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ABSTRACT Magnetic resonance imaging (MRI) synthesis has attracted attention due to its various
applications in the medical imaging domain. In this paper, we propose generating synthetic multiple sclerosis
(MS) lesions on MRI images with the final aim to improve the performance of supervised machine learning
algorithms, therefore, avoiding the problem of the lack of available ground truth. We propose a two-input
two-output fully convolutional neural network model for MS lesion synthesis in MRI images. The lesion
information is encoded as discrete binary intensity level masks passed to themodel and stacked with the input
images. The model is trained end-to-end without the need for manually annotating the lesions in the training
set. We then perform the generation of synthetic lesions on healthy images via registration of patient images,
which are subsequently used for data augmentation to increase the performance for supervised MS lesion
detection algorithms. Our pipeline is evaluated on MS patient data from an in-house clinical dataset and the
public ISBI2015 challenge dataset. The evaluation is based on measuring the similarities between the real
and the synthetic images as well as in terms of lesion detection performance by segmenting both the original
and synthetic images individually using a state-of-the-art segmentation framework. We also demonstrate the
usage of synthetic MS lesions generated on healthy images as data augmentation. We analyze a scenario
of limited training data (one-image training) to demonstrate the effect of the data augmentation on both
datasets. Our results significantly show the effectiveness of the usage of synthetic MS lesion images. For
the ISBI2015 challenge, our one-image model trained using only a single image plus the synthetic data
augmentation strategy showed a performance similar to that of other CNN methods that were fully trained
using the entire training set, yielding a comparable human expert rater performance.

INDEX TERMS Brain, MRI, multiple sclerosis, synthetic lesion generation, convolutional neural network,
data augmentation, deep learning.

I. INTRODUCTION
Multiple sclerosis (MS) is a disabling disease of the central
nervous system that disrupts the flow of information within
the brain and between the brain and body. It is characterized
by the presence of lesions in the brain and spinal cord.
Magnetic resonance imaging (MRI) has become one of the
most important clinical tools to diagnose and monitor MS,
since structural MRI depicts white matter (WM) lesions with
high sensitivity [26]. The pattern and evolution of lesions
has made MRI abnormalities invaluable criteria for the early
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diagnosis of MS. MRI allows high specificity and sensitivity
visualization of the dissemination of WM lesions in time and
space, which is a key factor in recent diagnostic criteria [12].
However, in both cross-sectional and longitudinal studies,
manual or semiautomated segmentations have been used to
compute the total number of lesions and the total lesion vol-
ume, which are challenging and time-consuming and prone
to manual errors and inter- and intraobserver variability.
This has lead to the development of different automated
strategies [21].

Recently, deep neural networks have attracted substantial
interest. Deep convolutional neural networks (CNN) have
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demonstrated groundbreaking performance in brain imaging,
especially in tissue segmentation [24], [37] and brain tumor
segmentation [15], [19]. In contrast to previously supervised
learning methods, CNNs do not require manual feature engi-
neering or prior guidance. Furthermore, the increase in com-
puting power makes them a very interesting alternative for
automated lesion segmentation. CNN-based methods have
achieved top ranking performance on all of the international
MS lesion challenges [1], [8], [14], [30].

Studying MS lesions using supervised machine learning
algorithms on MRI images requires a large number of sam-
ples to be annotated by expert radiologists. However, obtain-
ing the annotations of medical images is time consuming.
Several attempts have been made to overcome this challenge
by using data augmentation. One of the most common data
augmentation methods is to modify the dataset of images
using geometric transformation such as image translation,
rotation, or flip [20]. However, the generated samples may
not represent image appearances in real data, or the generated
samples may be very similar to the existing images in the
training dataset due to the parameters and image operators
used [36]. In contrast, we propose the generation of synthetic
MS lesions on patient or healthy MRI images as the solution
to the lack of expert annotations.

The synthesis ofMRI images has attracted much interest in
several areas of neuroimaging, including how to replace the
missing MRI modalities with synthetic data [35], to generate
a subject-specific pathology-free image that is not present
in the input modality [6], to improve image segmentation
and registration performance [17] and others. The current
state of the art in brain MRI synthesis is the work of
Chartsias et al. [9]. The authors proposed a deep fully con-
volutional neural network (FCNN) model for MRI synthesis,
which takes different modalities as inputs and outputs syn-
thetic images of the brain in one or more new modalities.
This approach could be used for the synthesis of new lesions.
However, there are some limitations that should be consid-
ered, such as the ability to control the intensity and the texture
inside the lesions and the requirement of ground-truth masks
for obtaining the lesion model.

