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ABSTRACT With the advent of computer-assisted diagnosis (CAD), the accuracy of cancer detection from
histopathology images is significantly increased. However, color variation in the CAD system is inevitable
due to the variability of stain concentration and manual tissue sectioning. The small variation in color may
lead to the misclassification of cancer cells. Therefore, color normalization is a very much essential step
prior to segmentation and classification in order to reduce the inter-variability of background color among
a set of source images. In this paper, a novel color normalization method is proposed for Hematoxylin and
Eosin stained histopathology images. Conventional Reinhard algorithm is modified in our proposed method
by incorporating fuzzy logic. Moreover, mathematically, it is proved that our proposed method satisfies
all three hypotheses of color normalization. Furthermore, several quality metrics are estimated locally for
evaluating the performance of various color normalization methods. The experimental result reveals that our
proposed method has outperformed all other benchmark methods.

INDEX TERMS Computer assisted diagnosis, color normalization, H & E stained histopathology image,
fuzzy logic, quality metric.

I. INTRODUCTION
Histopathology refers to the pictorial examination of tissue
slides under the microscope, which enables pathologists to
diagnose the cancer patients in an efficient way. In recent
trends, CAD has become one of the most reliable digital tech-
niques for diagnosis and prognosis of cancer patients [1]. It is
an automatic pathology diagnosis system which is employed
in many hospitals in western countries. Advantage of having
automatic image analysis is that it is faster than subjective
pathology diagnosis and unlike subjective diagnosis it is not
dependent on human psychology. Furthermore, human eyes
sometimes can’t detect the low-level textures or features
for early cancer detection, which can be possible in case
of CAD. First, histopathology slides are prepared [2], [3]
by several steps like tissue collection followed by fixation,
embedding, sectioning and staining. Furthermore, the slides
are converted into digital images by Whole Slide Imaging
(WSI) techniques [4]. These digital images are called source
images throughout this paper. These source images are taken

as input to a CAD system in order to detect cancerous cells
with higher accuracy compared to manual cancer detection.
However, CAD will not work efficiently if initially there is
color variation in a set of source images due to the use of
different scanners, variability of stain concentration and poor
tissue sectioning. Small color variation may lead to misclassi-
fication of cancerous cells, since color is a significant feature
for detecting cancer cells in histopathology images, accord-
ing to our pathologist group (in Kasturba Medical College,
Mangalore, India). Thus, the first step of a CAD system is
color normalization which is a very much significant step
in order to reduce the inter-variability of background color
among a set of source images. The reason whywe are focused
only with the background color (not entire color), is explained
in detail in section III. Moreover, in any color normaliza-
tion method, a target image color should be incorporated
as a standard color. This target image should be chosen by
experts or pathologists and the color of target image should
be transferred from target image to source image. After this
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color transformation, the final image will be called as pro-
cessed image, throughout this paper. A review of several color
normalization methods is explored by our team in [5]. It can
also be found in the literature [6]–[19].

In case of histopathology images, often staining is done
by Hematoxylin and Eosin. Hematoxylin is mostly bound
to the nuclei (bluish pink color) and Eosin is mostly
bound to the cytoplasm (red color). However, according to
Ruifrok and Johnston [10], absorption spectra of multiple
stains have overlapping regions in H & E stained histopathol-
ogy images. Thus, transferring color in RGB space may
result undesired color mixing in the processed image,
since R, G and B channels are not exactly uncorrelated.
Hence, before normalizing color, this is essential to transform
that image into a color space such that the (stain) channels
will be kind of uncorrelated or independent. Several stain
separation methods are explored by the researchers in the
literature [6]–[17].

Contrast enhancement of histopathology image is only
required if the images are faded due to keeping the tis-
sue slides for more than three months, without storing it
in the computer. Mostly, histopathology images have good
contrast with less noise, due to the use of advanced digital
slide scanners such as Olympus, Aperio, Hamamatsu etc.
However, various color normalization methods may eventu-
ally reduce the contrast of the source image (e.g. Reinhard
method), which is not desirable. Moreover, several color
normalization methods can eliminate some of the relevant
information (e.g. Stain Color Descriptor method) from the
source images which is not acceptable by the pathologists
(those results are shown later in section VII). Hence, color
normalization should be done in such a way that it must
maintain good contrast with preserving all the source infor-
mation in the processed image. Based on this concept, three
hypotheses of color normalization method are formulated
in section III.

The main contribution of this paper is as follows.
We believe that because of the unique texture property of
histopathology images, mentioned in section II, global color
normalization method works better than local method. That
is why, we proposed a novel global method, by employing
fuzzy logic, which overcomes the limitation of conventional
Reinhard method. Furthermore, we prove that our proposed
method satisfies all three hypothesis of color normalization
both mathematically and experimentally.

The rest of the paper is organized as follows. First,
unique texture property of histopathology image is pre-
sented in section II. Moreover, hypothesis of color normal-
ization method is formulated in section III. In section IV,
we explain state-of-the-art of several color normalization
methods. Thereafter, limitations of conventional Reinhard
method are given in section-V. In section VI, Fuzzy based
modified Reinhard method is proposed in order to over-
come the limitations of conventional Reinhard method.
In section VII, both qualitative and quantitative results of
various benchmark algorithms are compared with the same

of our proposed method. Finally, we present our concluding
remarks, in section VIII.

II. TEXTURE PROPERTY OF HISTOPATHOLOGY IMAGES
Texture is inherently related to the statistical (spatial) distri-
bution of intensity values inside a local region of an image.
Texture [20] can be mathematically defined as follows.

T = {f (x)}x∈X (1)

where f (x) is a probability density function inside a local
patch (x ∈ X ) of an image.

We have found that histopathology images are having some
unique texture properties which are discussed below.
A. In histopathology images, the texture property only for

one feature (intensity), is approximately repeating all over
the image. This kind of texture is known as periodic
texture [20]. Mathematically, an image texture will be
approximately periodic if

f (xi) ≈ f (xj), ∀i 6= j (2)

Equation (2) implies that probability density function
in any two patches (ith and jth window) in image are
approximately same in case of periodic texture. However,
the aforementioned property is not true for every size of
patch. This patch size for which the texture is approxi-
mately periodic, actually depends on the autocorrelation
co-efficient of the image pixel intensity values. If autocor-
relation co-efficient [21] is higher, then the texture will
repeat after a large patch and if the reverse is true, then
texture will be periodic for a small resolution patch.

B. Empirically we have found that, for histopathology
images mostly heterogeneous property (of intensity
values) dominates over homogeneity property (if the
small patch size is taken greater than 17 × 17). This
implies that unlike natural images, histopathology image
does not have a large region where intensity variation
is approximately zero (example sky, tree, land etc.).
In other words, in histopathology images, auto-
correlation coefficient [21] between pixel (intensity) val-
ues is comparatively greater than that of natural images.
Due to this texture property, global color normalization
method or any global transformation is very much suit-
able for histopathology images, rather than local trans-
formation. Moreover, autocorrelation co-efficient [21]
of 50 natural images and 50 histopathology images are
estimated and compared in appendix-II, in order to verify
this texture property.

