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ABSTRACT Graph layout investigates the structure of the graph in order to better obtain the information
implied in the graph. To solve the shortcomings of dimension reduction layouts on local adjustment and the
insufficiency of energy models to maintain the overall structure of the graphs, this paper proposes a new
graph layout framework called ‘‘tNEM’’ that layouts graphs by combining t-distributed neighbor retrieval
visualizer (t-NeRV) and energy models. In the process of layout, our algorithm considers global and local
structures at the same time. The layout results are more conform to aesthetic standards, meanwhile, maintain
the structural information of the graph. We evaluate our algorithm on a wide variety of datasets and compare
it with many other methods. We produce better visualization results than tsNET and tsNET* methods by
reducing the tendency to crowd points together, and can better capture the global structure of the graph.

INDEX TERMS Graph layout, dimension reduction, energy model, t-NeRV.

I. INTRODUCTION
The input of graph layout is vertices and the relationship
between vertices. The output are coordinates corresponding
to the 2-dimensional or 3-dimensional space of each vertex.
Through certain rules, some dense vertices can be visualized,
whichmakes it easier to discover the relationships among ver-
tices and obtain implicit information from vertices and edges.
Evaluating the quality of graph visualization is subjective.
It depends on the graph, and what information we want to
extract [1]. When different information is extracted, different
layouts are required.

In the past 30 years, many graph layout methods
have been proposed. Most of them could be divided into
2 categories: force-directed [2], [3], and those based on
dimension-reduction [4], [5].

In the force-directed methods, each node has an energy
value or receives multiple forces by simulating a physical
model, and the target is to minimize energy or achieve a
force balance. The energy or forces can be expressed as a loss
function, and the layout process is equivalent to minimizing
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the loss function. Force-directed methods are easy to under-
stand and implement, but these methods pay more attention
to the relationship between adjacent nodes, which often leads
to the failure to maintain the global structure. Section II-A
provides an overview of Kamada and Kawai (KK) [6],
Fruchterman-Reingold (FR) [7] and LinLog [8] layout
methods.

In dimension reduction (DR) methods, they map the graph
into a high-dimensional space [5], and then reduce to low
dimension for visualization. The main purpose is to cap-
ture high-dimensional space information in low-dimensional
space [9]. DR layout methods mainly focus on preserving the
global structural information of graphs but pay less attention
to the local structure and the aesthetics of graphs, which
makes it difficult to extract local information. Section II-B
provides an overview of multidimensional scaling (MDS)
series.

An excellent graph layout that meets aesthetic standards
should satisfy the following criteria: reducing edge cross-
ings, being symmetry, uniforming edge lengths, uniform-
ing node distribution, separating non-adjacent nodes, and
reducing nodes overlap [9]. This paper studies the layout
method in 2-dimension space that conforms to aesthetic
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standards called ‘‘tNEM’’(t-distributed Neighbor Retrieval
Visualizer(t-NeRV) [10] and Energy Model). This algorithm
optimizes a target function which combines both t-NeRV and
energy model terms, where t-NeRV term retains the overall
structure of the graph, and the energy term adjusts the position
between the nodes. It is worth noting that the energy model
here has a broader concept than that in the energy-based
layout from force-directed layout, defined as any model that
can be expressed as a scalar energy function. Furthermore,
we modify the graph-theoretic distance (GTD) to make it
have better properties and more suitable for graph layout, and
provide theoretical basis.

To summarize, we make the following contributions:
• We propose a novel graph layout framework called the
‘‘tNEM’’ which combines t-NeRV and energy models.
This method can simultaneously obtain the global and
local structure of the graph.

• We use the modified GTD in the input space, which can
make the node distribution more uniform and reduce the
nodes congestion, and we give a theoretical proof.

• We use the cost function of the t-NeRV to graph layout
so that we can better maintain the overall structure of the
graph.

The rest of this paper is organized as follows: In section II,
we review several classic graph layout methods. In section III,
we present the tNEM algorithm that is based on the t-NeRV
and energy models. Section IV presents the experimental
results. Section V discusses energy model and the effect of
modified GTD matrix parameters on the layout. Section VI
gives conclusions.

