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ABSTRACT In this paper, we present a deep nonparametric Bayesian method to synthesize a light field
from a single image. Conventionally, light-field capture requires special optical architecture, and the gain in
angular resolution often comes at the expense of a reduction in spatial resolution. Techniques for computa-
tionally generating the light field from a single image can be expanded further to a variety of applications,
ranging from microscopy and materials analysis to vision-based robotic control and autonomous vehicles.
We treat the light field as multiple sub-aperture views, and to compute the novel viewpoints, our model
contains three major components. First, a convolutional neural network is used for predicting the depth
probability map from the image. Second, a multi-scale feature dictionary is constructed within a multi-layer
dictionary learning network. Third, the novel views are synthesized taking into account both the probabilistic
depth map and the multi-scale feature dictionary. The experiments show that our method outperforms several
state-of-the-art novel view synthesis methods in delivering good image resolution.

INDEX TERMS Image reconstruction, convolutional neural network, deep learning, nonparametric
Bayesian, light field imaging.

I. INTRODUCTION
The emergence of light field cameras [1] has enabled pho-
tographers to refocus an image after it is taken, which is an
appealing feature and has led to new artistic creations. Light
field imaging also has found a variety of applications, such
as microscopy [2], materials recognition [3], vision-based
robotic control [4], and autonomous navigation [5]. The light
field being acquired is often a set of sub-aperture images from
different perspectives in a single shot [6], although there are
also alternatives to build up the light field from a stack of
images [7], [8]. A light field can be directly captured with
lenslet arrays [1] or masks [9]–[11], which unfortunately is
either expensive or difficult to manufacture. More prob-
lematic is the trade-off between spatial and angular resolu-
tion, where often only a low-resolution 2-dimensional (2D)
image is reconstructed when a specific focus point is chosen.
To overcome this, we aim to create a light field based on a
traditional capture of a 2D image, which has a much higher
spatial resolution than an image from a light field camera.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Chen.

We approach the light field synthesis problem by devel-
oping a Deep Nonparametric Bayesian (DNB) model, which
performs deep analysis and learning from a single image, and
then reconstruct the novel views with a learning dictionary.
Regarding the first step, there has been work on single image
analysis with deep learning, such as with the Convolutional
Factor Analysis (CFA) model [12], which analyzes images
using a hierarchical convolutional factor-analysis construc-
tion under a nonparametric Bayesian setting. For the second
step, many algorithms have also been proposed for view syn-
thesis, especially binocular stereo image synthesis, such as
the automatic 2D-to-3D video conversion with deep learning
(Deep3D) [13]. Meanwhile, it has also been demonstrated
that one can synthesize the light field from RGB-D (for red,
green, blue, plus depth) images with depth propagation [14].
Our approach, however, has two advantages. First, the pro-
posed algorithm does not require depth information, and is
calculated based on the RGB images rather than RGB-D
images, leading to the algorithm performing more robust than
depth-based methods [15], [16]. Second, we construct the
novel views with a powerful scheme based on a multi-scale
feature dictionary, delivering a better light field synthesis
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result especially when the depth information is not very
accurate. While there are a number of methods to predict the
depth map from a single image, the results are not guaranteed
to be very reliable. As such, we choose to infer the depth
probability map, which has better tolerance for inaccurate
depth prediction.

In addition, a major contribution of our DNB model is
to process the image using deep dictionary learning (DDL)
to infer a multi-scale dictionary, and then synthesize the
light field through a sigmoid dictionary representation (SDR).
In this way, we can construct the feature dictionary from dif-
ferent resolutions, using the technique of Bayesian pooling.
While ‘‘max-pooling’’ in CFA [12] focuses on reducing the
feature number in the dictionary, in comparison, the proposed
DDL not only reduces the feature number but also down-
samples the feature dimension in the dictionary. Furthermore,
the SDR is powerful in that it inpaints the reconstructed novel
view in multiple scales instead of simply applying bilinear
interpolation [13], [17], by using joint probability mixture
model instead of direct depth propagation.