In this paper, we propose a deep fully convolutional neural
network model for MS lesion synthesis. The model takes
as inputs T1-w and FLAIR images without MS lesions
and outputs synthetic T1-w and FLAIR images with MS
lesions. The MS lesion information is encoded as different
binary masks passed to the model stacked with the input
images. To overcome the limitations of the Chartsias et al.
[9] model, we divide the lesions into different regions based
on voxel intensities, encoding this information as different
binary masks. These binary masks are computed directly
by thresholding the hyperintensities in the FLAIR image,
so there is no need for the lesions’ ground truth. That means
the proposed MS lesion synthesis model is trained end-to-
end without the need of manual expert MS lesion annotations
in the training sets. Therefore, to tackle the lack of available
ground-truth data needed for supervised MS lesion detection

and segmentation strategies, we use the generated synthetic
MS lesion images as data augmentation to improve the lesion
detection and segmentation performance. This is done by
synthesizing the lesions in new brain images, coming from
either healthy subjects or from patients with lesions. Our
evaluation included a clinical dataset and public MS data
from the International Symposium on Biomedical Imaging
(ISBI) 2015 MS challenge [8]. The accuracy of the generated
synthetic images with MS lesions is evaluated qualitatively
and quantitatively in terms of similarity performance and
in terms of lesion detection and segmentation using a well-
known state-of-the-art MS lesion segmentation method [34].
For the data augmentation evaluation, we analyzed the effect
of adding synthetic images on the segmentation performance
while training with a different number of training images.
To simulate a situationwith very limited training data, we also
analyzed the effect of the synthetic data augmentation starting
from the one-image training scenario.

II. METHODS
A. SYNTHETIC MS LESION GENERATION PIPELINE
To learn a model for the generation of synthetic MS lesions,
images without lesions (used as inputs to the model) and the
correspondent images with lesions (used as outputs to the
model) are required. This kind of image set is not easy to
obtain. One way to solve this would be using a longitudinal
MS dataset; however, MS lesions in the baseline images and
newMS lesions on the follow-up images should be annotated.
Moreover, the baseline and follow-up images should also
be registered. In that way, the model would be trained to
generate new lesions in the follow-up scans. Nevertheless,
in this scenario, new lesions on the follow-up images may
not be sufficient to train the model since the volume of most
of the new lesions can be relatively low [28]. Therefore,
to overcome the lack of available ground-truth, we use the
MS lesion generation pipeline shown in Figure 1 which con-
sists of three main stages. First, the creation of an approxi-
mate white matter hyperintensity (WMH) mask and several
intensity level masks to encode the intensity profile of the
WMH voxels (Section II-A.1). Second, the filling of this
WMH mask in the MR images with intensities resembling
WM (Section II-A.2). Finally, the generation of MS lesions
using the MS lesion generator network on the filled images
(Section II-A.3). Notice that the proposed MS generator was
trained using only a cross-sectional MS dataset. These filled
images were considered as images without lesions (used as
inputs to the model), while the original images contained
MS lesions (used as outputs to the model during the training
process). The following subsections explain the full pipeline
in more detail.

1) WMH MASK AND INTENSITY LEVEL MASKS
Creating the WMH mask and the intensity level masks is an
important step in the proposed MS lesion generator pipeline.
The aim is that training the model with intensity level masks
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FIGURE 1. Scheme of the synthetic MS lesion generation pipeline. γ = 0.5 WMH mask and the eight intensity level masks were computed by FLAIR
thresholding. The γ = 0.5 WMH mask was used to fill all the input modalities. Afterwards, the eight intensity level masks were stacked to each filled
modality to create two 2D inputs with 9 channels each and these were the inputs to the MS lesions generator. For training, the original modalities were
used as output. At testing time, if the intensity level masks were passed to the generator network without modification, the output images would be the
generated version of the input ones containing all the WMHs found in the input image. Passing modified intensity level masks to the generator network
will generate these modifications (i.e., new MS lesions) on the output images.

FIGURE 2. The creation of the WMH mask and the eight intensity level masks (IL1, IL2, . . . , and IL8) using FLAIR thresholding.

instead of MS lesion masks avoids the limitation of having
ground-truth. First, the FLAIR image is thresholded to obtain
an approximate WMH mask. This mask is used to fill the
WMH regions with intensities similar to the ones of the sur-
roundingWMvoxels. To learn themodel for the generation of
WMH voxels and their intensity profile, the range of intensi-
ties starting from the initial threshold is divided into different
small ranges by increasing the intensity threshold at different
steps. These created masks are considered as intensity level
masks, which are then used to encode the intensity profile of
the WMH voxels. The intensity level masks are stacked with
the filled MR images when training the MS generator model.
Therefore, the model can be trained with any dataset without
requiring manual expert annotations. The approximateWMH
mask is computed by FLAIR thresholding. The threshold T Fγi
and intensity level mask ILi are computed as follows:

T Fγ = µ
F
GM + γ σ

F
GM (1)

ILi = T Fγi < FLAIR ≤ T Fγi+1 (2)

where µFGM and σFGM are the intensity’s distribution param-
eters of gray matter (GM) tissue on the FLAIR image [7].
A small value of γ must be chosen to obtain an approximate
WMH mask so that all the WMH voxels are included in
this mask. Different intensity level masks are obtained by

increasing the γ value. The higher the value of γ , the more
brighter WMH voxels are included in the mask.