II. RELATED WORK
A. FORCE-DIRECTED LAYOUTS
Force-directed algorithm has been developed for a long time.
Tutte [11], [12] is the earliest research force-directed algo-
rithm. The purpose of this method is to draw planar graphs
and tri-connected graphs. Firstly, by fixing at least three
vertices at the beginning, the other vertices are placed at
the barycentre of their neighbors. After that, Eades pro-
posed a based on spring forces graph layout algorithm [13],
which transforms the layout problem into a mathematical
optimization problem and derived many other layout algo-
rithms. Force-directed algorithm is simple to implement,
easy to understand, and has a good theoretical basis, hence
most of the graph layout algorithms are based on force-
directed algorithm. Although some multi-level layout algo-
rithms such as GRIP [14], [15] and FM3 [16] are proposed
for the accelerated force-directed algorithm, these algorithms
have little relevance to our method. Here we introduce sev-
eral algorithms which are closely related to our proposed
algorithm.

1) KK
The purpose of the KK method is to make the Euclidean
distance of the node pair and the GTD a certain ratio [6] and
to minimize the loss function by iteration.

2) FR
The FRmethod compares the network to a physical system in
which nodes are represented as homopolar charges and edges
are represented as stringswith a fixed length of zero. Adjacent
nodes create attractiveness, and all nodes generate repulsive
forces. The layout process is looking for a balance between
the repulsive force and attractiveness. The FR method always
follows the principle that adjacent nodes are close to each
other, and the moving distance is determined by the current
temperature [1].

3) LinLog
Many real-world systems can be divided into several sub-
systems, in which the internal interaction of subsystems is
relatively strong, and the interaction between subsystems is
weak [8], [17], [18]. LinLog can show the network structure
well and help produce readable visualizations. It contains
node-repulsion LinLog, and edge-repulsion LinLog. LinLog
method has several advantages over node grouping in reveal-
ing cluster structures. Instead of simply assigning the node
to the cluster, they can display the degree of association
between the node and its cluster, and the clarity of cluster
separation. Actually, they promote the integration of clusters
because viewers naturally interpret closely-positioned nodes
as strongly correlated [19], [20].

Although force-directed algorithm is easy to implement,
it can’t get the structure information of the graph well, which
can easily lead to the distortion of the graph.

B. DIMENSION REDUCTION LAYOUTS
DR is to represent high dimensional data in a low dimen-
sional space while maintaining the relative distance between
nodes [4], [21]. DR techniques applied in graph layout
include linear DR, self-organizing graphs and MDS. Linear
DR layout methods are to obtain low-dimensional coor-
dinates, such as high dimensional embedding (HDE) [5],
by linear DR after transformation of high-dimensional data.
HDE uses principal component analysis (PCA) [22]
technology for graph layout. Self-organizing graphs
are layout graphs through neural networks, such as
Bonabeau’s [23], [24] method and Meyer’s [25] inverted
self-organizing map (ISOM). Next, we mainly introduce the
MDS-based layout method.

The MDS method achieves the layout goal by minimizing
the difference between the Euclidean and the GTD. There are
two methods to minimize the difference: classical scaling and
distance scaling. Classical scaling obtains an exact solution,
such as PMDS (Pivot MDS) and Landmark MDS, by spec-
tral decomposition. PMDS and Landmark MDS are sparse
MDSmethods that maintain the global structure while reduc-
ing complexity. Distance scaling directly calculates the dif-
ference between GTD and Euclidean distance in the layout,
such as we-SNE [26] and tsNET [27]. The tsNET algorithm is
the most relevant to our proposed algorithm. Here we mainly
introduce tsNET algorithm.
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FIGURE 1. The tNEM algorithm overview.

1) tsNET
tsNET applies the t-SNE method to the graph layout by
modifies the cost function to

C=λKLCKL+
λc

2N

∑
i

‖yi‖2 −
λr

2N 2

∑
i,j
i6=j

log(‖yi − yj‖+εr )

(1)

where the first item is the Kullback-Leibler divergence from
t-SNE, the second item is compression item, and the last
item is to prevent nodes from overlapping [27]. tsNET* are
obtained by using the PMDS layout result instead of the
random initialization coordinates of the tsNET method.

DR layout algorithm usually only focuses on the overall
structure, and the phenomenon of edge crossing and node
congestion is serious. Although tsNET algorithm has some
improvements on the above problems, it is not good enough.

III. tNEM:t-DISTRIBUTED NEIGHBOR RETRIEVAL
VISUALIZER AND ENERGY MODEL GRAPH
LAYOUT ALGORITHM
In this paper, we propose a graph layout algorithm called
‘‘tNEM’’which based on t-NeRV and energymodels.Wefirst
discuss the impact of these two parts on graph layout sep-
arately and then introduce a simple way to combine them.
Experiments show that our algorithm does well in maintain-
ing the global structure and making the nodes distribution
uniform.