This paper is organized as follows. Section II gives a brief
introduction to the light field. Then, the Sparse Hierarchical
Nonparametric Bayesian (SHNB) model, which is the fun-
damental theory for dictionary learning and representation,
is introduced in Section III. This is followed by a detailed
discussion of the DNB model architecture in Section IV,
covering the convolutional neural network (CNN), and the
view synthesis using DDL and SDR. Section V provides the
detailed inference algorithm, while Section VI presents sev-
eral experiments to demonstrate the efficacy of our approach.

II. LIGHT FIELD BACKGROUND
In this section, the background of the light field is introduced.
Based on light field representation theory, we further propose
feature topic variation among different perspectives. This
paves the way for the development of the light field sparse
dictionary learning algorithm.

A. LIGHT FIELD REPRESENTATION THEORY
Radiance of light rays from every 3D point in an object
is commonly represented by a 5D plenoptic function,
F(x, y, z, θ, φ), parameterized by three spatial coordinates
(x, y, z) and two angles (θ and φ) [18], [19]. When the
radiance along the ray in free space is assumed to be a
constant, it reduces to 4D [20]. Furthermore, the light rays
can be expressed with spatial coordinates (x, y) and angular
coordinates (u, v) with a two-plane parameterization [21]

L(x, y, u, v). (1)

The collection of such functions is the light field.
Sub-aperture view is a powerful representation of the light
field for many image processing tasks [1], [6], where each is
a single viewpoint corresponding to a particular set of (u, v).
It is straightforward to relate the light field to an image,

labeled φ, captured by the electronic detector. It involves a

linear integration process [22] formulated as,

φ = T · L + n, (2)

where n is the noise, and T(·) is the projection function. In a
conventional camera, T(·) sums up the corresponding pixels
with different angles to form a 2D image φ. However, in a
plenoptic camera, such as one using a lenslet array in the
original detector plane, T(·) is an identity [23]. We can take
φ to be a 2D array with sizeU ×V of the various viewpoints,
and each element is a 2D sub-aperture view image φu,v(x, y)
for fixed (u, v), where u = 1, . . . ,U and v = 1, . . . ,V .
Generally speaking, we can build such a relationship between
a typical 2D image and a sub-aperture view in the light field
data.

B. FEATURE TOPICS VARIATION
Using nonparametric Bayesian methods, features of a 2D
image follow certain probability distributions, which are in
turn governed by the parameters called ‘‘topics’’ [24]. It has
been shown that an analysis of objects as topics varying along
different frames in video clips can provide an effective way
to detect and track them [25], and letting the topics vary
spatially can achieve good results in hyperspectral image
identification for geoscience and remote sensing [24]. Here,
the concept of topic variation is introduced to light field
sub-aperture view image modeling, where we can analyze it
from different perspectives.

To do so, we need to define and relate the topics in different
viewpoints. For simplicity in notation, we will only keep
x and u and will drop y and v for now. When we observe a
topic or a pixel at the original viewpoint u0, whose spatial
location is denoted as x, the shifted spatial location τ1(x) at a
novel viewpoint u1 can be expressed as [26]

τ1(x) = x + d0(x) · (u1 − u0), (3)

where d0(x) denotes the depth of this pixel at perspective u0.
Substituting this into Eq. 2, the expression of topics variation
along different viewpoints can be derived as

φm
(
τm(x)

)
= T · L

(
x + d0(x) · (um − u0), um

)
+ n, (4)

where φm denotes the captured image at perspective um.
We also useM to denote the total number of viewpoints along
coordinate u.

As inferred from Eq. 4, compared with frames from a
video, sub-aperture view images of a light field have much
stronger dependencies on each other. It is natural that we can
learn a sparser feature dictionary from the light field based on
the feature topics variation, especially when the depth map of
the light field is known.

III. DICTIONARY LEARNING FOR LIGHT
FIELD REPRESENTATION
The proposed view synthesis algorithm is based on the
nonparametric Bayesian models [27]. This is different from
deterministic synthesis algorithms (see [14]), which require
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FIGURE 1. Deep Nonparametric Bayesian (DBN) architecture with Depth Map Estimation Module (CNN model), Multi-scale
Dictionary Inference Module (DDL model), and SDR Module.

a very accurate depthmap.Making use of the light field topics
variation in Eq. 4, we can now represent various sub-apertures
in a compact way through learning a sparse feature dictio-
nary. Furthermore, the dictionary can be used for light field
reconstruction, denoising, and inpainting. In the following
paragraphs, we introduce the procedures for the sparse hierar-
chical dictionary learning based on a nonparametric Bayesian
model.