III. FORMULATING HYPOTHESES OF COLOR
NORMALIZATION METHOD
First, some statistics of an image is introduced in this section,
which will be relevant to further understand the hypothesis of
color normalization.

Any image can be decomposed by its global mean and
intensity variation with respect to global mean, given in
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equation (3), where µg represents global mean and I (x, y)
indicates the intensity of a pixel at position (x,y).

I (x, y) = µg [I (x, y)]+
[
I (x, y)− µg(I (x, y))

]
(3)

The first term in equation (3), is just a constant value which
indicates the surrounding intensity of the image. This is sig-
nificant to mention that intensity of image means intensity
of its brightness as well as it can be its color intensity.
The second term (I − µg(I )) in equation (3) is very much
significant as it contains all the intensity variations of the
image with respect to surrounding intensity. According to our
understanding, this second term contains all the significant
information of an image.

Any color normalization method must satisfy the fol-
lowing three hypotheses, according to our understanding.
Every hypothesis is explained belowwith proper justification.
To the best of our knowledge, this is the first attempt to
formulate such a mathematical hypothesis in order to eval-
uate the performance of any color normalization method for
histopathology images.

A. CORRELATION CO-EFFICIENT
Color normalization method must preserve all the informa-
tion of the source image, according to our pathologists’
group. This information preservation can be measured by
estimating correlation co-efficient between source image and
processed image. The correlation co-efficient between two
random variables measures the degree of their linear corre-
lation [22]. Mathematically, this is the ratio of covariance
between two random variables (X and Y) to the product
of their individual standard deviation which is given in
equation (4). The first hypothesis of color normalization
method is given in equation (4).

ρXY =
σXY

σXσY
≈ 1 (4)

If correlation coefficient between source image (X) and pro-
cessed image (Y) is exactly equal to 1, this implies that X and
Y are perfectly linearly correlated. That implies,

Y = cX (5)

where c is a real constant. Then mathematically, the proba-
bility density function (pdf) fY (Y ) of the processed image Y,
can be expressed in terms of pdf fX (X ) of the source
imageX, by the statistical formula [23], given by equation (6).
Here X and Y are considered as random variable.

fY (Y ) =
n∑
i=1

fX (Xi)

∣∣∣∣dXidY

∣∣∣∣ (6)

where n is the number of roots of equation (5). By applying
this statistical formula (6), into the equation (5), we get the
following equation (7).

fY (Y ) =
1
c
fX (X ) (7)

Equation (7) reveals that the shape of the normalized his-
togram (pdf) of source image will remain unchanged in

FIGURE 1. (a) Source image, (b) target image, (c) processed image.

the processed image, since only the magnitude of pdf is
scaled by a real constant c. Hence, the correlation coefficient
equals to 1, implies that all the intensity variation of source
image is exactly preserved in the processed image, which
is very much desirable for any color normalization method.
Wang et al. [24] described this correlation co-efficient as a
measurement of structural similarity between two grey scale
images. This parameter has also been preferred as Pearson
Correlation Co-efficient (PCC).

However, some of the researchers had employed discrete
entropy formeasuring information preservation [25]. Accord-
ing to our visualization, the value of discrete entropy is just a
measurement of total information in the image. It doesn’t say
whether that information is relevant or irrelevant. To the best
of our knowledge, when someone want to extract additional
information from the original image (e.g. satellite images),
discrete entropy will be a kind of relevant measurement.
However, in case of histopathology images, our goal is not
to extract enough information, rather we want to preserve
all the information of source images during the color nor-
malization process. Hence, for the histopathology images,
we believe that correlation coefficient is more realistic metric
than discrete entropy for evaluating the preservation of source
information.

B. GLOBAL MEAN COLOR IN COLOR SPACE
The second hypothesis of color normalization method is that
in any color normalization method, global mean color (back-
ground color) of processed image should be equal to global
mean color of target image. In other words, in color space
(αβ space),

µtar ≈ µproc (8)

whereµtar is themean color of target image,µproc is themean
color of processed image.

According to our imagination, there are two ways of trans-
ferring color from target image to source image. First way is
to transfer the entire color, which is composed of background
color and all the color variations with respect to mean color
value, given in equation (3). If someone transfers the entire
color from target image to source image, then all the color
intensity variation associated with the target image will also
be copied to the source image. Therefore, it will produce color
artifact in the processed image shown in Fig.1c and all the
color variation of source image will not be preserved by this
method.
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The second way, is to transfer only the background color
from target image to source image, while all the source color
variation with respect to mean, in equation (3), will remain
same. Thus, transferring the color by this method, can actu-
ally preserve all the source color variation in the processed
image and simultaneously it can reduce the inter-variability
of background color among the source images. Therefore,
we are considering this second way of transferring back-
ground color from target image to source image. Reinhard
method and our proposed method are similar kind of color
normalization method.

C. CONTRAST OF THE IMAGE
Contrast of the source image must be maintained in the pro-
cessed image, since some of the color normalization methods
may eventually reduce the contrast in the processed image
[e.g. Reinhard method, SCD method]. This implies that con-
trast of the processed image (Cproc) should be always greater
than the contrast of source image (Csource). The third hypoth-
esis of color normalization is given by the equation (9).

Cproc ≥ Csource (9)

However, the contrast enhancement of the source image
should not be unbounded. In other words, there should not be
excess or over contrast enhancement, since the histopathol-
ogy images are already having good contrast, according to
our observation. Moreover, due to excess contrast enhance-
ment, nuclei color might be very much darker than the
conventional nuclei color (blue) which can be interpreted
as a malignant tumor, according to our pathologists’ group
(in KMC, Mangalore). Thus, it can misclassify the cancer
cells in histopathology images. Unfortunately, we didn’t find
any limit or maximum contrast enhancement value theoret-
ically. That is why, we employed a fuzzy logic technique
in our proposed method, in order to control the contrast
enhancement.

IV. STATE-OF-THE-ART: COLOR NORMALIZAION
METHOD
There are three types of color normalization method which
are (A) Global color normalization (B) Stain separation by
supervised method and (C) Stain separation by unsupervised
methods.

A. Global color normalization method is generally per-
formed after separating color and brightness intensity infor-
mation in lαβ space [26], by employing Principal Component
Analysis (PCA). According to our visualization, separating
color and brightness intensity is very much equivalent to stain
separation method.

Histogram Specification [19] is a global color normaliza-
tionmethod, inwhich source image histogram ismappedwith
target image histogram such that both brightness and color
statistics are transferred from target image to source image.
However, HS method follows Global Histogram Enhance-
ment (GHE) which is not a linear process, according to our
visualization. This method forcefully stretches the histogram

of source image until it will be approximately same as the
histogram of target image. Thus, it may bring undesirable
artifact in the processed image.

Reinhard et al. [18] preferred another global color nor-
malization method which transfers only the background
color from the target image to source image with pre-
serving all other intensity information. This algorithm was
first employed for natural images by Reinhard et al. [18].
The main limitation of this algorithm was that the tar-
get image and source image should have exactly same
kind of statistics. However, this is not the same in case
of histopathology images. Because of the unique texture
property of histopathology images, mentioned in section II,
Reinhard algorithm is actually suitable for color normaliza-
tion of histopathology images. Reinhard algorithm is further
explained in depth in section V.