A. ALGORITHM OVERVIEW
The framework of our algorithm can be seen in Fig. 1.
In the first step, we create a GTD matrix X and calculate

the low-dimensional Euclidean distance matrix Y according
to two-dimensional dataY . By modifying X , we get modified
GTD matrix X∗. Detailed descriptions of the matrix X and
X∗ are in section III-C. In the second step, we use the input
matrix X∗ to calculate conditional probabilities matrix P and
Y to calculate conditional probabilities matrix Q. We get
the Kullback-Leibler (KL) divergence of P and Q. Thirdly,
we add KL divergence and energy terms to get the loss
function. We get

C = Ct + Ce (2)

where Ct is the KL divergence of P and Q, and Ce is the loss
function of energy model.

Finally, we minimize loss function by momentum-based
gradient descent.

B. t-NeRV
t-NeRV is the generalization of t-SNE. In the graph layout,
t-NeRV does better than t-SNE in obtaining the global struc-
ture of the graph. The cost function of this method is the
KL divergence Ct of the probability between high-
dimensional and low-dimensional data points. Let dij be the
GTD of vertices i and j, y be the coordinates of the nodes in
the low-dimensional space. We get

Ct = λt
∑
i

κCKL(Pi:‖Qi:)+ (1− κ)CKL(Qi:‖Pi:) (3)

where

CKL(Pi:‖Qi:) =
∑
j
i6=j

pij log
pij
qij

(4)

CKL(Qi:‖Pi:) =
∑
j
i6=j

qij log
qij
pij

(5)

and the momentum gradient descent method is used to
minimize Ct . In the formula 4 and 5,

pij = pji =
pi|j + pj|i

2N
, pii = 0, (6)

where the conditional probabilities

pj|i = exp(−
dij
2σ 2

i

)/
∑
k
k 6=i

exp(−
dij
2σ 2

i

), pi|i = 0, (7)

In the above formula, σi is obtained by making the perplexity

Hi = 2
−
∑
j
pj|ilog2pj|i

= Constant [28]. The probability of low-
dimension space is given by

qij = qji =
(1+ ‖yi − yj‖2)−1∑

k,l
k 6=i

(1+ ‖yk − yl‖2)−1
, qii = 0, (8)

which is a Student’s t-distribution.
In formula 3, κ ∈ [0, 1] a tradeoff parameter [10], [26],

here wemake κ = 0.5. In formula 3,
∑
i
κCKL(Pi:‖Qi:) is neg-

atively correlated with precision and
∑
i
(1 − κ)CKL(Qi:‖Pi:)

is negatively correlated with recall [10]. Hence, the mini-
mization of the cost function Ct is to find a tradeoff between
precision and recall. We cannot in general reach the optimum
of both simultaneously. When we minimize

∑
i
CKL(Pi:‖Qi:),

it will increase the proportion of nodes with small GTD
in the Euclidean space as neighbors, but also incurs some
misses. When weminimize

∑
i
CKL(Qi:‖Pi:),it will reduce the

proportion of nodes that have large GTD in the European
space as neighbors, but the number of correct nodes will also
decrease.

The layout results using the t-SNE and t-NeRV methods
are shown in Fig. 2. We can see that using t-NeRV instead of
t-SNE can better obtain the global structure of the graph and
produce better layout results.
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FIGURE 2. Visual comparison of t-NeRV and t-SNE. Rows and columns
represent different graphs and methods.

C. MODIFIED GRAPH-THEORETIC DISTANCE MATRIX
Although the GTD matrix can maintain the overall structure
of the graph to some extent, it often causes nodes to be
crowded together and even cause distortion of the graph.
This will make the GTD not proportional to the Euclidean
distance. As the GTD increases, the Euclidean distance in
the low-dimensional space increases sharply. When we use
the GTD matrix X to calculate the probability matrix P,
the magnitude of probability is negatively correlated with the
vertex distance. And the probability pij decreases sharply as
the GTD increases, causing the distance also increase sharply
in the low-dimensional space. When we try to model the
distances from vertex i to other vertices in a two-dimensional
graph layout space, we get the following ‘‘crowding prob-
lem’’: if we want to lay out according to the GTD in the
low-dimensional space, the nodes with small distances will
be crowded together, and the nodes with large distances will
be very far apart, resulting in the GTD being out of proportion
with the Euclidean distance. AndGTDmatrixX does not con-
sider the distribution relationship between nodes. Therefore,
we modified X to be

X∗ = Xa (9)

where we let a = 0.5. As the GTD increases, the probability
p∗ corresponding to X∗ changes more smoothly than the
probability p corresponding to X , and the layout of the graph
is more uniform, rather than being crowded together or far
away.