The procedures consist of four steps, namely,

1) Observed data modeling: The observed data denote
the image patches cropped in every sub-aperture views.
Each patch can be considered as a mixture of the fea-
tures selected by the corresponding sparse dictionary
indicator.

2) Global dictionary updating: As shown in Eq. 4,
image patches cropped from different sub-aperture
views share substantially similar features and these fea-
tures are further exploited to form a global dictionary.
All the image patches are assumed to follow a Gaussian
distribution with zero mean and a Gamma prior vari-
ance matrix.

3) Local dictionary inference: Based on the global fea-
ture dictionary, we can further define the local fea-
ture dictionaries used by the image patches cropped
from corresponding sub-aperture image. Every local
dictionary is derived from the global one with a certain
weight specific for each image patch. Similar to the
above, the weight is also assumed to follow a Gaussian
distribution with zero mean and a Gamma prior vari-
ance matrix with the matrix size corresponds to the
number of global feature dictionary.

4) Local topic indicator sampling:The binary dictionary
indicator selects suitable local feature dictionaries for
each image patch. To make it sparse, we introduce
the Dirichlet-Gamma prior which is demonstrated to

be able to control both sparsity and smoothness [28].
Therefore, we assume that the dictionary indicator fol-
lows a Dirichlet distribution, denoted by Dir(b0), and
the hyper-parameter b0 follows a Gamma prior.

IV. DNB VIEW SYNTHESIS ARCHITECTURE
Fig. 1 illustrates the overall DNB model architecture, with
learning and view synthesis steps denoted as depth map esti-
mation module, multi-scale dictionary inference module, and
sigmoid dictionary rendering (SDR) module.

Specifically, when the parameters of the CNN model are
fine-tuned, both depth map estimation module and SDR mod-
ule together construct a weakly supervised deep network. The
outputs of CNN is subsequently fed into a differential sigmoid
layer (Layer 0) to predict the depth probability map. Such
operation can be described as

S ′(d) = S(d)
(
1− S(d)

)
=

e−d

(1+ e−d )2
, (5)

where d denotes the estimated depth obtained from the CNN
model, S(·) is the sigmoid function, and S ′(·) is the differential
sigmoid function. The differential sigmoid layer converts the
continuous depth map into a depth probability map fed into
the subsequent SDR model.

To demonstrate clearly where the depth information is
incorporated into the DBN architecture, we index the dif-
ferential sigmoid layer used for generating depth probability
map as Layer 0. As a consequence, the DDL layers then have
negative indices. The major component of our framework
is a deep (multi-layer) network constructed by combining
the multi-scale dictionary inference module and the SDR
module, which synthesizes the depth probability information
(from CNN model) and the feature dictionaries. According
to Eq. 4, we can further generate novel views based on the
corresponding pixel shifts.
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Our proposed DNB model has several advantages:
1) We propose to utilize the depth probability map for

light field synthesis. In addition, the acquisition of
such depth probability map is straightforward, only
by applying a differential sigmoid operation on the
estimated depth map.

2) We incorporate the dark channel prior with Bayesian
pooling to generate the downsampled global feature
dictionary, which encourages the dictionary to learn
better depth information.

3) The proposed multi-scale dictionary can be further uti-
lized to refine and inpaint the novel views.

In following sections, we describe each component of our
proposed DNB architecture in details and all the advantages
listed above are elaborated accordingly.

A. DEPTH MAP ESTIMATION MODULE
CNN has been applied on a variety of recognition and clas-
sification tasks [29], [30]. It is a multilayer neural network
composed of one or more convolution layers, often together
with sub-sampling, followed by one or more fully connected
layers. It has the advantage of being shift, scale, and distortion
invariant [31]. These properties are useful for object recog-
nition problems, which often require identifying different
objects with various positions.