B. First the concept of stain separation is explained in
depth in this sub-section. According to Lambert Beer’s law,
given in equation (10), stain concentrations are non-linearly
dependent in RGB space [10]. Therefore, one has to first
convert the image from RGB space to Optical Density (OD)
space such that multiple stains will act linearly [10].

IC = I0 exp(−ODc) (10)

where IC is the intensity of transmitted light through
histopathology slides, I0 is the intensity of incident light on
histopathology slides,ODC is the intensity value of the image
in OD space. The purpose of any stain separation method
is to factorize OD space intensity value into two orthogonal
matrices [10], S and D given in equation (11), such that the
stain channels will be kind of independent.

ODC = log
(
I0
IC

)
= SD (11)

where D is the stain color appearance matrix whose rows
represent color basis vectors for each stains and S is the
stain depth matrix whose columns represent concentra-
tion or absorption factor of each stain.

Ruifrok and Johnston [10] have proposed a novel color
deconvolution method, in which stain color appearance
matrix was manually estimated by measuring the relative
color proportion for R, G and B channel with only single
stained (Hematoxylin or Eosin only) histopathology slide.
Furthermore, stain depth matrix S can be easily evaluated by
taking the inverse of D and multiplied by OD space intensity
values, from equation (11). However, this method requires
some prior information of single stain color, which is not
readily available in hospitals.

Khan et al. [13] proposed a novel color normalization
method which is comprised of four separate methods. First,
by employing Stain Color Descriptor (SCD) global method
they found overall stain color. Second, a supervised color
classification method i.e. Relevance Vector Machine (RVM)
has been incorporated to identify the locations where each
stain is present. Thereafter, color appearance matrix and

VOLUME 7, 2019 28985



S. Roy et al.: Novel Color Normalization Method for H & E Stained Histopathology Images

stain depth matrix are estimated from these set of clas-
sified pixels. Furthermore, a non-linear spline-based color
normalization method is employed to transfer color locally
from target image to source image. We believe that the SCD
estimation followed by RVM to find the color appearance
matrix is reliable, since it is done by a supervised learning
method where single stained histopathology slides are taken
as ground truth. However, due to transferring the color by a
non-linear function, this algorithm can’t preserve the exact
shape of the source image histogram in the processed image,
causing major information loss.

C. Independent Component Analysis (ICA) and Non-
negative Matrix Factorization (NMF) methods both are unsu-
pervised stain separation method which have been employed
in [9] and [11]. The main advantage of unsupervised method
is that there is no requirement of labeled data or ground
truth of single stained histopathology image. NMF is an opti-
mization technique which minimizes the distance between
the source image and decomposed matrices (S and C), with
the constraint that all co-efficient of color appearance matrix
must be non-negative (i.e. Si,j ≥ 0 and Di,j ≥ 0). However,
NMFmethod is having some problemwith ambiguity and has
no closed form of solution. On the other hand, ICA method
assumes that each stain acts independently on histopathology
slides [11], which is not always true. Therefore, this method
is not practically feasible.

Macenko et al. [12] and McCann et al. [14] both of them
have employed same kind of stain separation method which
is based on the fact that color of each pixel in histopathology
image is nothing but a linear combination of two stain vectors.
The weightage of those stain vectors must be non-negative.
Thus, the weightage always lies between those two stain
vectors (i.e. between only Eosin and only Hematoxylin). Both
of the methods tried to find a wedge of those weightage
values instead of searching peaks [14]. However, this kind
of method can’t always estimate the right stain vectors if
strong staining variation is present in histopathology slide,
according to Bejnordi et al. [17].
In Complete Color Normalization (CCN) method,

Li and Plataniotis [7] have employed both illuminance nor-
malization and spectral normalization. Spectral normaliza-
tion method comprises of two parts I) NMF based spectral
estimation, II) Spectral matching. Before applying NMF,
a novel Saturation Weighted (SW) statistics method has been
employed which smooth out Hue histograms and converted
the image to a highly saturated image. This implies that
color appearance matrix is converging into a diagonal matrix.
Thus, it can reduce the solution space of NMF into a unique
solution. Furthermore, a unique spectral matching method
is employed such that it preserves the entire stain depth
matrix. However, this method couldn’t preserve all the color
variation of source image, since the color appearance matrix
is entirely changed into a diagonal matrix, according to our
visualization.

Structure Preserving Color Normalization (SPCN) method
is recently proposed by Vahadane et al. [6]. First sparseness

has been incorporated into the optimization equation of NMF,
in order to reduce its solution space. Furthermore, a joint non-
convex optimization problem is solved by block co-ordinate
descent algorithm which is readily available in Sparse Mod-
eling Software (SPAMS). However, computation complexity
of Sparse NMF (SNMF) has considerably increased. More-
over, a structure preserving color normalization method has
been employed in order to preserve the structure of the
source image. According to our visualization, this structure
only associates with the brightness intensity information of
histopathology images, since only stain depth matrix is pre-
served by this method. Thus, color variation is not exactly
preserved by SPCN method, similar examples are shown
in section VII.

V. REINHARD METHOD
In this section, we briefly introduced the pseudo code of
conventional Reinhard algorithm which is followed by its
limitations.

A. PSEUDO CODE OF REINHARD METHOD
Step 1: Convert both of the source imageX and target imageY
from RGB space to lαβ space [26].
Step 2: Do the following transformation in lαβ space.

l2 = µg(l1)+
[
l − µg(l)

]
. ∗
[
σg(l1)/σg(l)

]
(12)

a2 = µg(a1)+
[
a− µg(a)

]
. ∗
[
σg(a1)/σg(a)

]
(13)

b2 = µg(b1)+
[
b− µg(b)

]
. ∗
[
σg(b1)/σg(b)

]
(14)

where l2, a2, b2 are intensity variables of processed image in
lαβ space, l1, a1, b1 are intensity variables of target image in
lαβ space and l, a, b are intensity variables of source image.
µg indicates global mean of the image and σg represents
global standard deviation of the image.
Step 3:Convert back the processed image Z from lαβ space

to RGB space.
Reinhard algorithm is a global color normalization method

in which all the source intensity variation has been pre-
served in the processed image, since correlation co-efficient
between source and processed image are found to be very
much closed to 1 (shown in the table in section VII, also
mathematically proved in Appendix-I). Moreover, the mean
intensity of source image is replaced with the mean inten-
sity of target image in all three channels, observed in
equations (12-14). That is why, after this color transforma-
tion, global mean color (background color) of processed
image is found to be very much closed to the same of target
image. Thus, first two hypotheses of color normalization
method are satisfied by Reinhard method. The aforemen-
tioned statement is mathematically proved in the Appendix-I.
However, Reinhard method has certain limitations which are
as follows.

• The background luminance of source image is not pre-
served in the processed image, which can be observed
from the equation (12).
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• When the source image has greater contrast than that of
target image, then also it transfers the contrast statistics
from target to source image, which may lead to lesser
contrast of processed image than that of source image.
Therefore, it doesn’t satisfy the third hypothesis of color
normalization.