To illustrate the properties of X∗, we give a mathematical
proof, which is mainly divided into three parts: (1)

1) Find the probability matrices P and P∗ corresponding
to X and X∗.

2) Based on the property of KL divergence when KL
divergence is minimized, we find Euclidean distance
matrix Z and Z∗ corresponding to X and X∗ by assum-
ing P = Q and P∗ = Q∗, where Z and Z∗ are related
to the variance 2σ 2 of Gaussian function.

3) By discussing the variance and the distribution of the
graph, we get the properties of X∗. Below we give the
detailed process of proof.

Given a graph G = (V ,E), where V is the set of vertices
and E is the set of edges between the vertices. Let N be
the number of vertices, dij be the GTD of vertices i and j,
md be the maximum GTD of the graph G, z(dij = n) be the
Euclidean distance of the nodes i and j with a GTD n in the
layout space. Let PX = P, PX∗ = P∗. Nowwe derive the rela-
tionship between

(
z(dij = 1), z(dij = 2), . . . , z(dij = md)

)
and

(
z∗(dij = 1), z∗(dij = 2), . . . , z∗(dij = md)

)
to illustrate

the difference between the nature of X∗ and X .
We use the symmetrized conditional probabilities

pij = pji =
pj|i + pi|j

2N
, pii = 0, (10)

as the similarity between vertices xi and xj, and the condi-
tional probabilities pj|i and pi|j are defined differently in X
and X∗. In X , the similarity of vertex xi to xj is

pj|i = exp(−
d2ij
2σ 2

i

)/
∑
k
k 6=i

exp(−
d2ik
2σ 2

i

), pi|i = 0 (11)

In X∗, the similarity of vertex xi to xj is

p∗j|i = exp(−
dij
2γ 2

i

)/
∑
k
k 6=i

exp(−
dik
2γ 2

i

), p∗i|i = 0 (12)

By proving the relationship between conditional proba-
bilities pj|i and p∗j|i or the relationship between pi|j and p∗i|j,
we can get the relationship between probabilities p∗ij and pij
corresponding to X∗ and X . We optimize the loss function by
minimizing the KL divergence of P andQ. Assuming that the
final solution of the iteration is P = Q, i.e. pj|i = qj|i and
2σ 2

i = βi, we get(
p(dij = 1)
p(dik = 2)

,
p(dij = 1)
p(dik = 3)

, . . . ,
p(dij = 1)
p(dik = md)

)
=

(
q(dij = 1)
q(dik = 2)

,
q(dij = 1)
q(dik = 3)

, . . . ,
q(dij = 1)
q(dik = md)

)
=

(
e

3
βi , e

8
βi , . . . , e

md2−1
βi

)
=

(
1+z22
1+z21

,
1+z23
1+z21

, . . . ,
1+z2md
1+z21

)
(13)

Similarly, from P∗ = Q∗ and let 2γ 2
i = αi, we get(

e
1
αi , e

2
αi , . . . , e

md−1
αi

)
=

(
1+z22
1+z21

,
1+z23
1+z21

, . . . ,
1+z2md
1+z21

)
,

(14)

Let y1 = y∗1 = (e− 1)0.5, we get(
z(dij = 1), z(dij = 2), . . . , z(dij = md)

)
=

(
(e− 1)0.5, (e

3
βi
+1
− 1)0.5, . . . , (e

md2−1
βi
+1
− 1)0.5

)
(15)

27518 VOLUME 7, 2019



G. Xu et al.: Graph Layout Framework Combining t-Distributed Neighbor Retrieval Visualizer and Energy Models

(
z∗(dij = 1), z∗(dij = 2), . . . , z∗(dij = md)

)
=

(
(e− 1)0.5, (e

1
αi
+1
− 1)0.5, . . . , (e

md−1
αi
+1
− 1)0.5

)
(16)

When we get the relationship of αi and βi, we can get
the relationship between z and z∗. Here we discuss the value
of βi.