Depth estimation based on CNN has been used for
multi-media data, such as stereo images [17], and in digital
holography autofocusing [32] and reconstruction [33]. How-
ever, doing so from a single image is much more difficult.
With no reliable depth cues and the challenge of finding
good representations of depth, CNN would have difficulty
classifying and computing an accurate depth map. Some
previous attempts only estimate a coarse one with heavy post-
processing, including denoising, inpainting, super-resolution
and depth propagation [34], [35].

TABLE 1. Parameters of the CNN model.

The CNN model in our depth map estimation module is
established based on the framework [36], consisting of 5
convolutional layers and 3 fully connected layers (Table 1
presents the key settings). The network is pretrained using
NYU Depth Dataset V21 by minimizing the objective func-
tion proposed in [34]. In runtime, it predicts the depth map
of center view based on the input image patches. However,
the predicted depth map is not directly involved in the light
field synthesis, but rather to be exploited to generate the

1Available at http://cs.nyu.edu/~silberman/datasets/
nyu_depth_v2.html

depth probability map. Such process is illustrated in details
in Section IV-C.

B. MULTI-SCALE DICTIONARY INFERENCE MODULE
The major component of multi-scale dictionary inference
module is a DDL model with Bayesian pooling. This com-
ponent consists of three major steps, namely, 1) layer-level
dictionary learning; 2) dictionary weight downsampling;
3) Bayesian pooling with dark channel prior.

1) LAYER-LEVEL DICTIONARY LEARNING
Here, we introduce the detailed derivation of the dictionary
learning as described in Section III. The dictionary assign-
ment zi for the ith image patch is sampled from an indica-
tor distribution βk , which is assumed to follow a Dirichlet
distribution. The k th global dictionary (denoted as θk ) and
the weight for the ith local dictionary (denoted as πi) both
follow the normal distribution. The ith local feature dictio-
nary Gi is obtained by multiplying πi with the set of global
dictionary θ = {θk}. The image patch φi is then selected
from the corresponding local dictionary Gi by the sparse
dictionary assignment zi with an additional Gaussian noise.
Mathematically,

3βk ∼ Dir(b0), zi
∣∣{βk}K

k=1
∼

K∏
k=1

βk ,

θk ∼ N (0, p−1I), πi ∼ N (0, α−1I),

Gi = πi · θ , φi ∼ N (Gi · zi, σ−1x I), (6)

where b0, p, α, σx are gamma priors. These hyper-parameters
are not sensitive to the results, and all are set as
Gamma(10−6, 10−6).

2) DICTIONARY WEIGHT DOWNSAMPLING
After πi is obtained at each layer, we compute the weight π̂x,y
for each pixel (x, y) by averaging the weights of nearby image
patches.

Next, we split π̂x,y in each perspective into 2 × 2 regions.
In each region, we apply max-pooling to select one represen-
tative pixel over a small region, and obtain the down-sampling
index S. These pixels pass through the sigmoid activation
layer, and are then reshaped into a vector. This step also con-
verts the pixel weighting into patch weighting, and constructs
the downsampled weights πdown. Lastly, they are fed into the
next layer together with S.

3) BAYESIAN POOLING WITH DARK CHANNEL PRIOR
Using Eq. 6, we can derive the new input feature φnew for the
next layer, i.e.,

φnew = Gdown · zdown
= θdown · (πdown � zdown), (7)

where � is piecewise product and zdown is the downsampled
dictionary assignment over the 2 × 2 region mask from
the previous layer, based on the downsampling index S.
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The downsampled local feature dictionary Gdown is the lin-
ear combination of the downsampled global feature dictio-
nary θdown and the weight πdown. Inspired by [37] and [38],
we incorporate the dark channel prior with Bayesian pooling
to obtain the downsampled global feature dictionary θdown
from the previous layer. The dark channel prior has been
demonstrated to be capable of enhancing the depth informa-
tion learned by the global feature dictionary, and therefore it
can improve the reconstruction results.

For each pixel at
(
x̂, ŷ

)
, the dark channel

φdark
i (x, y) = min

c∈{r,g,b}

(
min

(x̂,ŷ)∈�(x,y)
φci (x̂, ŷ)

)
, (8)

where c is the RGB color channel of the image, and �(x, y)
denotes the set of pixels (x, y) in the image patch φi. For this
multi-layer structure, we obtain the minimum intensity from
the image patches in the RGB channels independently. Fig. 2
presents an example about the effects of applying the dark
channel prior pooling to the original input dictionary (on a
single channel).