• Due to transferring the mean color globally from target
image to source image, it transfers the same mean color
to all the pixels in the image. Thus, a large homogeneous
portion, associated with white luminance in the source
image, can be affected by a fade color by this method.
This kind of color variation is not desirable according to
Khan et al. [13] and Vahadane et al. [6]. Similar exam-
ples are given in section VII, where processed images
are affected by fade color.

VI. PROPOSED COLOR NORMALIZATION METHOD
In this section, Fuzzy based Modified Reinhard (FMR)
method is proposed for color normalization of H & E stained
histopathology images which overcome all the limitations of
Reinhard method. The detailed pseudo code of FMR method
is given in this section which is followed by its physical
interpretation and statistical analysis.

This is important to clarify that we have employed
fuzzy logic just to control the contrast enhancement in
l space and to control the color co-efficients in αβ space,
in order to reduce color variation. Fuzzy function is gen-
erally a mapping from a crisp set to a vague set, which
makes the transformation function smoother and continu-
ous. However, we are not interested to go back from fuzzy
space to real numbers space, thus de-fuzzification is not
required [27].

A. FUZZY MEMBERSHIP FUNCTION
The fuzzy membership function which we are going to
employ in our proposed method, can be generalized by one
single function which is given in equation (15).

q = ϕ1 − (ϕ1 − ϕ2)/ {1+ exp [(p− t)/(γ )]} (15)

where q is a kind of sigmoid function whose value always
lies between ϕ1 and ϕ2,ϕ1 is the maximum value of the fuzzy
function, ϕ2 is the minimum value of the fuzzy function, ‘p’
is a parameter defined in equation (16), ‘t’ is the crossover
point or threshold value which determines the symmetricity
of the function, γ is a parameter which controls the fuzziness
(smoothness) of the function. Very small value of γ means the
function will become very much crispy or discrete. Greater
the value of γ means the function will become smoother than
the previous.

The value of the parameter γ must lie between 0 to 1,
When γ = 1, the fuzzy function will be tending to a
straight line. In the graph in Fig.2, it is shown that how
fuzzy function ‘s’, mentioned in equation (17), changes
with the value of γ . Those graphs are implemented in
MATLAB 2015a.

FIGURE 2. Fuzzy function ‘s’ with (a) γ = 0.5, (b) γ = 0.1, (c) γ = 0.05.

TABLE 1. Algorithm to estimate number of pixels associated with white
luminance portion.

B. ESTIMATING NUMBER OF PIXELS ASSOCIATED WITH
HOMOGENEOUS WHITE LUMINANCE PORTIONS
First, the number of pixels associated with homogeneous
white luminance portions are estimated locally, since the
fade color effect (mentioned in section V) is directly corre-
lated with this number of pixels. This algorithm is imple-
mented in MATLAB 2015a, pseudo code is given in the
following table 1.
h1 is the total number of pixels associated with homoge-

neous white luminance portion, the value of h1 is normalized
to h such that for any dataset, h will have same range of
values (i.e. 0-100). The normalized factor of h1 (i.e. k1 x
k2k1 ∗ k2) is the window size which is same as w1 x w2. This
is important to specify that we are looking for large (at least
35 × 39 patch) homogeneous region with only having white
luminance in the source image andwe have estimated the total
number of pixels inside such regions. If intensity value of a
single pixel in the source image is greater than 0.9∗ lmax and
lmax > 240 then only we increase the count of such pixels.
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[lmax is the maximum intensity in l space]. But according
to our understanding, that is only the count of pixels, having
luminance value closed to its maximum value. Therefore,
such pixels are associated with only white luminance.

However, we need to check whether these white luminance
pixels are associated with homogeneous region or not, over a
large patch or window. Window size w1 x w2 (35 x 39 for
breast cancer and 36× 53 for liver cancer dataset) for both of
the databases are chosen empirically. If a pixel is associated
with non-homogeneous white luminance portion, then such
a count should be excluded from h1. That is why, in this
algorithm, a portion of global standard deviation of the image
is employed as threshold value. If σ (A) > 0.5 ∗ σg(l)
(i.e. inside A region, intensity variation is high enough, it is
greater than half of global standard deviation of l), then
that region A is detected as non-homogeneous region and
simultaneously the counter value of h1 will be decreased
by 1. All these threshold values, in this algorithm are chosen
empirically.

C. PROPOSED FMR METHOD
The proposed FMR method is presented in this subsection
in the form of mathematical equations. Those equations will
be useful to prove hypotheses. Furthermore, a flow chart of
FMR method is presented in the Fig.3.
Step 1: Convert both of the source image X and target

image Y from RGB space to lαβ space [26].
Step 2: Calculate the parameter ‘p’ for every source image,

which is defined in equation (16).

p =
σg(l1)− σg(l)

σg(l1)
(16)

Step 3: Define the fuzzy function ‘s’ in l space.
if (p>0)

s = 0.4− (0.35)./ {1+ exp [(p− 0.4)/(0.1)]} (17)

else

s = 0.05 (18)

end
All the parameters of fuzzy function ‘s’ are chosen

empirically.
Step 4: Do the following transformation in l space. All

the parameters l, l2, µg were already mentioned before in
section V.

l2 = µg(l)+
[
l − µg(l)

]
. ∗ (1+ s) (19)

Step 5: Define the fuzzy function in color space

Initialize q = 0 (20)

Store the value of h which was previously estimated in
subsection B.
if (h>=20)

q = 0.3− (0.25)./ {1+ exp [(h ∗ 0.005− 0.1)/(0.1)]} (21)

end

All the parameters of fuzzy function ‘q’ are chosen
empirically.
Step 6: Do the following transformations in αβ space. All

the parameters a,a1a2,b,b1,b2 andµg were alreadymentioned
before in section V.

u = µg(a1)− µg(a) (22)

v = µg(b1)− µg(b) (23)

if (u>0) & (v>0)

a2 = µg(a1). ∗ (1− q)+
[
a− µg(a)

]
(24)

b2 = µg(b1). ∗ (1− q)+
[
b− µg(b)

]
(25)

else

a2 = µg(a1)+
[
a− µg(a)

]
(26)

b2 = µg(b1)+
[
b− µg(b)

]
(27)

end
end
Step 7: Convert l2, a2 and b2 from lαβ space [26] to

RGB space to get the final processed image Z.

D. PHYSICAL INTERPRETATION OF PROPOSED
FMR METHOD
In proposed FMR method, all the image transformations are
performed in lαβ space [26], like Reinhard method. First a
parameter ‘p’ is defined in equation (16), which is directly
proportional to contrast difference between a target image
and source image (Here global standard deviation of image
is considered to be similar to contrast of that image [24]).
The value of ‘p’ lies between -c to 1, observed from the
equation (16), where c is a real constant. Higher value of
‘p’ indicates that the source image has very poor contrast
compared to target image. Subsequently, a fuzzy function ‘s’
is employed in l space, which is proportional to ‘p’, given
in equation (17). More or less the function ‘s’ is equivalent
to function ‘p’ which is just a measurement of how much
contrast should be enhanced in the processed image. This
statement is further mathematically proved in the next sub-
section. The maximum value of fuzzy function ‘s’ is chosen
0.4 empirically. For example, if ‘p’ has a higher value 0.8,
then also the value of ‘s’ will not exceed 0.4, thus excess
contrast enhancement can be controlled in the processed
image by employing fuzzy function ‘s’. If ‘p’ is negative
(i.e. the contrast of source image is already greater than
the contrast of target image), then contrast enhancement of
source image is not so necessary. At that case, our proposed
method enhances the contrast a very little bit (minimum
value of ‘s′ is 0.05 or 5%) which ensures that the contrast
of the processed image is always greater than that of source
image, because the value of ‘s′ is always positive. Therefore,
proposed FMR method satisfies the third hypothesis of color
normalization which was not true for Reinhard method. This
is further proved mathematically in the next subsection.

