṙ5

)
−

1
η5
θ̃5
˙̂
θ5 (59)

Similarly, neural network θ∗T5 ϕ5(x̄5) is used to esti-
mate δ5(x̄5), such that

δ5(x̄5) ≤ θ∗T5 ϕ5(x̄5)+ ε5(x̄5) (60)

where |ε5(x̄5)| ≤ ε∗5, with ε
∗

5 being a positive constant.
Therefore, we choose − 1

L = p and according to (4), we get

V̇5 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

σ2

η2
θ̃2θ̂2

+
σ4

η4
θ̃4θ̂4 +

1
2
a22 +

1
2
ε∗22 +

1
2
a24 +

1
2
ε∗24

+ ν5

(
θ∗Tϕ5(x̄5)+ ν4 + pmv+ pd(v)

+ ε5 − ω̇5 − ṙ5
)
−

1
η5
θ̃5
˙̂
θ5 (61)

By using Young’s inequality, we can get

ν5θ
∗T
5 ϕ5(x̄5) ≤

1

2a25
ν25 θ̂5ϕ

T
5 (x̄5)ϕ5(x̄5)+

1
2
a25 (62)

ν5ε5 ≤
1
2
ν25 +

1
2
ε∗25 (63)

ν5pd(v) ≤
1
2
ν25 +

1
2
D2
1 (64)

where let |pd(v)| < D1. By substituting (62)-(64) into (61),
we can conclude

V̇5 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

σ2

η2
θ̃2θ̂2

+
σ4

η4
θ̃4θ̂4 +

1
2
a22 +

1
2
ε∗22 +

1
2
a24 +

1
2
ε∗24

+ ν5

( 1

2a25
ν5θ5ϕ

T
5 (x̄5)ϕ5(x̄5)+ ν4 + pmv

+
1
2
ν5 − ω̇5 +

1
2
ν5 − ṙ5

)
+

1
2
a25 +

1
2
ε∗25

+
1
2
D2
1 −

1
η5
θ̃5
˙̂
θ5 (65)

Choose a controller v, the command filter ω̇5 and the
compensating signal ṙ5 as

v =
1
pm

(
− c5λ5 −

1

2a25
ν5θ̂5ϕ

T
5 (x̄5)ϕ5(x̄5)

− ν5 − ν4 + ω̇5

)
(66)

ω̇5 = ωnω5,2 (67)

ω̇5,2 = −2ςωnω5,2 − ωn(ω5 − α4) (68)

ṙ5 = −c5r5 (69)

Substituting (66)-(69) into (65), we have

V̇5 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 +

1
2
a22

+
1
2
ε∗22 +

σ2

η2
θ̃2θ̂2 +

σ4

η4
θ̃4θ̂4 +

1
2
a24

+
1
2
ε∗24 + ν5

( 1

2a25
ν5θ5ϕ

T
5 (x̄5)ϕ5(x̄5)

+ ν4 − c5λ5 −
1

2a25
ν5θ̂5ϕ

T
5 (x̄5)ϕ5(x̄5)

− ν5 − ν4 + ω̇5 + ν5 − ω̇5 + c5r5
)

+
1
2
a25 +

1
2
ε∗25 +

1
2
D2
1 −

1
η5
θ̃5
˙̂
θ5

≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 − c5ν

2
5

+
1
2
a22 +

1
2
ε∗22 +

σ2

η2
θ̃2θ̂2 +

σ4

η4
θ̃4θ̂4

+
1
2
a24 +

1
2
ε∗24 +

1
2
a25 +

1
2
ε∗25 +

1
2
D2
1

+
1
η5
θ̃5

( η5
2a25

ν25ϕ
T
5 (x̄5)ϕ5(x̄5)−

˙̂
θ5

)
(70)

In the present, we design an adaptive law ˙̂θ5 in the following

˙̂
θ5 =

η5

2a25
ν25ϕ

T
5 (x̄5)ϕ5(x̄5)− σ5θ̂5 (71)

Substituting (71) into (70), we can figure that out

V̇5 ≤ −c1ν21 − c2ν
2
2 − c3ν

2
3 − c4ν

2
4 − c5ν

2
5

+
1
2
a22 +

1
2
ε∗22 +

σ2

η2
θ̃2θ̂2 +

σ4

η4
θ̃4θ̂4

+
σ5

η5
θ̃5θ̂5 +

1
2
a24 +

1
2
ε∗24 +

1
2
a25

+
1
2
ε∗25 +

1
2
D2
1

≤ −

5∑
i=1

ciν2i +
∑

j=2,4,5

σj

ηj
θ̃jθ̂j +

∑
j=2,4,5

1
2
a2j

+

∑
j=2,4,5

1
2
ε∗2j +

1
2
D2
1 (72)

Through the above analysis and design, we can get the
following main result.
Theorem 1: Consider the single-link flexible robotic

manipulator (1) with Assumptions 1-4. For bounded initial
conditions, the proposed adaptive neural network control
scheme can ensure that all the signals in the closed-loop
system is bounded. Moreover, the tracking error can be made
arbitrarily small by choosing appropriate design parameters.
Proof: According to Young’s inequality, one has

θ̃jθ̂j = θ̃j(θj − θ̃j) ≤ −
1
2
θ̃2j +

1
2
θ2j (73)
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Substituting (73) into (72) produces

V̇5 ≤ −(2ci
5∑
i=1

1
2
ν2i + 2σj

∑
j=2,4,5

1
ηj
θ̃2j )

+

∑
j=2,4,5

(
σj

2ηj
θ2j +

1
2
a2j +

1
2
ε∗2j )+

1
2
D2
1 (74)

Then, (72) can be rewritten as

V̇5 ≤ −CV5 + D (75)

where C = min{2ci, 2σj, i = 1 · · · 5, j = 2, 4, 5},

D =
∑

j=2,4,5

(
σj

2ηj
θ2j +

1
2
a2j +

1
2
ε∗2j )+

1
2
D2
1.