FIGURE 2. Bayesian pooling with dark channel prior. (a) The original
dictionary in a single channel. (b) The dictionary after the Bayesian
pooling with dark channel prior operation.

At the last layer, we find the minimum intensity among
the RGB channels to construct a purely dark channel, and
then use the global feature dictionary θ directly. However,
except for the last layer, the learned feature dictionaries of
the previous layers are all applied to the dark channel prior
pooling operation. Therefore, the multi-scale dictionaries are
constructed accordingly in different layers (each layer gen-
erates the feature dictionary at a certain scale), and subse-
quently fed into the SDR model for novel view synthesis (as
shown in Fig. 1).
The size of the reconstructed image φnew at the new layer

is downsampled with a 2 × 2 region mask. The dictionary
Gdown at this new layer can then be learnedwith this new input
image. Fig. 3 compares the sparsity of the dictionary learned
from (1) full-size image in the previous layer, (2) directly
downsampled image φdown, and (3) the reconstructed image
using DDL model in this layer φnew. The x-axis shows the
threshold for the weights π , while the y-axis shows the
number of dictionary components (feature dimension) with
the weights higher than the threshold. It is evident that the

FIGURE 3. Comparing the number of components of the inferred
dictionary from the full-size image, downsampled image, and
reconstructed image using DDL model, respectively.

DDL reconstructed image dictionary achieves better sparsity
compared with other dictionaries.

C. SIGMOID DICTIONARY RENDERING MODULE
The major component in this module is a SDR model used
for light field reconstruction. As is shown in Fig. 1, the SDR
model can be described as a network with three stacked layers
(Layer 1–3), and each layer contains three major operations:

1) Depth probability map construction;
2) View synthesis at each layer (for algorithm details,

please refer to Section V-C);
3) Depth map synthesis for different viewpoints.

1) DEPTH PROBABILITY MAP CONSTRUCTION
The Layer 0 in Fig. 1 converts a continuous depth map into
a depth probability map. We demonstrate the details of depth
probability map in Fig. 4. To illustrate the merits of using
depth probability map, we also compare another depth map
generated using the maximum likelihood method.

Assuming that the prior probability of depth P(D) and the
multi-scale dictionary P(G) are independent, we derive the
marginal pixel shift probability in the x-direction as

P(z(x)|G,D) =
∑
d

P(ad = d |D) · P(z(x − d)|G, ad ), (9)

where P(z|G, · ) follows a Bernoulli distribution with the
posterior probability βk of the dictionary assignment z(x) for
each pixel in the DDL model, and ad is the pixel shift. The
term P(ad |D) is a normalized differential sigmoid function of
depthD from the CNNmode. The joint probability of a single
pixel follows

P(z(x − d) = k, ad = d |G,D) = βk (x) ·
S ′(d)∑
d S
′(d)

, (10)

where z(x−d) is the dictionary assignment for the pixel x with
depth shift equal to d . As a consequence, the depth probability
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FIGURE 4. Maximum likelihood depth map estimation and the depth
probability map for different depth values. Yellowish pixels indicate high
probability, while blue pixels indicate lower probability. For depth layers
from (b) to (f), probabilities in the nearer region become smaller and the
probabilities for objects far away in the image become larger.
(a) Maximum likelihood depth map. (b) Probability depth map on depth
value equals to 4. (c) Probability depth map on depth value equals to 8.
(d) Probability depth map on depth value equals to 12. (e) Probability
depth map on depth value equals to 16. (f) Probability depth map on
depth value equals to 20.

map of the entire view can be easily acquired by applying the
operation defined by Eq. 10 on each pixel of the view.