The other parameters of ‘s’ are chosen empirically.
According to our visualization, the fuzzy function ‘s’ is just

28988 VOLUME 7, 2019



S. Roy et al.: Novel Color Normalization Method for H & E Stained Histopathology Images

a mapping from a set of real numbers [− c,1] to a set of
positive real numbers i.e. [0.05,0.4]. The graph of ‘p’ vs
‘s’ is shown in Fig.2, for different values of γ . According
to our observation, for a particular range [0.05-0.5] of values
of γ , this mapping will be non-linear. We choose the value
of γ = 0.1, because we prefer non-linear mapping from ‘p’
to ‘s′, since it is highly correlated with human visualization.
This is to clarify that we choose the mapping from ‘p’ to ‘s’
to be non-linear. But it doesn’t mean that our transformation
function in equation (19), is non-linear. In fact, for a particular
source image, the value of ‘s’ in equation (19), is a real value
which makes the transformation function linear, thus preserv-
ing the structure of source image histogram. Hence, the first
hypothesis is also satisfied by our proposed FMR method.
This is further mathematically proved in the next subsec-
tion. Furthermore, we observed that maximum range of
values of ‘p’ is 0.8 for both of the datasets. Therefore,
‘t’ is chosen 0.4 which is half of the maximum range of ‘p’,
thus producing a symmetric fuzzy function. This is to clarify
that the third hypothesis of color normalization is only depen-
dent on single parameter ‘s’, which is fixed for all dataset and
it is always positive.Moreover, the purpose of inclusion of the
parameter ‘s’ was to avoid negative real numbers of ‘p’, such
that the third hypothesis will be always satisfied.

One of the limitations of Reinhard method was that it
doesn’t preserve the background luminance of source images.
To overcome this limitation, in proposed FMR method,
the background luminance of processed image is exactly
replaced by the background luminance of source image,
given in equation (19). Therefore, background luminance
of source images is exactly preserved by proposed FMR
method. This is further mathematically proved in the next
subsection.

Moreover, the Reinhard method has the limitation of fade
color effect which was already explained in section V. This
fade color effect is directly correlated with the value of ‘h’,
which was estimated in the subsection B. A fuzzy function ‘q’
is employed in equation (21), which is proportional to the
value of ‘h’. The fade color effect happens only if the global
mean color differences in αβ space, i.e. ‘u’ and ‘v’ (given
in equations 22-23) both are positive and the value of ‘q’ is
higher. If u>0 and v>0, it implies that target image mean
color is greater than the source image mean color, thus the
transferring mean color will be higher in value. Simultane-
ously, if the value of ‘q’ is higher, this implies that there
is a higher chance that the large white luminance portion is
getting affected by a fade color (or, mean color). At that case,
we are transferring less mean color [i.e. (1-q) times the target
mean color], given in the equations (24-25), such that fade
color effect will be less. The maximum value of ‘q’ is chosen
0.3 empirically given in equation (21), this implies that mini-
mum 70 percent of mean color we always transfer from target
image to source image. The threshold value for h is chosen
20 empirically. If h<20, that means homogeneous white
luminance portion is less in the image and consequently, q=0.
Therefore, at that case, we transfer the total mean color

of the target image to the processed image, given in
equations (26-27). This implies, the mean color difference
between target image and processed image will be closed
to zero, which is desirable for color normalization method.
Hence, our proposed method satisfies the second hypothesis
conditionally (i.e. it’s true if h<20). This is further mathemat-
ically proved in the statistical analysis part. Moreover, in both
α space and β space, we preserve the exact color variation of
source image in the processed image. It can be observed from
the equations (24-27). Therefore, colorfulness of the source
image and the processed image will be approximately same,
by proposed FMR method.

This is significant to clarify that this fade color effect, is
depending on various parameters (like threshold values, win-
dow size) mentioned in our algorithm. However, our aim was
never to remove this fade color effect completely from the
processed image. White luminance homogeneous portions
present in the source image, can never be perfectly preserved
by proposed method, since we are globally transferring the
mean color to all the pixels in the processed image. However,
we just tried to reduce the fade color effect at a certain level,
in order to increase the inter-color variability among several
tissues present in histopathology images and consequently,
at the next step of segmentation those several tissues can be
easily delineated. This is to clarify that those white luminance
homogeneous portions are mostly comprised of fat or lipid.
Therefore, they have no important information regarding
cancer cells and should be eliminated after segmentation.
Thus, if those portions are slightly affected by a fade color
in our proposed method, this won’t have any consequences
in the final result of cancer classification. On the other hand,
the second hypothesis of color normalization method is not
directly correlated with those parameters. It is only directly
correlated with ϕ1 and ϕ2 i.e. the maximum and minimum
values of fuzzy function ‘q’. Since, those (ϕ1 = 0.3 and
ϕ2 = 0.05) values are fixed over all databases, the perfor-
mance of proposed FMR color normalization method will not
be fluctuating over various databases.

E. STATISTICAL ANALYSIS OF PROPOSED FMR METHOD
A statistical analysis of proposed FMR method is presented
in this subsection.

From the theory of statistics [23], we know that

σ 2(cX + d) = c2σ 2(X ) (28)

where X is a random variable, σ 2(X ) is the Variance of X,
‘c’ and ‘d’ are real constants.
By taking global variance both side in equation (19) and

by employing the statistical formula given in equation (28),
we get

σ 2
g (l2) = σ

2
g (l). ∗ (1+ s)

2 (29)

or,

σg(l2) = σg(l). ∗ (1+ s) (30)
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By taking the global mean both side in equation (19), we get

µg(l2) = µg
[
µg(l)

]
+
[
µg(l)− µg(µg(l))

]
.∗(1+s) (31)

Now, µg
[
µg(l)

]
= µg(l), since µg(l) is a real constant.

Therefore,

µg(l2) = µg(l) (32)

From the equation (32), we can say that global mean inten-
sity or background luminance of processed image is exactly
same as the background luminance of source image. Thus,
background luminance of source image has been exactly pre-
served in proposed FMR method. Therefore, first limitation
of Reinhardmethod is resolved in the proposed FMRmethod.

According to the contrast definition introduced byMukher-
jee andMitra [29], contrast of an image is given by the follow-
ing equation (33), where σ is standard deviation of intensity
values and µ is mean intensity or surrounding intensity.

C = σ/µ (33)

Similarly, global contrast of the processed imageC2 in l space
can be defined by the following equation (34).

