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ABSTRACT Numerous object-tracking and multiple-person-tracking algorithms have been developed in
the field of computer vision, but few trackers can properly address the issue of when a pedestrian is partially
or fully occluded by other objects or persons. In order to achieve efficient pedestrian tracking in various
occlusion conditions, a pedestrian tracking framework is proposed and developed based on the deep learning
networks. First, a pedestrian detector is trained as a tracking mechanism based on the Faster R-CNN, which
narrows the search range and efficiently improves accuracy, as compared with the traditional gradient descent
algorithm. Second, in the process of target matching, a color histogram and scale-invariant feature transform
are combined to provide the target model expression, and a full convolution network (FCN) is trained to
extract the pedestrian information in the target model, based on an FCN image semantic segmentation
algorithm that can remove background noise effectively. Finally, the extensive experiments on a commonly
used tracking benchmark show that the proposed method achieves better performance than the other state-
of-the-art trackers in various occlusion situations.

INDEX TERMS Pedestrian tracking, Faster R-CNN, color histogram, SIFT, FCN.

I. INTRODUCTION
Pedestrian tracking is an important issue in the field of
computer vision and has been widely used in many applica-
tions, such as unmanned vehicles, robots, and video surveil-
lance [1]–[5]. Traditional trackers achieve good performance
in simple scenes, but they perform more poorly with complex
situations such as occlusion, illumination change, motion
blur, and texture variation [9], [39]–[41]. Among these chal-
lenges, occlusion is a particularly important problem.

Normally, existing tracking algorithms can be divided into
two categories, i.e., generative models and discriminative
models. The former describe key characteristics of the target
and then minimize the reconstruction error by searching the
candidate target. Typical generative algorithms include sparse
coding [6], locally orderless tracking (LOT) [7], distribu-
tion fields for tracking (DFT) [8], and incremental visual
tracking (IVT) [9]. In contrast, the discriminant method
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distinguishes between the target and the background by train-
ing a classifier, and is therefore often called tracking-by-
detection. The discriminant method is more robust because
of the significant distinction between background and fore-
ground information, and has come to gradually dominate the
target tracking field.

Recently, a tracking method based on the correlation fil-
ter [10] has attracted attention because of its speed and
accuracy. The correlation filter trains the filters by returning
the input feature to the Gaussian distribution of the target,
then finds the response peak in the forecast distribution
to locate the target. The correlation filter employs the fast
Fourier transform algorithm and therefore shows good perfor-
mance. It has many extensions based on correlation filtering,
including the kernelized correlation filter (KCF) [11], and
the output constraint transfer for the kernelized correlation
filter (OCT-KCF) [12].

These tracking algorithms have achieved good results, and
most state-of-the-art generative and discriminative models
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use the mean shift [13], [14] and particle filter [15] algo-
rithms. These approaches often use the target in the previous
frame as the initial location for the next search step. They
might lose the target if a large portion of it is blocked or
occluded for a relatively long time. To tackle this problem,
a tracking framework will be proposed and implemented in
the following sections.

The rest of this paper is organized as follows. Section II
introduces related work. In Section III, we describe how
the proposed framework can work with high accuracy in
tracking pedestrians. Extensive experiments are discussed in
Section IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK
Computer vision has been widely developed in terms of
target detection and tracking. There exist many excellent
tracking algorithms, such as CT [21], STC [22], CSK [23],
KCF [11], OCT-KCF [12], and CN [37]. All these algo-
rithms have made contributions in the field of target tracking,
but most are sensitive to occlusion in practical environments.
Experiments with pedestrian occlusion in OTB-50 [33] show
that the algorithm has tracking drift problems if a pedestrian
is partially or fully occluded by another object or person.