The parameters αi and βi of the Gaussian function can
be solved by making the perplexity of each line of the
matrix P constant, which is specified by the user [29]. From

the perplexity Perp(Pi) = 2
−
∑
j
pj|i log2 pj|i

, we get

log2 Perp(Pi) = −
∑
j

pj|i log2 pj|i

= −

∑
j

e−
d2ij
βi∑

j
e−

d2ij
βi

log2
e−

d2ij
βi∑

j
e−

d2ij
βi

(17)

log2 Perp(P
∗
i ) = −

∑
j

p∗j|i log2 p
∗

j|i

= −

∑
j

e−
dij
αi∑

j
e−

dij
αi

log2
e−

dij
αi∑

j
e−

dij
αi

(18)

Let Formula 17 = Formula 18, αi = 1, βi = ταi, and
n(di∗ = k) is the number of vertices with a distance k from i.
Next, we list several situations to illustrate.

1)n(di∗ = 1) = N − 1 : For any τ > 0, the Formula 17 =
Formula 18 makes sense.
2)n(di∗ = 2) = k , n(di∗ = 1) = N − 1 − k , where 0 <

k 6 N − 2. We get

−
(N − 1− k)e−1

ke−2 + (N − 1− k)e−1
log2

e−1

ke−2 + (N − 1− k)e−1

−
ke−2

ke−2 + (N − 1− k)e−1
log2

e−2

ke−2 + (N − 1− k)e−1

= −
(N − 1− k)e−

1
τ

ke−
4
τ +(N−1−k)e−

1
τ

log2
e−

1
τ

ke−
4
τ + (N − 1− k)e−

1
τ

−
ke−

4
τ

ke−
4
τ +(N−1−k)e−

1
τ

log2
e−

4
τ

ke−
4
τ + (N − 1− k)e−

1
τ

(19)

The right side of Equation 19 is a monotonically increasing
function for τ . We can get the equation with one and only one
solution. We solved τ = 3.
3)n(di∗ = 3) = m, n(di∗ = 2) = k , n(di∗ = 1) = N − 1−

k − m, where 0 < k 6 N − 3, 0 < m 6 N − 2− k . Similar
to Equation 19, we get

f (αi, k,m) = f ∗(βi, k,m) (20)

In Equation 20, when n(di∗ = 3)/n(di∗ = 2) approaches
zero, as n(di∗ = 3)/n(di∗ = 2) increases, τ monotonically

TABLE 1. Edge length relationship of z and z∗. Rows and columns
represent the ratio of edge lengths and different τ values, respectively.

TABLE 2. Edge length relationship of z∗.

increases, and lim τ = 4. When n(di∗ = 3)/n(di∗ = 2)
approaches infinity, as n(di∗ = 3)/n(di∗ = 2) increases,
τ monotonous Incremental, and lim τ = 5, so we get
3 < τ < 5.
Tables 1 and 2 record the relationship between edges length

corresponding to different τ . From Tables 1 and 2, comparing
(z∗2 − z

∗

1)/z
∗

1 and (z2 − z1)/z1, (z∗3 − z
∗

2)/z
∗

1 and (z3 − z2)/z1,
we can find that X∗ always makes the length of the edge more
uniform than X , which makes the layout match the aesthetic
standards better. From the discussion of τ above we can know
that when the proportion of vertices with a large GTD from
the vertex i is increased, τ will become larger. As can be
seen from Table 1, with the increase of τ ,

z∗2−z
∗

1
z∗1

/
z2−z1
z1

and
z∗3−z

∗

2
z∗1

/
z3−z2
z1

are monotonically increasing, which will solve
the ‘‘crowding problem’’ of the vertices. When τ = 4.8,
we can get the same conclusion by comparing (z∗2 − z∗1)/z

∗

1
and (z2 − z1)/z1, (z∗3 − z

∗

2)/z
∗

1 and (z3 − z2)/z1. The situation
discussed above can also be extended to the situation of
n(di∗ > 3) 6= 0.
Therefore, we get the conclusion that X∗ will make the

layout more uniform and reduce the ‘‘crowding problem’’ of
vertices. As shown in Fig. 3, when the exponent parameter
of X increases, the nodes with larger degrees are always
gathering together with their neighbors.

D. ENERGY MODELS
Although the t-NeRV method can obtain the global structure
of the graph, the local structure is not well adjusted, we opti-
mize the part of the graph through the energy model to get
a better layout. We give three examples of energy models:
1) a modified KK model, 2) a modified FR model, and 3) a
modified Linlog model. We have added compression items in
the above three methods [27], [28]. It turns out that the graph
layout is better when adding the compression item.