In this study, the approximate WMH mask was obtained
with γ = 0.5. This value was found empirically to ensure that
all the WMH voxels were included in the WMH mask. Eight
intensity level masks with γ = 0.5, 0.8, 1.1, 1.4, 1.7, 2.1,
2.4, and 2.7 were used to encode the WMH intensity profile.
This was a trade-off between the memory required and the
minimum number of training samples inside each intensity
level mask while training the model. Note that these masks
are stacked with each input modality so the higher the number
of masks, the higher the memory requirements. Moreover,
increasing the number of masks produces a decrease in the
number of training voxels per mask. Figure 2 describes the
creation of the eight intensity level masks (IL1, IL2, . . . , and
IL8). The γ = 0.5 WMH mask is used to fill the WMHs in
the original image, and the intensity level masks are used to
encode the intensity profile in the obtained WMH mask.

2) WMH FILLING
After creating the intensity level masks described in the previ-
ous section, the γ = 0.5 WMH mask regions are filled in the
input modalities. Similar to the work of Battaglini et al. [4],
a local filling method is used here to fill the WMH area with
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the surrounding WM voxels in all input modalities. First,
for each slice in the MR image, the WMHs are split into
individual connected regions. Second, each connected region
is dilated twice. Each connected region is filled using values
normally sampled using the mean and standard deviation of
theWM voxels that were laid in the first dilated area. Further-
more, the filled area with its surrounding voxels (voxels in the
filled connected region and the two dilated areas) is smoothed
using a local Gaussian filter. The second dilation determine
the region on which the local Gaussian filter is used to merge
the filled region with the surrounding WM areas.

3) MS LESION GENERATION MODEL
Figure 3 shows our MS lesion generator architecture, which
is inspired by the work of Chartsias et al. [9]. As shown
in Figure 3(a), it is a two-inputs-two-outputs model based
on two encoders and two decoders (T1-w Encoder, FLAIR
Encoder, T1-w Decoder, and FLAIR Decoder). The encoders
are used to learn the latent representation for the input modal-
ities, while the decoders are also used to generate the output
modalities. Each decoder is used three times (i.e., shared
decoder): one to decode each of the two individual latent
representations (T1-w latent representation and FLAIR latent
representation) and one to decode the fused latent represen-
tation. The fused latent representation is computed by com-
bining the T1-w and the FLAIR latent representations using
a voxel-wise max function (i.e., each voxel of the fused latent
representation has exactly the maximum value of the two
latent representations). At testing time, we used the synthesis
result from the fused latent representation as our output. The
model has two 2D input patches with nine channels each (one
input patch for each input modality). The eight intensity level
masks computed as explained in Section II-A.1 are stacked
with each of the filled input modalities. The first channel is
the filled image modality and the other eight channels are the
intensity level masks.

a: ENCODER ARCHITECTURE
One independent encoder is built for each input modal-
ity following the architecture shown in Figure 3(b). The
encoders embed input images into a latent space of
32-channel size. This architecture is inspired by the work of
Guerrero et al. [13]. It is a fully convolutional network that
follows a U-shaped architecture [25]. The U-Net’s downsam-
pling followed by the upsampling and skip connections allow
the network to exploit information at large spatial scales,
while not losing useful local information. Moreover, as dis-
cussed in Drozdzal et al. [11], skip connections facilitate gra-
dient flow during training. Our encoders are shallower than
the original U-Net, having three downsample and upsample
steps compared to the original four steps.

b: DECODER ARCHITECTURE
One decoder is built for each output modality following
the architecture shown in Figure 3(b). The model is a fully
convolutional network to map a multichannel image-sized

latent representation to a single channel image of the required
modality with synthetic MS lesions.