C2 =
σg(l2)
µg(l2)

(34)

By putting the value from equation (30) and (32) into
equation (34), we get,

C2 =
σg(l)
µg(l)

. ∗ (1+ s) (35)

From equation (35), we can conclude that the contrast of the
processed image is (1+s) times the contrast of source image.
For a particular source image, ‘s’ is having only real positive
value, thus equation (35) reveals that the contrast of processed
image is always greater than that of source image. Hence,
third hypothesis of color normalization has been satisfied by
the proposed FMR method. Moreover, equation (35), reveals
that ‘s’ is the measure of how much contrast is enhanced in
the processed image. For example, if the value of ‘s’ is 0.3,
equation (35) implies that the contrast of the processed image
is enhanced by 30 percent.

Now, covariance between processed image and source
image in l space is given by the equation (36), from covari-
ance definition.

σll2 =
1
MN

M∑
i=1

N∑
j=1

[
l2i − µg(l2i)

]
· ∗
[
lj − µg(lj)

]
(36)

where M x N is the image size in l space. Putting the value
from equation (19) and (32), in equation (36) we get,

σll2 =
1
MN

M∑
i=1

N∑
j=1

[
li − µg(li)

]2
. ∗ (1+ s) (37)

or,

σll2 = σ
2
g (l). ∗ (1+ s) (38)

Correlation coefficient between source image and processed
image in l space is given by

δ =
σll2

σg(l).σg(l2)
(39)

Substituting the value from equation (30) and (38) into equa-
tion (39), we can get

δ = 1 (40)

Hence, it is proved that correlation coefficient between source
image and processed image in l space is exactly equal to 1,
in proposed FMR method. Moreover, it is significant to
observe from equation (40) that, this correlation coefficient
doesn’t depend on any other parameter, employed in our
algorithm. Thus, we can conclude that in l space, the first
hypothesis is always satisfied by proposed FMR method.

Similarly, in αβ space, it can be proved that proposed FMR
method satisfies three of the hypotheses.
Case-I: if there is no fade color effect (if h<20, q=0)
By taking global variance both side in the equation (26)

and by employing the equation (28), we get

σ 2
g (a2) = σ

2
g (a) (41)

or,

σg(a2) = σg(a) (42)

Similarly,

σg(b2) = σg(b) (43)

Taking global mean both side in equation (26), we get

µg(a2) = µg
[
µg(a1)

]
+
[
µg(a)− µg(µg(a))

]
(44)

or,

µg(a2) = µg(a1) (45)

Similarly,

µg(b2) = µg(b1) (46)

Equations (45) and (46) reveals that the mean color of pro-
cessed image is exactly equal to the mean color of target
image. Hence, our proposed FMRmethod satisfies the second
hypothesis conditionally i.e. if h<20.
Now for the covariance between processed image and

source image, substituting value from equations (26) and (45)
in covariance equation of α space, we get

σaa2 =
1
MN

M∑
i=1

N∑
j=1

[
ai − µg(ai)

]2 (47)

or,

σaa2 = σ
2
g (a) (48)

Now Pearson Correlation coefficient between source image
and processed image in α space is given by equation (49).

δ =
σaa2

σg(a).σg(a2)
(49)
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Substituting the values from equation (42) and equation (48),
into equation (49), we get,

Or,

δ = 1 (50)

Similarly, it can be proved in β space also. Thus, in
αβ space it is proved that correlation co-efficient between
processed image and source image is exactly equal to 1,
which is not dependent on any variable. Therefore, our pro-
posed FMRmethod always satisfies the first hypothesis in αβ
space. Hence, our proposed FMR method is capable to pre-
serve all the color variation of source image in the processed
image.
Case-II: If there is fade color effect (i.e. h>=20,

u>0, v>0)
By following the exactly same procedure as case-I, we can

get the following equations for case-II in αβ space.

σg(a2) = σg(a) (51)

σg(b2) = σg(b) (52)

µg(a2) = µg(a1). ∗ (1− q) (53)

µg(b2) = µg(b1). ∗ (1− q) (54)

Equations (53) and (54) reveals that a portion of mean color
of target image is transferred to processed image and that
portion is directly correlated to fuzzy function ‘q’. Thus, sec-
ond hypothesis of color normalization is partially satisfied in
case-II. However, maximum value of ‘q’ is chosen very less
(i.e. 0.3) and the number of images with h>=20 is also very
less in both of the databases. Thus, mean color of processed
image is found very much closed to mean color of target
image by FMR method.

For the correlation co-efficient, the proof is exactly same
as the case-I.

Hence, it is proved that our proposed FMRmethod satisfies
all three hypotheses of color normalization. Although, here
we do kind of global estimation, it is quite amazing that
all those results are exactly correlated with the local estima-
tion. Local metric estimation is further discussed in the next
section.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, result of the proposed FMR method is
compared with other existing color normalization meth-
ods such as Reinhard method [18], Macenko method [12],
SCD method [13], CCN method [7], and SPCN method [6].
All the aforementioned methods were implemented and sim-
ulated with MATLAB 2015a, running on an Intel R©Core TM

i3 PC with 2.00 GHz CPU and 8 GB RAM. For experimenta-
tion, test colon and breast cancer histopathology images are
taken from publicly available databases [13] and [28] respec-
tively. From each of the database, 100 number of images
are taken for experimentation. Visual results of several color
normalization algorithm are shown in Fig.4 and Fig.5.

FIGURE 3. Flow chart of FMR color normalization method.

A. QUALITY METRICS FOR HISTOPATHOLOGY IMAGES
Conventional quality metrics (e.g. Full reference metric) are
not suitable for histopathology images, since the ground truth
of histopathology image is not available. In fact, the ground
truth is lost after the staining process, since there was color
variation during staining. However, we assume that bright-
ness intensity (gray-scale) information is entirely preserved
in the source image after staining process. Thus, that grey-
scale information can be extracted from the source images.
The color information can be extracted from the target image,
which is preferred by pathologists. Therefore, quality of
histopathology images can be evaluated by a Reduced Ref-
erence metric, where we are extracting significant informa-
tion of ground truth from source image and target image.
This work is inspired from [30]. However, we didn’t choose
exactly same metrics as [30]. The reason behind choosing
those new metrics have already been explained in section III.

The following quality metrics are estimated locally. The
mathematical expressions of those metrics are given below.
1. Structural similarity between source image (X) and pro-

cessed image (Y) is measured by Pearson Correlation
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FIGURE 4. Comparison of various color normalization methods for breast cancer histopathology image. First column
represents the normalized image for source image1. The second and third column represents normalized image
for source image2 and source image 3 respectively.
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Co-efficient (PCC) and Structural Similarity Index
Metric (SSIM) [24].

ρXY =
1
W

W∑
i=1

σXiYi

σXiσYi
(55)

SSIM (X ,Y ) =
(2µXµY + k1).(2σXY + k2)

(µ2
X + µ

2
Y + k1).(σ

2
X + σ

2
Y + k2)

(56)

MSSIM (X ,Y ) =
1
W

W∑
i=1

SSIM (Xi,Yi) (57)

where Xi and Yi are image contents at local ith window,
W is the total no. of window in image. MSSIM is the mean
SSIM, σXY is the covariance between source image and
processed image, σX is the standard deviation of X, µX is
the mean value of X. Both of the value of k1 and k2 are in
the order of 0.01.