1) EXAMPLE 1: tNEM-KK
In this example, we make the Ce term equal to

λc

2N

∑
i

‖yi‖2 +
5λe
2N 2

∑
i,j
i6=j

1

d2ij
(‖yi − yj‖ − dij)2

+
5λe
2N 2

∑
dij=1

(‖yi − yj‖ − 1)2 (21)
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FIGURE 3. Compare the effects of different adjacency matrices on the
layout of the graph, where cis-n4c6-b15 and price_1000 use the tNEM-FR
layout and dwt_1005 use the tNEM-KK layout.

In function 21, the first part is early compression. In graph
layout, early compression is done by adding an additional
L2-penalty to the cost function and it is proportional to the
sum of squared distances of the map points from the origin.
The size of the penalty item is manually set, but it is fairly
robust in this optimization parameter [28]. The second part
is a modified KK term. In KK methods, the cost function is

E =
n−1∑
i−1

n∑
j=i+1

1
2 ∗

K
d2ij
(|yi−yj|−

L0
max
i<j

dij
∗dij)2. We makeK = 2,

L0/max
i<j

dij = 1. The third term reduce the distance between

adjacent nodes.

2) EXAMPLE 2: tNEM-FR
In this example, we make the Ce term equal to

λc

2N

∑
i

‖yi‖2 +
λe

2N 2

∑
dij=1

1
3
(‖yi − yj‖)3

−
λe

2N 2

∑
i,j
i6=j

log2(‖yi − yj‖ + ε) (22)

The first part is early compression term. The second part
is attractive forces. The third part is repulsive forces.
In FRmethod, the attractive forces fa(z) = z2/k and the repul-
sive forces fr (z) = k2/z [7] are proportional to the distance
the vertex moves, which is the same as the derivative of the
cost function. Therefore, we add the integral of the force in
the FR method to the cost function. This is exactly
the same as the third term of the cost function of

the tsNET method in [27]. The cost function in [27]
is only a special case of the tSEM-FR method, which makes
the attraction coefficient zero.

3) EXAMPLE 3: tNEM-LinLog
LinLog is divided into two types: node-repulsion and edge-
repulsion LinLog energy model [8]. In node-repulsion,
we make the Ce term equal to

λc

2N

∑
i

‖yi‖2 +
λe

2N 2

∑
dij=1

(‖yi − yj‖)

−
λe

2N 2

∑
i,j
i6=j

ln(‖yi − yj‖ + ε) (23)

In edge-repulsion, we make the Ce term equal to

λc

2N

∑
i

‖yi‖2 +
λe

2N 2

∑
dij=1

(‖yi − yj‖)

−
λe

2N 2

∑
i,j
i6=j

deg(i)deg(j) ln(‖yi − yj‖ + ε) (24)

Among the above three methods, the KK and tNEM
methods have the best compatibility, because both methods
make the GTD proportional to the Euclidean distance. The
edge-LinLog method has the worst compatibility with tNEM
and will destroy the global structure of the graph obtained
by tNEM. When modifying the FR method, we find that FR
and LinLog methods have great similarities. When the force
of a vertex in the FR method is integrated, a cost function
similar to the LinLog method is obtained. We also found
that the tsNET and tsNET* methods are a special case of the
modified FR and node-LinLog methods.

When combined with the energy models, the graph layout
obtained by the tNEM method can be locally adjusted to
make the layout more conform to aesthetic standards, taking
into account the global and local structures at the same time.
Fig. 4 shows the effect of different energy model coefficients
on the graph layout. It can be seen that when the coefficient
increases, the congestion between nodes in the layout results
will decrease. Experimental comparison and detailed analysis
of the above three methods are shown in Section IV.

We minimize the total cost function of C by momentum-
based gradient descent. Same as tsNET [27] method, our
method is divided into 3 steps. First, the coordinates yi
are randomly initialized. Second, we set the parameter
(λt , λc, λe) = (1, 0.25, 0) to minimize the cost function.
Finally, we set (λt , λc, λe) = (1, 0.01, λe), where λe is
a adjustable coefficient and different for different graphs.
In the second step, we use the t-NeRV term to find the
overall structure of the graph and use the compression term to
compress the coordinates to get a rough layout. The third step
is to add energy terms and adjust some internal structures of
the graph to get an ideal layout.
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FIGURE 4. Compare the influence of different force-directed coefficients
on the layout of the graph, where cis-n4c6-b15 and price_1000 use
tNEM-FR layout, sierpinski3d use tNEM-KK layout. (a) λe = 4. (b) λe = 10.
(c) λe = 20. (d) λe = 1. (e) λe = 4. (f) λe = 10. (g) λe = 4. (h) λe = 10.
(i) λe = 30.