B. DATA AUGMENTATION APPLICATION: GENERATING
NEW SYNTHETIC MS LESIONS
One of the applications of our synthetic MS lesion pipeline
is to generate synthetic MS lesions on patient or healthy
images and use these synthetic images as data augmenta-
tion to increase the MS lesion segmentation and detection
performance. The main idea is to modify the original eight
intensity level masks of the target image before passing it
through the generator network. At testing time, if the intensity
level masks are used without any modification, the output
images are a generated synthetic version of the input ones
containing all the WMHs found in the input image. Passing
modified intensity level masks to the generator network will
generate these desired modifications (i.e, newMS lesions) on
the output images.

Figure 4 depicts how lesion expert annotations for a patient
image can be generated on a healthy one through linear and
nonlinear registration. After registration, the lesion mask and
the eight intensity level masks of the patient subject are
resampled to the healthy space. We split the resampled binary
lesion mask into individual lesion volumes, in which every
single lesion was defined as a spatially disconnected volume.
After the lesion separation, the individual lesion volumes are
dilated to incorporate the hyperintensities surrounding the
lesions that are not annotated as lesion voxels. The intensity
level masks of the dilated lesion volumes are copied from
the patient resampled masks to the healthy masks. Finally,
the healthy images plus their modified intensity level masks
are passed through the generator network to add new MS
lesions to the synthetic output images. In the same way, new
MS lesions can be generated in patient images using patient-
to-patient registration. Furthermore, more lesions could be
added to the follow-up scans in the longitudinal MS analysis.

C. MS LESION SEGMENTATION APPROACH
The segmentation framework used for evaluating the pro-
posed MS lesion generator is the state-of-the-art CNN model
proposed by Valverde et al. [34]. Within this MS lesion
segmentation framework, a cascade of two identical CNNs
is optimized, where the first network is trained to be more
sensitive to revealing possible candidate lesion voxels, while
the second network is trained to reduce the number of false
positive outcomes. For a complete description of the details
and motivations for the proposed architecture, please refer to
the original publication.

III. EXPERIMENTAL SETUP
A. DATASETS
1) CLINICAL MS DATASET
This dataset consists of 15 healthy subjects and 65 differ-
ent patients with a clinically isolated syndrome or early
relapsing MS (Vall d’Hebron Hospital Center, Barcelona,
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FIGURE 3. MS lesion generator architecture. Each input modality has its own encoder that maps the input image modality to the 32-channel latent space.
One decoder is learned for each output modality. The encoder maps the 32-channel latent representations to the outputs of that modality. Each decoder
is used three times (i.e., shared decoder): once to decode each of the two individual latent representations (T1-w latent representation and FLAIR latent
representation) and once to decode the fused representation. At testing time, we used the synthesis result from the fused representation as our output.
(a) The MS lesion generation model for two-input two-output case. (b) Encoder and decoder architectures.

Spain) who underwent brain MR imaging for monitoring
disease evolution and treatment response. Each patient under-
went brain MRI within the first 3 months after the onset

of symptoms. The scans for all the patients were obtained
in the same 3T magnet (Tim Trio; Siemens, Erlangen, Ger-
many) with a 12-channel phased array head coil. The MRI
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FIGURE 4. Generating MS lesions on healthy subjects by linear/nonlinear registration. After registering the patient FLAIR to the healthy FLAIR, the lesion
mask and the intensity level masks of the patient were resampled to the healthy space. The lesions from the patient resampled intensity level masks
were copied to the healthy intensity level masks. The healthy images combined with their modified intensity level masks were passed to the MS lesions
generated to generate the synthetic MS lesions on the healthy image.

protocol included the following sequences: 1) transverse pro-
ton density (PD)- and T2-w fast spin-echo (TR = 3080 ms,
TE = 21 − 91 ms, voxel size = 0.78 × 0.78 × 3.0 mm3),
2) transverse fast FLAIR (TR = 9000 ms, TE = 87 ms,
TI= 2500 ms, flip angle= 120◦, voxel size= 0.49×0.49×
3.0 mm3), and 3) sagittal T1-w 3D magnetization-prepared
rapid acquisition of gradient echo (TR = 2300 ms, TE =
2.98 ms, TI = 900 ms, voxel size = 1.0 × 1.0 × 1.2 mm3).
The dataset was preprocessed as follows: for each patient,
the T1-w image was linearly registered to the FLAIR using

Nifty Reg tools1 [22], [23]. Afterwards, a brain mask was
identified and delineated on the registered T1-w image using
the ROBEX Tool2 [16]. Then, the two images underwent a
bias field correction step using the N4 algorithm from the
ITK library3 with the standard parameters for a maximum
of 400 iterations [32].

1https://sourceforge.net/projects/niftyreg/
2https://www.nitrc.org/projects/robex
3https://itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImage

Filter.html
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TABLE 1. Datasets. Total number of images, images used for training and testing the MS lesion generator, and images used for training and testing the
MS lesion segmentation model for the clinical MS and ISBI2015 datasets.