2) VIEW SYNTHESIS AT EACH LAYER
The synthesized views are hierarchically reconstructed in the
SDR model using the corresponding multi-scale dictionary
provided by the DDL model. In other words, the synthesized
view at the (l)th layer in SDRmodel is reconstructed by using

the learned local feature dictionary at the (−l)th layer in the
DDL model. Formally, such process can be described as

φ(l)
= G(−l)

· zup = θ (−l) · (πup � zup), (11)

where zup denotes the up-sampled dictionary assignment and
πup stands for the weights over the 2 × 2 region mask from
the previous layer. With the same region mask for downsam-
pling and up-sampling, the global feature dictionary at the
(−l)th layer in the DDL model and the (l)th layer in the SDR
model share the same weights. The dictionary assignment
z at this layer can then be learned with the reconstructed
view φ(l).

3) DEPTH MAP SYNTHESIS FOR DIFFERENT VIEWPOINTS
Unlike existing view synthesis methods, the proposed DNB
model enables us to synthesize different depth maps for dif-
ferent viewpoints. Fig. 5 illustrates the estimated depth map
for 9 (3× 3) different viewpoints of ‘‘Raspberry.’’

FIGURE 5. Synthesized depth maps for 9 (3× 3) different viewpoints
using the ‘‘Raspberry’’ dataset.

The synthesized depth maps at different viewpoints are
further used to reconstruct the corresponding view in the next
layer of the SDR model. Refinement of these multi-view
depth maps is based on the colorization algorithm [39] and
the corresponding reconstructed RGB view at this layer,
which is crucial for preventing shift distortion.

V. INFERENCE ALGORITHM FOR THE
MULTI-SCALE SHNB MODEL
In this section, we first introduce the training procedure of the
DNB model, using a Gibbs sampling algorithm [40]. Then,
we illustrate how to compute the multi-scale dictionary from
a single image, and how the feature dictionary can be used to
reconstruct the novel views.

A. TRAINING PROCEDURE
The training procedure is crucial to enabling the proposed
DNB model synthesizing the novel views.
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1) Pretrain the CNN model on NYU Depth Dataset
V2 [41] by minimizing the conditional random field
energy function [34].

2) Train the DDL model and SDR model jointly based
on the depth probability map acquired from differential
sigmoid layer.

3) Fine-tune the entire DNB model using light field
saliency dataset (LFSD) [42], [43].

B. MULTI-SCALE DICTIONARY LEARNING BASED
ON BAYESIAN POOLING
As introduced in Section IV-B, the probability of the
multi-scale dictionary is given by

P(G|Gdown, zdown, σx ,H )

= `(G;Gdown, zdown, σx) · p(G)

∝ N
(
G · zdown;Gdown · zdown, σ−1x I

)
·N (π; 0, α−1IK) · H (θ ), (12)

where `(·) is the likelihood based on the downsampled dic-
tionary assignment zdown inferred in the previous layer, and
the dictionary with downsampling Gdown in Eq. 7. This like-
lihood follows a normal distribution as in Eq. 6. Moreover,
this downsampled dictionary contains the weights π and the
local dictionary θ . The former follows a Gaussian distribution
with a Gamma prior α, and H is the prior probability of
the downsampled local dictionary θ , which can be assumed
to follow a Gaussian distribution. Based on this probability,
we can sample the dictionary using Algorithm 1.

C. MULTI-SCALE VIEW RECONSTRUCTION
WITH BAYESIAN UNPOOLING
The probability of the multi-scale view reconstruction is
given by

P(z(l)|G(−l), zup, σx ,β)

= `(z(l);G, zup, σx) · p(z(l)|β)

∝ N
(
G(−l)

· z(l);G(−l)
· zup, σ−1x I

)
· Bernoulli(z(l)|β),

(13)

where the likelihood `(·) depends on the unpooling zup in
Eq. 11. This likelihood also follows a normal distribution, and
p(z(l)|β) is the prior with parameter β.

VI. EXPERIMENTS
We present two sets of experiments to highlight the merits of
the proposed DNB model, namely:

1) Comparisons with view synthesis and image inpainting
methods;

2) Quantitative experiments for light field synthesis.