IV. EXPERIMENTS
We evaluate our methods through visual comparisons and
two quantitative indicators comparing with some related
approaches. The experiments data are from several 2D,
including non-connected graphs, and we also give the run
time of all the methods.

A. BENCHMARK AND EVALUATION METRIC
1) DATA SETS
In Table 3, we present the data for testing, which con-
tains multiple types of data, with different dimensions, dif-
ferent structures, both synthetic and real data. Some of
these data are collected from Harwell-Boeing collection [30].
Some are collected from Florida collection [31] and net-
work repository [32], which contain many real and syn-
thetic data. The rest of the graphs are using the data
in paper [27]. The same dataset can be found from dif-
ferent places, we just explain the location we directly
reference.

2) COMPARED ALGORITHMS
We compare tNEM to some related algorithms. In Table 4,
we list those algorithms. All of these methods are closely
related to ourmethod, where ourmethod is based on improve-
ments in tsNET and tsNET*. In our method, the force-
directed term has different coefficients for different graph
structures, but it is very stable.

TABLE 3. Sizes,source and types of the graphs used in our benchmark.

TABLE 4. The class, source, and implementation of the comparison
method.

3) EVALUATION METRICS
We use two quantitative metrics to measure the graph lay-
out method, where the normalized stress metric is used to
measure the nature of distance preservation, and the neigh-
borhood preservation metric is used to measure the propor-
tion of neighbor retention after layout. Below we introduce
separately.

Normalized stress metric:

σ =
1

|V |2 − |V |

∑
i,j
i6=j

(
d(xi, xj)− ‖yi − yj‖

d(xi, xj)

)2

(25)

where V is the number of nodes, d(xi, xj) is the shortest path
between nodes i and j, and ‖yi− yj‖ is the Euclidean distance
in low-dimensional space.

Neighborhood preservation metric:

v =
1
|V |

∑
i

|NG(xi, rG) ∩ NY (yi, ki)|
|NG(xi, rG) ∪ NY (yi, ki)|

(26)

where NG(xi, rG) = {xj ∈ V |dij 6 rG}, which is the set
of nodes whose GTD from vertex xi that are less than rG.
NY (yi, ki) is the k-nearest neighbors of point yi after graph
layout, where k = NG(xi, rG).
In Equation 26, v is twice the F1-measure of the vertex,

where NG(xi, rG) is the relevant positives, NY (yi, ki) is the
non-relevant negatives, |NG(xi, rG) ∩ NY (yi, ki)| is true pos-
itives. In F1-measure, precision rate P = (|NG(xi, rG) ∩
NY (yi, ki)|)/NG(xi, rG), recall rate R = (|NG(xi, rG) ∩
NY (yi, ki)|)/NY (yi, ki). From F1 = 2PR/(P + R), F1 = 2v
can be obtained.
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FIGURE 5. Visual comparison of multiple methods and graphs, rows and columns representing different graphs and methods.
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B. VISUAL COMPARISON
In Fig. 5, we compare the visual of different layout methods.
According to G13 and G34, the tNEM methods always dis-
tributes 3D nodes into a plane, because our method considers
the global structure better than the traditional layout method,
not limited to neighbor nodes. Therefore, We can conclude
that the tNEM method is not suitable for sample data gen-
erated in high-dimensional space, especially for mesh-like
graphs. Through different types of multiple graphs, we can
find that our method has achieved better visual layouts, such
as grid1, dwt_307, cis-n4c6-b15, L. Since the force-directed
term in the tsNET and tsNET* methods are a special case
of the tNEM-nodeLinLog and tNEM-FRmethods. Therefore,
the above two methods produce similar layouts to the tNEM
graph layout. Because the LinLog method is not intended
to obtain a map layout that conforms to aesthetic standards,
the layout of the tNEM-LinLog method is not as good as
tNEM-KK and tNEM-FR, such as L, dwt_1005, n4c5-b10,
dwt_307. We can see that our method always produces an
excellent layout for a graph with a certain structure(tree,
mesh-like, planar). We also tested our method with the non-
connected graph tols1090. We can see that in addition to
the tNEM-edgeLinLog method, the layout method based on
the t-NeRV always makes the non-connected nodes relatively
distant.