2) ISBI2015 DATASET
This dataset consists of 5 training and 14 testing subjects
with 4 or 5 different image time-points per subject from the
ISBI2015 MS lesion challenge [8]. Each scan was imaged
and preprocessed in the same manner by the own organizers,
with data acquired on a 3.0 Tesla MRI scanner (Philips Med-
ical Systems, Best, The Netherlands) with T1-w MPRAGE,
T2-w, PD and FLAIR sequences. For more information about
the image protocol and preprocessing details, refer to the
challenge organizers website4. On the challenge competition,
each subject image was evaluated independently, which led
to a final training set and a testing set composed of 21 and
61 images, respectively. Additionally, manual delineations of
MS lesions performed by two experts were included for each
of the 21 training images.

For both datasets, brain tissue volume was computed using
the FAST segmentation method [38]. Finally, theWMHmask
and the eight intensity level masks were computed by FLAIR
thresholding as explained Section II-A.1, and T1-w and
FLAIR were filled using the γ = 0.5 WMH mask computed
using the method explained in Section II-A.2.

B. MS LESION GENERATOR TRAINING AND
IMPLEMENTATION DETAILS
To perform our experimental tests, we trained the lesion
generator models into two different scenarios, one being the
MS clinical dataset and the other one the ISBI2015 dataset
(see Table 1 for the images used for training). For training
the generation network, 2D 64x64 patches with step size
of 32x32 were extracted from the original images, the filled
images, and the eight intensity level masks. The extracted
patches were split into training and validation sets (70% for
training and 30% for validation). The training set was used to
adjust the weights of the neural network, while the validation
set was used to measure how well the trained model was
performing after each epoch. The extracted patches were
passed to the network for training in mini batches of size
32 and the network was set to train for 200 epochs. To prevent
overfitting, the training process was automatically terminated
when the validation accuracy did not increase after 15 epochs.
Regarding the MS lesion segmentation framework, the CNN
training and inference procedures were identical to those
proposed by Valverde et al. [34].

4http://iacl.ece.jhu.edu/index.php/MSChallenge/data

The proposed method has been implemented in Python5,
using Keras6 with the TensorFlow7 backend [2]. All exper-
iments have been run on a GNU/Linux machine box run-
ning Ubuntu 18.04, with 128 GB RAM memory. The model
training was carried out on a single TITAN-X GPU (NVIDIA
Corp, United States) with 12 GB RAM memory. To promote
the reproducibility and usability of our research, the proposed
MS lesion generation pipeline is currently available for down-
loading at our research website8.

C. EVALUATION METRICS
To evaluate the performance of the proposed MS lesion gen-
erator, we computed the similarity between the original and
the synthetic images using the following similarity metrics:
• Mean Square Error (MSE):

MSE(G,R) =
1
N

N∑
i=1

(Gi − Ri)2

whereG andR are the intensities of the generated and the
real images, respectively, and N is the number of voxels
in the R image.

• Structural Similarity Index (SSIM):

SSIM (G,R) =
(2µGµR + c1)(2σGR + c2)

(µ2
G + µ

2
R + c1)(σ

2
G + σ

2
R + c2)

where (µG, σ 2
G) and (µR, σ 2

R) are the intensity’s (mean,
variance) of the generated and the real images, respec-
tively, and σGR is the covariance between them, c1 and
c2 are two constants to stabilize the division with weak
denominator.

On the other hand, the quantitative evaluation of the proposed
MS lesion generator was performed by segmenting both the
original and synthetic images individually using the same
MS lesion segmentation framework and comparing the differ-
ence between the segmentation results. As explained before,
the segmentation framework used to evaluate the proposed
MS lesion generator is the MS lesion segmentation method
proposed by Valverde et al. [34], although the proposed data
augmentation strategy could be applied to any approach. The
evaluation of the resulting segmentations against the avail-
able lesion annotations was carried out using the following
evaluation metrics:

58 https://www.python.org
6https://keras.io
7https://www.tensorflow.org/
8https://github.com/NIC-VICOROB/MS_Lesions_Generator
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• Dice Similarity Coefficient (DSC), which measures
the overall segmentation accuracy between the manual
lesion annotations and the output segmentation masks:

DSC =
2× TPs

2× TPs + FPs + FNs

where TPs and FPs denote the number of voxels cor-
rectly and incorrectly classified as a lesion, respectively,
and FNs denotes the number of voxels incorrectly clas-
sified as a nonlesion.

• Sensitivity of the method in detecting lesions between
manual lesion annotations and output segmentation
masks:

sensitivity =
TPd

TPd + FNd

where TPd and FNd denote the number of correctly and
missed lesion region candidates, respectively.