A. COMPARISONS WITH VIEW SYNTHESIS AND
IMAGE INPAINTING
We compare the DNB model with the following three
methods:

Algorithm 1Multi-Scale SHNB Dictionary Inference
1: Input: Single image patches xi, i = 1, . . . ,N
2: Output:multi-scale global dictionary θk ,K = 1, . . . ,K

3: Initialize π based on hyperparameter α in Eq. 6
4: Initialize θ based on base measure in Eq. 6
5: Initialize assignment z based on prior β in Eq. 6
6: for Layers in the DDL model do
7: Initialize β based on the corresponding

hyper-parameter in Eq. 6
8: for Iteration iter = 1 : Tmax do
9: Locally sample a sparse assignment z from the

posterior multinomial distribution based on data φ,
weight π , global dictionary θ , and assignment
distribution β.

10: Locally sample the weight π from the poste-
rior Gaussian distribution based on data xi, sparse
assignment z, global dictionary θ , and prior α.

11: Globally sample the dictionary θ from the posterior
distribution based on data xi, weight π , global dic-
tionary θ , and sparse assignment z.

12: Update β from the posterior Dirichlet distribu-
tion based on hyper-parameter b0 and sparse
assignment z.

13: end for
14: Bayesian pooling πdown to obtain the downsampling

index S;
15: Downsample dictionary θk and assignment z based on

index S with Eq. 7
16: Compute the downsampled dictionary G from Eq. 6
17: Compute the reconstructed image φ for the next layer

from Eq. 7
18: end for

1) Light field synthesis from RGB-D with depth
propagation [14]. The depthmap used is extracted from
the DCNF model [34].

2) The depth propagation approach [14] together with the
beta process factor analysis (BPFA) inpainting [44].
The latter is used to improve the synthesis result of the
depth propagation algorithm.

3) 2D-to-3D conversion with deep learning [13].
Fig. 6 shows an example with some zoomed-in regions,

which together demonstrate that our approach performs bet-
ter. Compared with the Deep3d approach in (a), our method
obtains a smooth result with the DDL model to recover the
novel views, while Deep3d shows some conspicuous noise,
especially in the blue region. This is because it uses the
L1-inpainting algorithm to handle the occlusions caused by
the novel view synthesis. In (b), the recovered novel view by
depth propagation suffers from shift distortion, especially in
the red regions, where the leaf is distorted. In comparison,
the DNB model can avoid this problem, as the probabilistic
discrete shift map in SDR can construct a pixel shift with a
mixture model, which is more robust. Lastly, the single-depth
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FIGURE 6. Qualitative comparison of a novel view for the ‘‘Leaf’’ dataset.
(a) Synthesized views from Deep3d. (b) Synthesized views from depth
propagation. (c) Synthesized views from depth propagation with
inpainting. (d) Synthesized views from the DNB model.

propagation method with BFPA inpainting, as shown in (c),
can handle some occlusion holes. Nevertheless, the problem
of shift distortion remains.

Fig. 7 and Fig. 8 present two other examples. The former
shows the synthesized light field for the ‘‘Dragon’’ dataset
without considering the point spread function. The latter
shows the synthesized light field for the ‘‘indoor’’ dataset
with an additional Gaussian point spread function. Both illus-
trate that our model enables the synthesis of a light field
without precise depth information.

B. QUANTITATIVE EVALUATION OF THE
LIGHT FIELD SYNTHESIS
Using the HCI light field dataset and the LFSD dataset,
we evaluate the quantitative performance using both

FIGURE 7. Synthesized light field and sub-aperture views representation
of the ‘‘Dragon’’ dataset. (a) Synthesized light field. (b) Sub-aperture
images.

FIGURE 8. Synthesized light field and sub-aperture views representation
of the ‘‘indoor’’ dataset. (a) Synthesized light field. (b) Sub-aperture
images.

mean squared error (MSE) and structural similarity of
image (SSIM) [45] methods. The MSE is computed as

MSE(I0, ID) =

∑
x
∑

y
(
I0(x, y)− ID(x, y)

)2
(Length of I0)× (Width of I0)

, (14)

where I0(x, y) is the original light field image in the target
viewpoint, and ID(x, y) is the synthesized image. A smaller
MSE indicates a better performance. Table 2 shows that the
proposed DNB model has a lower MSE compared with the
depth propagation (DP) [14]+BPFA [44] for all 5×5 views.

TABLE 2. MSE comparison with the proposed DNB model versus depth
propagation (DP) [14] + BPFA [44].