2. Absolute Mean Color Error (AMCE) in both α space and
β space are given in equations (58) and (59) respectively,
where µ indicates local mean. αi(tar) is the target image
content at local ith window in α space and αi(proc) is the
processed image content at local ith window in α space, W
is the total no of windows.

AMCEα =

∣∣∣∣∣ 1W
W∑
i=1

µ(αi(tar))−
1
W

W∑
i=1

µ(αi(proc))

∣∣∣∣∣
(58)

AMCEβ =

∣∣∣∣∣ 1W
W∑
i=1

µ(βi(tar))−
1
W

W∑
i=1

µ(βi(proc))

∣∣∣∣∣
(59)

The inclusion of AMCE metric is very much significant
which actually enables us tomeasure the background color
variation in the processed image, with respect to the target
image.

3. Contrast Difference (CD) between processed image and
source image can be measured by the following math-
ematical equation (60), where σ (Yi) and σ (Xi) are the
standard deviation of processed image and source image
respectively, at ith window.µ is the mean value, W is the
total no of windows. The definition is inspired from [29].

CD(Y ,X ) =
1
W

W∑
i=1

σ (Yi)
µ(Yi)

−
1
W

W∑
i=1

σ (Xi)
µ(Xi)

(60)

To satisfy the hypotheses of color normalization, men-
tioned in section III, the following must be true.
• PCC or MSSIM value should be very much closed to 1.
• AMCE value both in α space and β space should be
closed to zero.

• CD value should have positive sign.
The window size to compute quality metric is taken 18 × 25
and 20 × 23 for colon cancer and breast cancer datasets
respectively. This window size should be dependent on the
entire image size and they must be chosen optimally such

TABLE 2. Mean values of quality metrics of 100 breast cancer
histopathology images for various color normalization methods.

TABLE 3. Mean values of quality metrics of 100 colon cancer
histopathology images for various color normalization methods.

that the number of zero padding will be minimum. All the
hypotheses (except third) of color normalization can be ver-
ified by the table 2 and table 3 which are given below.
However, mean values of those quality metrics don’t always
reflect the actual statistics. That is why, a box plot [31] is
introduced in Fig.6, for only breast cancer data set (for a set
of 100 images only) which shows how the data points are
varying with respect to its mean value. For third hypothesis,
only the sign of CD matters, its mean value is not important.
Therefore, its value is not presented in table 2 or table 3.
Rather, it can be visualized in the box plots, shown in fig.6d.

B. RESULT EVALUATION AND COMPARISONS
From Fig.4 and Fig.5, it can be visualized that Rein-
hard method and histogram specification method don’t pre-
serve the white luminance part in the processed image.
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FIGURE 5. Comparison of various color normalization methods for colon cancer histopathology image. First column
represents the normalized image for source image 4. The second and third column represents normalized image for source
image5 and source image 6 respectively.
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However, both of the methods are capable of preserving all
the structural information of source image which is visualized
in Fig.4 and Fig.5 and also it can be observed from the table 2,
table 3 and Fig.6a. Therefore, both of the methods satisfy
the first hypothesis. However, they do not satisfy the third
hypothesis which can be observed from Fig.6d. Furthermore,
in both of the methods, the mean of AMCE is found very
much closed to 0, given in table 2 and table 3, thus they also
satisfy the second hypothesis.

From Fig.5, it is visible that Macenko method doesn’t
transfer the right color from target image to processed image.
In colon dataset it has been found that the mean value of
AMCE is 28.3 in α space and 9.53 in β space, given in table
3, which are very much deviating from zero. From Fig.4 and
Fig.5, it can be visualized that SCD method doesn’t preserve
all the source information in processed image. In fact, the loss
of information in this method is greater than other benchmark
methods. MSSIM is found 0.79 and 0.83 for breast and colon
dataset respectively, given in table 2 and table 3. Also, PCC
value is very much deviating from 1, which can be observed
from Fig.6a. Thus, SCD method doesn’t satisfy the first
hypothesis.

From Fig.4 and Fig.5, it can be visualized that in
CCN method, the white luminance part of source image
is exactly preserved in their processed image. However,
color information of source image is not exactly preserved
by this algorithm which can be visualized in Fig.4. Thus,
PCC and MSSIM are deviating from the value of 1 in case
of breast cancer dataset, given in table 2. Moreover, in breast
cancer dataset sometimes this method brings undesired color
artifacts, because Saturated Weighted Statistics (SWS) is not
exactly a linear method, according to our visualization. Fur-
thermore, in case of breast cancer dataset, mean of AMCE is
very much deviating from 0. This can also be observed from
Fig.6b and Fig.6c.

We found only SPCN method a decent existing color nor-
malization method which has desirable quality metric values,
given in table 2 and table 3. From Fig.4 and Fig.5, it can be
visualized that all the structural information of source image
is preserved in the processed image, while transferring right
color from target image to processed image. However, all the
color variation of source image is not exactly preserved in
the processed image, which can be seen in Fig.5, for source
image 4 and source image 5. PCC andMSSIM in this method
are better than CCN method, found in table 2, but still they
are somehow deviating from 1. Therefore, there is a chance of
improvement of getting better PCC or MSSIM. Another big
disadvantage of this method is that it has large computation
complexity, mentioned in table 2 and table 3.

Proposed FMR method is employed to overcome all the
limitations of conventional Reinhard method. The qualitative
and quantitative results reveal that our proposed FMRmethod
outperforms all other benchmark color normalization meth-
ods. In table 2 and table 3, it is found that FMRmethod has the
best metric values compared to recent existingmethods. It has
correlation co-efficient and MSSIM value both very closed

FIGURE 6. (a) Box plot of PCC for several color normalization methods.
(b) Box plot of AMCEα for several color normalization methods.
(c) Box plot of AMCEβ for several color normalization methods.
(d) Box plot of CD for several color normalization methods.

to 1, this implies that it preserves all the source information in
the processed image. Subsequently, it can also be visualized
from the boxplot of PCC, in Fig.6a. Proposed FMR method
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has the least width in PCC boxplot, which implies that the
variation of PCC value is the least in FMRmethod and overall
PCC value is very much closed to 1. In Fig.4 and Fig.5,
it can be clearly observed that proposed FMR method has
preserved the white luminance part of source image better
than Reinhard method and HS method. However, due to the
inclusion of fuzzy functions, AMCE metric values in FMR
method is slightly deviating from zero, given in table 2 and
table 3 and simultaneously it can also be observed from
Fig.6b and Fig.6c. But still this AMCE value for proposed
FMR method is lesser than other existing algorithms except
Reinhard method and HS method. Moreover, from the box-
plot diagram in Fig.6d, it is observed that CD value is always
positive in proposed FMR method and it has the least width
in CD boxplot which is desirable. Therefore, our proposed
method satisfies the third hypothesis which was not true in
Reinhard method. Furthermore, the main advantage of our
proposed method is that it has very much less computation
complexity compared to recent existing local methods, which
are mentioned in table 2 and table 3.