• Precision of the method in detecting lesions between
manual lesion annotations and output segmentation
masks:

precision =
TPd

TPd + FPd

where TPd and FPd denote the number of correctly and
incorrectly classified lesion region candidates, respec-
tively.

A paired t-test at the 5% level was used to evaluate the sig-
nificance of the data augmentation results. Significant results
are shown in bold in all tables.

IV. EXPERIMENTS AND RESULTS
A. MS LESION SYNTHESIS
In these experiments, qualitative and quantitative evaluations
were undertaken by measuring the similarities between the
real and the synthetic images in terms of MSE and SSIM
metrics and in terms ofMS lesion detection and segmentation
using a state-of-the-art MS lesion segmentation method [34]
and the evaluation metrics described in section III-C (see
Table 1 for the images used).

1) EVALUATION
a: CLINICAL MS DATASET
Both VHtrain and VHtest sets were generated using the pro-
posed MS generator yielding VHtrainGen and VHtestGen,
respectively. The evaluation of the proposedMS generator on
this dataset was performed by measuring the MSE and SSIM
metrics between the real and the synthetic images (using
Group B images, see Table 1) and by training and testing the
MS lesion segmentation model [34] as follows: 1) training
with the VHtrain set and testing on the VHtest set; 2) training
with the VHtrainGen set and testing on the VHtestGen set; 3)
training with the VHtrainGen set and testing on the VHtest
set; and 4) training with the VHtrain set and testing on the
VHtestGen set.

b: ISBI2015 DATASET
The ISBItrain set was generated using the proposed MS
generator yielding ISBItrainGen. Note that the evaluation of
the ISBI 2015 challenge is performed blind by submitting the
segmentation masks of the 61 testing cases to the challenge
website evaluation platform9. The evaluation of the proposed
MS generator on this dataset was performed bymeasuring the
MSE and SSIM metrics between the real and the synthetic
images (using ISBItrain set, see Table 1). The performance
of the two MS lesion segmentation models, one trained with
the ISBItrain set and the other trained with the ISBItrainGen
set, was evaluated by submitting to the challenge’s evaluation
platform, and comparing the accuracy between them.

c: MS LESION GENERATION ON HEALTHY SUBJECTS
To evaluate the generation of MS lesions on healthy sub-
jects by using registration, the MS lesions of the VHtrain
dataset were generated on the VHhealthy images using lin-
ear and nonlinear registration as described in section II-B.
We refer to them as VHGenLinear and VHGenNonlinear,
respectively. The evaluation of the proposed MS generator
on these datasets was performed by training 3 MS lesion seg-
mentation models using the VHGenLinear, the VHGenNon-
linear, and (VHGenLinear + VHGenNonlinear) and testing
on the VHtest set.

TABLE 2. Similarity results. MSE and SSIM between the original and
synthetic images of the clinical MS (Group B set) and ISBI2015 (ISBItrain
set) datasets for nonbackground and γ = 0.5 WMH mask. The reported
values are the mean ± standard deviation.

2) RESULTS
Table 2 summarizes the MSE and SSIM between the real and
synthetic images of the clinical MS and ISBI2015 datasets.
Furthermore, the MSE and SSIM of γ = 0.5 WMH mask
voxels are reported. Figure 5 and 6 show the qualitative
assessment of the proposed MS lesion generator of the clin-
ical MS/ISBI2015 datasets and synthetic MS lesions gener-
ated on healthy subjects using linear/nonlinear registration,
respectively. The slices are also displayed using jet color
maps to show the similarity of intensities inside the original
and the synthetic lesions. Table 3 summarizes the MS lesion
detection and segmentation results, showing the obtained
mean values when training with the original and synthetic

9https://smart-stats-tools.org/node/26
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FIGURE 5. Qualitative assessment of the proposed MS lesions generator. Slices are also displayed using jet color maps to visually enhance the intensities.

TABLE 3. Lesion segmentation and detection results. Comparison
between the training using original images and synthetic images on
Clinical MS and ISBI2015 datasets. For each coefficient (DSC , sensitivity ,
and precision), the reported values are the mean ± standard deviation.
For the ISBI2015 dataset, the reported values are extracted from the
challenge results board.

images of the clinical MS and ISBI2015 datasets. The mean
results when training with the synthetic MS lesions generated
on healthy images using the clinical MS dataset lesion set are
shown in Table 4.

TABLE 4. Clinical MS dataset results of training using synthetic images
generated on healthy subjects as described in section II-B. For each
coefficient (DSC , sensitivity , and precision), the reported values are the
mean ± standard deviation.