By integrating (75) over [0, t], one has

0 ≤ V5(t) ≤
(
V5(0)−

D
C

)
e−Ct +

D
C

(76)

which means that

lim
t→∞

V5(t) ≤
D
C

(77)

According to (76), we can get

|ν1| ≤

√
2
(
V5(0)e−Ct +

D
C

)
(78)

which implies that

lim
t→∞
|ν1| ≤

√
2D/C (79)

This means ν1 is bounded. In a similar way, νi, i = 2, 3, 4, 5
is also bounded.

To guarantee the boundedness of output tracking error
λ1 = ν1 + r1, the convergence of r1 should be considered.
Similarly, in order to obtain the boundedness of λi, it is
necessary to study the property of ri. To this end, consider the
system consisting of the error compensating signals defined
in equations (17), (30), (40), (53), (69).

ṙi = −ciri + ri+1 + (ωi+1 − αi), i = 1, · · · , 4 (80)

ṙ5 = −c5r5 (81)

The following lemma shows that the compensating signals
are bounded.
Lemma 4 [19] [35]: The system defined in (80)-(81),

whose states are bounded by

lim
t→∞

Vr (t) ≤
b0ξ2β2

a0
(82)

where b0 and a0 are positive constants. For bounded input αi,
which satisfies ‖gi(ωi+1 − αi)‖ ≤ ξβ, i = 1, 2, 3, 4. gi rep-
resents the control coefficient of the command filter error,
that is, g1 = 1, g2 = 1, g3 = 1, g4 = 1. ξ is the upper
bound of command filter error. β is the upper bound of gi.
Proof: For (80)-(81), we can construct the following

Lyapunov function Vr =
∑5

i=1
1
2 r

2
i . Taking the time

FIGURE 1. The system output y and reference signal yr .

derivative of Vr with the help of (80)-(81) and Young’s
inequality yields

V̇r =
5∑
i=1

riṙi

= r1(−c1r1 + r2 + ω2 − α1)

+ r2(−c2r2 + r3 + ω3 − α2)

+ r3(−c3r3 + r4 + ω4 − α3)

+ r4(−c4r4 + r5 + ω5 − α4)

+ r5(−c5r5)

≤ −

5∑
i=1

cir2i + ξβ(r1 + r2 + r3 + r4)

≤ −

4∑
i=1

(ci −
1
2
)r2i − c5r

2
5 + 2ξ2β2

≤ −a0Vr + b0ξ2β2 (83)

where a0 = min{2(ci − 1
2 ), 2c5}, i = 1, 2, 3, 4, and b0 = 2.

By choosing appropriate a0 and solving (83), the following
result can be obtained

lim
t→∞

Vr (t) ≤
b0ξ2β2

a0
(84)

From (12) and (84), it can be concluded that the signal λi
is bounded because of the boundedness of νi and ri in (77)
and (84), respectively. To sum up, it can be shown that all the
signals in the closed-loop system are bounded.

IV. SIMULATION RESULTS
In this section, to illustrate the effectiveness of the presented
control scheme, the simulation is carried out for the control
system (1), where J1 = J2 = 30Kgm2, Kt = 8Nm/A, Kb =
1Nm/A, g = 9.8N/Kg,M = 0.5Kg, F1 = F2 = 5Nms/rad,
R = 10�, K = 5, L = 5H , N = 1, d = 0.5m, m = 1. The
Dead-zone model u = D(v) is defined as

u = D(v) =

m(v− 2.5), v ≥ 2.5
0, −2 < v < 2.5
m(v+ 2), v ≤ −2

(85)
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FIGURE 2. The tracking error y − yr .

FIGURE 3. The actual control input u.

FIGURE 4. The state variables x2, x3.

The design parameters in the presented control scheme are
chosen as ωn = [10 20 30 30]T , ς = 0.85, a2 = a4 =
a5 = 10, c1 = 6.8, c2 = c5 = 5, c3 = 15, c4 = 10,
η2 = η4 = η5 = 0.1, σ2 = σ4 = σ5 = 1.
The desired trajectory is selected as yr = sin t, the initial

conditions of the states are selected as x1(0) = 0.003, x2(0) =
0.001, the initial conditions of the adaptive law are selected
as θ̂2(0) = 0.001, θ̂4(0) = 0.001, θ̂5(0) = 0.001, and other
initial conditions are zero.

FIGURE 5. The state variables x4, x5.

FIGURE 6. The adaptive laws θ̂2, θ̂4, θ̂5.

The simulations results are indicated by Figs. 1-6.
Fig. 1 indicates the tracking trajectories of output and refer-
ence signal. Fig. 2 displays the tracking error. Fig. 3 shows
the actual control input. Fig. 4-5 show the state variables
x2, x3, x4.x5. Fig. 6 shows the system adaptive laws. Appar-
ently, simulation results show that all the signals in the
closed-loop system are bounded.

V. CONCLUSION
In this paper, an adaptive neural network command filter
control method has been presented for a single-link robotic
manipulator with input dead-zone. The presented control
scheme ensures that all the signals in the closed-loop system
are bounded, and the tracking error eventually enters into a
small area around the origin. The problem of ‘explosion of
complexity’ existing in the conventional backstepping control
method is avoided by introducing the command filter tech-
nique. Both the theory analysis and simulation results have
illustrated the feasibility and effectiveness of the proposed
scheme.
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