The result of MSE evaluation on the ‘‘Leaf’’ dataset from
Fig 6 is shown in Fig. 9. It shows that the proposed DNB
model also has a satisfactory quantitative performance. The
synthesized view based on the Deep3d model has a better
MSE performance compared to depth propagation methods
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FIGURE 9. Comparison result of log(MSE) for the ‘‘Leaf’’ dataset.

because the shift of pixels for Deep3d is smaller than the other
methods.

The SSIM is computed as

SSIM(I0, ID) =
(2µ0µD + c1)(2σ0,D + c2)

(µ2
0 + µ

2
D + c1)(σ

2
0 + σ

2
D + c2)

, (15)

where µ0 and µD are the mean of images patches I0 and ID,
respectively. The variables σ0 and σD are respectively the
variance of image patches I0 and ID. Then, σ0,D is the covari-
ance of images patches I0 and ID, and c1 and c2 are used to
stabilize the division with a weak denominator [45]. We take
the window size as 8 × 8 for image patches I0 and ID [45].
When the SSIM is close to 1, the 4D light field synthesis
algorithm shows a good performance.

We compared the SSIM among the four methods as
in Fig. 6, where we first select one novel view from the
synthesized light field or 3D image based on each method.
We then compute their SSIM with all perspectives of the
captured light field data.We plot log(SSIM) and tabulate their
mean values to show that the synthesized light field with
the proposed DNB model has a better structural similarity
compared with the other methods.

FIGURE 10. Comparison result of log(SSIM) for the ‘‘Raspberry’’ dataset.

First, Fig. 10 shows the experiment conducted with the
‘‘Raspberry’’ dataset. The blue dash-dot line of the Deep3d
model indicates that the synthesized view has a better struc-
tural similarity to the center view (view = 41) of the cap-
tured light field. This is because the angular difference of
the synthesized 3D data is quite small. SSIM results of the

synthesized light field from depth propagation, depth prop-
agation with inpainting, and the proposed DNB model are
shown with an orange dashed line, a yellow solid line, and
purple line with cross markers, respectively. SSIMs of these
synthesized light field have better results for the boundary
views, as the views among the light field have a larger angular
difference. Overall, this plot shows that the synthesized view
with the proposed DNB model has a better image structural
similarity compared with the other three methods.

FIGURE 11. Comparison result of log(SSIM) for the ‘‘Flower’’ dataset.

Second, Fig. 11 shows the experiment conducted for the
‘‘Flower’’ light field in the LFSD dataset. This experiment
is used to show that inpainting for the light field synthesis
based on depth propagation may cause undesirable effects.
The orange dashed line, which represents depth propagation
result, has a better performance than the result of depth prop-
agation with BPFA inpainting (yellow solid line). Moreover,
the SSIM result of DNB is better than the other methods.

TABLE 3. Comparison of the mean of log(SSIM).

TABLE 4. Paired T-test between every two methods.

Similarly, Table 3 illustrates that the proposed DNBmodel
has a better image structural similarity compared with the
capture light field over various datasets. Better SSIM perfor-
mance indicates that the DNB model enables the synthesis of
light field with a more similar structure to the ground truth.
We also test the paired T-test statistics [46]–[48] between
every two methods to illustrate that the proposed model leads
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to improvements with statistical significance, with results
given in Table 4. The symbol ◦ means that there is no sig-
nificant difference on performance between the two com-
pared methods, while • represents that there exists significant
difference.

VII. CONCLUSIONS
The proposed deep nonparametric Bayesian model performs
well in synthesizing the light field from a single image,
and reconstructing and inpainting the novel views, especially
when a very accurate depth map cannot be obtained. This
paper has two major contributions. First, the DNB model
enables us to infer a multi-scale feature dictionary. The
Bayesian pooling procedure can find a suitable downsampled
feature dictionary and can make it sparser. Subsequently,
we can use it to infer the joint probability of the depth map.
With this probabilistic depth map, the multiscale Bayesian
up-pooling model allows us to reconstruct and inpaint multi-
ple views from a single image. This joint probability of depth
map helps to synthesize the light field in a robust manner.
These experiments demonstrated that our method outper-
forms several state-of-the-art light field synthesis approaches.
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