B. DATA AUGMENTATION EXPERIMENTS
In these experiments, we evaluated the use of the proposed
MS lesion generator as a data augmentation method by
generating the lesion masks on healthy images from the
same domain using registration as described in section II-B.
The two deformed generated lesion masks (from linear and
nonlinear registration) and the correspondent two synthetic
images were added to the original patient image during train-
ing as data augmentation.
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FIGURE 6. Synthetic MS lesions generated on a healthy subject using linear/nonlinear registration. Slices are also displayed using jet color maps to
visually enhance the intensities.

1) EVALUATION
a: CLINICAL MS DATASET
For each patient image from the VHtrain set, we created
two synthetic images with lesions on a healthy image from
the VHhealthy set (VHGenLinear and VHGenNonlinear) as
described in section II-B. Those two synthetic images were
used together with the original image as data augmentation
in the following experimental tests: 1) to analyze the effect of
the synthetic data augmentation images on the segmentation
performance while training with different number of training
images, two models were trained using 1, 2, 3, 5, 10 or
all of the available training images, with one model using
the original images and the other using the same original
images plus their synthetic data augmentation images; and
2) to simulate a situation with limited training data, we ana-
lyzed the effect of the synthetic data augmentation on the
segmentation performance in the scenario of having only
one-image for training. Using a single training image with
a lesion volume in the range of 0.34 − 49.4 ml, two models
were trained. One model used the original image (i.e., from
VHtrain) and the other used the same original image plus the
two synthetic images generated on the healthy image (i.e.,
from VHGenLinear and VHGenNonlinear).

b: ISBI2015 DATASET
To simulate a situation with limited training data, we ana-
lyzed the effect of the synthetic data augmentation images
on the segmentation performance in the one-image training
scenario on the overall performance of the testing set. To do
so, we chose a single training image from each training
subject (ISBItrain), which led to 5 different training sets
with a varying number of lesions and a total lesion volume
in the range 2.3 − 26.8 ml. Since there were no healthy
subjects available from this challenge, we chose the fourth
training subject (this image has the smallest lesion load;
≈ 2.3 ml) and filled it as described in section II-A.1 (but
only MS lesions were filled instead of the WMH areas).
We considered this image as a healthy subject and we refer
to it as ISBI-H. The MS lesions of each of the four selected
ISBI images were generated on the ISBI-H using linear and
nonlinear registration, as described in section II-B, yielding,
for each patient image from the selected four, two generated
images and their correspondent lesion masks that were used
as data augmentation. Based on this, we undertook the fol-
lowing experiments. 1) To simulate a situation with limited
training data, we analyzed the effect of the synthetic data
augmentation images on the segmentation performance in the
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FIGURE 7. Effect of the number of training images and their DA images on the DSC, sensitivity and precision coefficients when evaluated on
the clinical MS dataset. The represented value for each configuration is computed as the mean DSC, sensitivity and precision scores over the
14 VHtest images.

one-image training scenario. Using a single training image
from the four images selected, two models were trained, one
using the original image and the other using the original
image plus its two synthetic images generated on ISBI-H
using linear and nonlinear registration. 2) To determine the
performance of all the models trained on the blind test set,
all trained models from the previous experiment were sent
to the challenge’s evaluation platform, comparing its accu-
racy to those of the other submitted MS lesion segmentation
pipelines fully trained using the entire available training set.
Among the set of evaluated coefficients computed in the
challenge, only the DSC, sensitivity and precision metrics are
shown for comparison.

2) RESULTS
Regarding the Clinical MS dataset, Figure 7 shows the DSC,
sensitivity and precision coefficients of different models
trained using different number of training images, which
ranged from 1 to 15 images. Table 5 shows the DSC, sen-
sitivity and precision coefficients of the models under the
one-image training scenario. Regarding the ISBI2015 dataset,
Table 6 shows the performance of each of the one-image sce-
nario models when trained on different images with varying
degrees of lesion size. Table 7 shows the performance of the
models trained with ISBI02 plus DA against different top
rank participant challenge strategies. From the list of com-
pared methods, the best five strategies were based on CNN
models (Andermatt et al. [3], Birenbaum and Greenspan [5],
Salehi et al. [27], Valverde et al. [34]), while the others
were based on either other supervised learning techniques
(Valcarcel et al. [10], Sudre et al. [31], Valcarcel et al. [33])
or unsupervised intensity models (Jain et al. [18],
Shiee et al. [29]).