Correlation co-efficient, mean color difference, contrast of
the image all those statistics of the processed image were
mathematically derived in the statistical analysis part, which
is the backbone of this research paper. However, all those
statistics are estimated globally, thus one may raise a ques-
tion what is the guarantee that those global estimations will
be same as local estimation. Because of the unique texture
properties of histopathology images (mentioned in section II),
we have found that those global estimations are exactly corre-
lated with local metric estimation, compared from table 2 and
table 3. For example, in our proposed FMR method, mathe-
matically we have proved that correlation co-efficient equals
to 1 andwe have found thatmean value of PCC are 0.9998 and
0.9988 for breast and colon cancer database respectively,
which are verymuch closed to 1. Furthermore, statisticallywe
have proved that in FMR method, contrast of the processed
image is always greater than that of source image. We have
found the Contrast Difference (CD) value is always positive,
shown in the box plot in Fig.6d. Hence, we can conclude that
our statistical analysis is perfectly correlated with the quality
metric evaluation.

VIII. CONCLUSION
In this paper, a global color normalization method was pro-
posed for histopathology images. Earlier global color nor-
malization methods (e.g. HSmethod, Reinhard method) were
fraught with the fade color effect, appeared in the white
luminance portions of the image. Also, in case of Rein-
hard method, the contrast of the processed image sometimes
found lesser than that of source image, which is undesirable.
Our proposed FMR method is a novel method, because by
employing fuzzy logic we were able to control the contrast
enhancement in l space, as well as the color co-efficients
were controlled in αβ space in order to alleviate the fade
color effect at a certain level. Many researchers had employed
NMF, ICA to solve this problem of color variation in

histopathology images. However, all those methods had large
computation complexity compared to our proposed method.
Subsequently, it was mathematically proved that proposed
FMR method had satisfied all three hypotheses, the first
hypothesis was not dependent on any parameters employed
in the algorithm. However, second and third hypothesis were
dependent on some parameters, which were fixed all over the
database. Thus, performance of FMR method is not fluctuat-
ing over different databases and proposed FMR method will
always satisfy all three hypotheses of color normalization.
Furthermore, we verified those mathematical proofs with
the experimental results of local quality metrics. We found
that they were exactly correlated and our proposed method
has the best quality metric values compared to other bench-
mark methods. Hence, we can conclude that our proposed
FMR method has outperformed all other existing color nor-
malization methods.

APPENDIX-I
A statistical analysis of Reinhard method is presented in this
section.

By taking global variance both side in equation (12) and
by employing the equation (28) we get,

σ 2
g (l2) = σ

2
g
[
µg(l1)

]
+

[
σ 2
g (l)− σ

2
g (µg(l1))

]
.

∗

[
σ 2
g (l1)/σ

2
g (l)

]
(61)

Since, σ 2
g (const) = 0, equation (61) implies that,

σ 2
g (l2) = σ

2
g (l1) (62)

or,

σg(l2) = σg(l1) (63)

By taking the global mean both side in equation (12),

µg(l2) = µg
[
µg(l)

]
+
[
µg(l)− µg(µg(l))

]
.

∗

[
σ 2
g (l1)/σ

2
g (l)

]
(64)

or,

µg(l2) = µg(l1) (65)

Similarly, in α-β space, we can get the equations (66)
and (67).

µg(a2) = µg(a) (66)

µg(b2) = µg(b) (67)

Equation (66) and (67) implies that global mean color
(or background color) of target image is exactly same as
mean color of the processed image. Thus, Reinhard algorithm
satisfies the second hypothesis of color normalization.
By substituting value from equation (63) and (65) into

equation (34),

C2 =
σg(l2)
µg(l2)

=
σg(l)
µg(l)

(68)
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FIGURE 7. Box plot of ACC for natural image and histopathology images.

Equation (68) reveals that the global contrast (in l space) of
the processed image is exactly equal to the global contrast
of the target image by Reinhard method. If we have a source
image, having higher contrast than that of target image, then
also equation (68) hold true, thus, the processed image will
have lesser contrast than that of target image. Therefore,
Reinhard method doesn’t satisfy the third hypothesis of color
normalization.

To prove the first hypothesis, we have to prove that correla-
tion co-efficient between source image and processed image
will be equal to 1, by Reinhard method.

Substituting value from equation (65) and (12) into the
covariance equation (36), we get,

σll2 =
1
MN

M∑
i=1

N∑
j=1

[
li − µg(li)

]2
. ∗
[
σg(l1)/σg(l)

]
(69)

or,

σll2 = σg(l) ∗ σg(l1) (70)

Now substituting the value from equation (63) and (70) into
equation (39), we get,

δ = 1 (71)

Similarly, in αβ space, it can also be proved that correlation
coefficient between source and processed image is 1, since
transformation function in all three channels (lαβ) are similar.

APPENDIX-II
Themathematical formula of auto-correlation co-efficient (ρ)
is given in equation (72), inspired by the work in [21].

ρ =

1
(W1W2−1)

W1
2 −1∑

m=−(W1
2 −1)

W2
2 −1∑

n=−(W2
2 −1)

I (x, y) ∗ I (x+m, y+n)

(I (x, y))2

(72)

where m&n 6= 0, here both m and n are assumed to be
odd number, W1 × W2 is window size. For both natural
images and histopathology images, 18 × 22 window size
is taken. This auto-correlation co-efficient (ρ), estimated in

TABLE 4. Comparison of mean values of ACC between histopathology
and natural image.

equation (72), is just the measurement of self-similarity of
pixels for only one single window. Final auto-correlation
co-efficient of entire image can be measured by the following
equation (73).

ρtotal =
1
W

W∑
i=1

ρi (73)

where W is the total number of windows in image, ρi is the
auto-correlation co-efficient, estimated for ith window.
Mean values of Auto-Correlation Coefficients (ACC) of

histopathology images and natural images are presented in
the following table 4. 50 natural images are randomly cap-
tured from Cannon-power shot camera and 50 histopathology
images are randomly taken from the liver [13] and breast [28]
databases.

Table 4 reveals that autocorrelation co-efficient of
histopathology images are greater than that of natural images.
This can be better visualized by the boxplot diagram, shown
in Fig.6. This is to clarify that ACC value of histopathology
images is only 0.06 greater than that of natural images, this
6% deviation is significant. Because with respect to a com-
plete homogeneous image (blank image, whose ACC=1),
natural images’ ACC value deviation is just 0.02. Thus,
relative to that deviation (of 0.02), 0.06 is significant
variation for histopathology images, according to our visual-
ization. Therefore, this has been verified that auto-correlation
co-efficient of histopathology images are more deviating
(6% extra) from the value of 1, than the natural images. Closer
the value of auto-correlation co-efficient to 1, implies that the
image pixels intensity values have greater self-similarity. This
reveals that, unlike natural images histopathology images do
not have large homogeneous regions (like trees, sky, lands
etc) where intensity values are mostly similar. Because of
this unique texture property of histopathology images, global
color transformation is actually preferable over local transfor-
mation. Furthermore, employing such a global transformation
can reduce the computation complexity significantly.
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