C. DISTANCE PRESERVING METRIC
We use normalized stress metric σ (Equation 25) [27], [36],
[37] to assess the nature of distance preserving. Table 5 lists
the σ corresponding to different methods. As is shown in
the table we can see that the t-NEM-KK method works best
because both the KK and the t-NEM method are designed
to make GTD proportional to the Euclidean distance, which
means the property compatibility is excellent. The tNEM-KK
and tNEM-FR methods usually get better results than other
methods in the table. But for some specific structure graphics,
the KKmethod results will be better. Since the purpose of the
LinLog method is not to make the normalized stress metric
effect better, when the t-SNE method is combined with the
LinLog layout, it does not produce a good layout effect.
It can be seen from the normalized stress metric σ values
corresponding to tNEM-nodeLinLog and tNEM-edgeLinLog
that the properties of LinLog are embodied in these two
methods, and the purpose is not to reduce the stress σ value.
This property is not compatible with the nature of the t-SNE
method to find the overall structure, hence the layout is not
ideal.

D. NEIGHBORHOOD PRESERVING RATIO
We use neighborhood preservation metric v (Equation 26)
[27] to assess the nature of neighborhood preserving. From
Table 6, we can find that tsNET and tsNET* methods
get better results than our proposed method, but the dif-
ference is very small because energy terms always make
the nodes more evenly distributed, which will increase the

TABLE 5. Normalized stress metric (Equation 25). Each value represents
the relative deviation between the GTD and the Euclidean distance.

TABLE 6. Neighborhood preservation metric (Equation 26), where rG = 2.
This table represents how well the neighbors of the GTD and the
k-Nearest neighbors of the graph.

wrong neighbors. When we reduce the coefficient of the
energy terms, in addition to the tNEM-edgeLinLog method,
the value v of the neighbor reservation matrix obtained by the
tNEMmethod is basically the same as the tsNET and tsNET*
methods.

E. RUNNING TIME
In Table 7, we calculated the running time of the t-SNE
series methods. Since our layout method uses random ini-
tialization, the number of iterations varies greatly, and the
running time also differs greatly. We take an average of three
runtime times. We use laptops to run programs. The hardware
configuration is CPU Intel i7-7700HQ, GPU GeForce GTX
1050Ti, RAM 16GiB. Since the t-NeRV series graph layout
methods usually take many iterations, it is not suitable for
the layout of the large graphs. But it makes sense to use the
accelerated t-NeRVmethod to speed up the layout. Compared
with the tsNET and tsNET* methods, the running time of
our method is not significantly reduced, and even some data
sets (price_1000,tols1050, G34) have a large increase. This
is because, in the third stage of the graph layout, the energy
terms always change the layout of the second stage, result-
ing in an increase in the number of iterations, but not all
datasets are increased (grid1, G13,dwt_1005). Running time
is acceptable when laying out some small and medium
graphs.
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TABLE 7. Running time.

V. DISCUSSION
In Equation 9, the layout result is very stable for the
change of a. As the value of a increases, neighboring
nodes are crowded together, rejecting non-adjacent nodes.
As a decreases, the influence of GTD on Euclidean distance
will become smaller, causing more crossovers after graph
layout.

The energy model here is different from the energy-based
graph layout algorithms in the graph layout, such as KK. The
energy models here uses a definition similar to Energy-Based
Models (EBMs) [38], where EBMs is defined as models that
can capture dependencies between variables by associating a
scalar energy to each configuration of the variables, and any
method that can be represented as this form can be called an
energy model, e.g., modified FR in Section III-D.
Section III-D illustrates how to combine t-NeRV and

energy models with three examples, but our method is not
limited to these three methods. In fact, the energy model
is more widely defined. For example, the PMDS method
can also be thought of as an energy model, and the tsNET*
method is a combination of the modified t-SNE and the
PMDS energy model. Our method provides a graph lay-
out framework based on energy models, and here we just
list the combination of t-NeRV and three energy models as
examples.

VI. CONCLUSION
In this paper, we present a graph layout algorithm framework
that combines energy models and t-NeRV, which provides
a research direction for the layout of graph. Our method
can maintain the global and local structure of the graph and
can obtain a map layout that is more conform to aesthetic
standards. We use the t-NeRV method for layout so that
we can better get the global structure of the graph. We use
the modified GTD matrix instead of using the GTD matrix
directly, which gives better layout results. The layout of the
t-NeRV series is very slow and not suitable for layout of large
graphs.We can use the accelerated t-NeRV algorithm to speed
up the layout, making this series of graph layout algorithms
more practical.

In the future, we will mainly have two directions in our
research: (1) Continue to study the layout method based on
energy models (2) Learn how to accelerate our proposed
graph layout algorithm to make our algorithm suitable for
large graph.
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