V. DISCUSSION AND FUTURE WORK
We proposed a synthetic MS lesion generator pipeline that
generates synthetic images with MS lesions. The use of the
intensity level masks introduced in our proposal enabled us
to train the model without the need of ground truth. Further-
more, the intensity level masks help the MS lesion generator
to preserve the intensity gradients inside the synthetic MS

TABLE 5. One-image scenario for the Clinical MS dataset: DSC ,
sensitivity and precision coefficients for two models, one model trained
using a single original image (ORG) and the other one trained using same
single image plus its synthetic data augmentation images (DA) with
varying degrees of lesion load. For each coefficient, the reported values
are the mean ± standard deviation when evaluated on the VHtest set.

lesion. Although the proposed pipeline was used to generate
MS lesions on T1-w and FLAIR images using only two
encoders and two decoders, the model can be easily extended
to new input/output modalities through the addition of new
encoders/decoders.

We demonstrated the similarity between the synthetic and
real lesions qualitatively and quantitatively on patient and
healthy subjects. Synthetic images are very similar to the
real ones in terms of the two similarity metrics for nonback-
ground and γ = 0.5 WMH mask voxels for both datasets.
Regarding the MS lesion segmentation results, the experi-
ments show how similar the training is using real or syn-
thetic images in terms of MS lesion detection. Regarding the
MS clinical dataset, the performance is 2% less in terms of
DSC and precision when training with the synthetic images
than training with the real images. However, similar results
were obtained when training with real images and testing
on synthetic images. From the results obtained, synthetic
images could be used as training or testing images. Regarding
the ISBI2015 datasets, the performance was very similar in
terms of the three evaluation metrics. Regarding the training
using synthetic MS lesions generated on healthy subjects,
good segmentation and detection results were obtained when
training with synthetic images generated on healthy subjects.
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TABLE 6. One-image scenario for the ISBI2015 dataset: DSC , sensitivity , precision, and overall score coefficients for two models, one model trained using
a single original image (ORG) and the other one trained using same single image plus its synthetic data augmentation images (DA). The reported values
are extracted from the challenge results board. For each coefficient, the reported values are the mean ± standard deviation when evaluated on the
ISBItest set.

TABLE 7. ISBI2015 challenge: DSC , sensitivity , precision and overall score coefficients for the best one-image scenario with the data augmentation
model (ISBI02 + DA). The obtained results are compared with different top rank participant strategies and also with the same model fully trained on all
the available data. For each method, the reported values are extracted from the challenge results board. The reported values are the mean (standard
deviation) when evaluated on the 61 testing images. The performance of the methods with an overall score ≥ 90 is considered to be similar to human
performance.

The performance is also very similar when training with
synthetic images generated using linear, nonlinear registra-
tion or both.

Regarding the data augmentation experiments, we demon-
strated the effect of data augmentation on the MS lesion
segmentation performance when increasing the number of
the training images. The difference in performance between
training with original images and original images plus DA
decreases in terms of the three metric coefficients as the
number of the training images increases. The DA images
generated from linear and nonlinear registration do not give
more variability to the training data when increasing the num-
ber of training images. Furthermore, to simulate a situation
with limited training data, we analyzed the effect of one-
image training scenario. Regarding the MS clinical dataset,
significant improvement was obtained in terms of the three
metric coefficients with a lesion volume in the range of
0.34−49.4 ml. Regarding the ISBI2015 dataset, a significant
improvement was obtained in terms of the three metric coef-
ficients, except for ISBI03, where only a significant improve-
ment in precision was obtained. Comparing the accuracy of
the best performingmodel (ISBI02+DA) to those of the other
submitted MS lesion segmentation pipelines fully trained
using the entire available training set, the proposed one image
plus its data augmentation images reported a performance
similar to that of the same fully trained cascaded CNN archi-
tecture (score 91.44) [34], which shows the improvement of
the proposed data augmentation strategy to the training used
with limited training data.

Currently, work is underway to build a lesion dictionary
containing the MS lesion information (the annotation and
the intensity level masks) of different MS lesions grouped
by lesions load, and the extension could be an automatic
selection of suitable insertion location so that the lesions
selected from the dictionary could be generated syntheti-
cally in multiple locations without manual user involvement.
Choosing the automatic locations of lesions is not an easy task
because inserting lesions in incorrect locations may mislead
the training process and decrease the overall performance.
We believe that generating synthetic MS lesions on healthy
subjects using the dictionary and the automatic locations
will provide more variability to the training data than the
linear/nonlinear registration, as data augmentation and the
overall performance of the proposed pipeline will improve
accordingly.

In conclusion, the obtained results indicate that the pro-
posed pipeline is able to generate useful T1-w and FLAIR
synthetic images with MS lesions that do not differ from
real images. Furthermore, the combination of the synthetic
MS lesions generated on healthy images and original patient
images from the same domain increases the segmentation and
detection accuracy of MS lesions.
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