Object detection is an essential component of tracking.
Recently, to provide better detection results, Ren [16] pre-
sented faster R-CNN, based on Fast Region-based Convolu-
tional Network method (Fast R-CNN) [24], [25], proposing
Region Proposal Networks (RPN) and the rapid generation of
candidate areas. Faster R-CNN can self-generate a proposal
box by using and sharing a convolution network with the
target detection network, which greatly reduces the num-
ber of original proposed target region box while ensuring
detection quality. It mainly uses the VGG-16 [20] as the
feature extractor, which achieves the state-of-the-art accuracy
on classification and localization tasks. VGG-16 contribution
is an increasing network depth using smaller convolution fil-
ters, which shows a significant improvement on the network
training effect by pushing the depth to 16-19 weight layers.
Inspired by the faster R-CNN approach, we try to train a new
pedestrian detection model and optimize it by expanding the
training data set.

After detection of the proposal region, it is important to
match that region with the subject pedestrian. In terms of
target representation, one common practice is the RGB color
histogram. This describes the number of color features in
the image, which can reflect the statistical distribution of
color in the image, as well as the basic tones. However,
the histogram only contains the frequency of a color value,
and each image has only one corresponding color histogram.
The problem is that the same color histogrammay correspond
to various images. So, we can track the target by comparing
color histograms in a relatively simple scene but cannot track
it when occlusion occurs or the light changes. This is why we
proposed combining an RGB color histogram with the SIFT
feature to fulfill the pedestrian tracking task in this paper.

Lowe [17] proposed scale-invariant feature trans-
form (SIFT), based on interest points of the object’s local
appearance rather than the size and rotation of the image.
It also has high tolerance for light, noise, and change of
micro-viewing angle. Based on these characteristics, it is
relatively easy to capture objects accurately. With the SIFT
feature, the detection rate of some occluded objects is further
enhanced. Meanwhile, SIFT only requires three or more
features to calculate the target position and orientation. With
the development of computer hardware, SIFT can identify
features in real time. With a large amount of feature infor-
mation, SIFT is suitable for rapid and accurate matching in a
massive image database.

Apart from these considerations, the background often
contains many noise points when we try to match the fea-
tures of a pedestrian using SIFT. To eliminate these noise
points, we propose to implement full convolutional net-
work (FCN) [19] image semantic segmentation. An FCN
can judge whether a pixel belongs to a pedestrian, whereas
a convolutional neural network (CNN) can only detect a
rectangular region. In other words, an FCN can identify a
pedestrian according to his shape while CNN cannot. Based
on the idea in [19], this paper will construct a FCN based on
the VGG-16 [20].

III. THE TARGET TRACKING FRAMWORK
In order to solve these various occlusion problems, a pedes-
trian tracking framework, shown in Figure 1, is proposed and
studied in this paper. This framework has two major steps:
first, pedestrian candidate region detection, and second, target
representation and target matching. These will be studied in
Section 3.B and 3.C, respectively.

FIGURE 1. Main procedures of the proposed framework.

A. PROCEDURES OF PEDESTRIAN TRACKING FRAMWORK
Let us first present the overall process of the proposed
pedestrian tracking framework. For each frame in the video,
we propose to use the pre-trained Faster RCNN model to
detect all pedestrians. Then, we select, in the first frame,
the target most similar to the initial color histogram of the
tracking target. For the following frames, the color histogram
is used to represent all candidate targets and calculate sim-
ilarity thresholds between the candidate and target models.
The candidate target with the greatest similarity to the target
model is used as the tracking target and updated with the
target model.

If the maximum value of the color histogram sim-
ilarity comparison is below the similarity threshold,
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FIGURE 2. The flowchart of the framework.

the representation of the target is changed to the SIFT feature
method. The target model is input into the FCN network
to remove the background of the target model. After the
new target model is obtained, the SIFT features of the new
target model and all the candidate targets are calculated.
The flowchart of the framework is shown in Figure 2. The
pseudocode of the framework is shown in Table 1.

B. TARGET CANDIDATE REGION DETECTION
For the proposed pedestrian tracking framework, the first
step is to locate the pedestrian’s position accurately and
quickly. As such, in Line 4 of the pseudocode in Table 1,
the regional proposal network (RPN) of faster R-CNN is
employed to generate the proposed area for each image.
However, the accuracy of faster R-CNN detection [16] is
not high when a pedestrian is partially or fully occluded.
To tackle this problem,we propose to expand our training data
with Caltech Pedestrian Dataset [43] (Figure 3) to enable our
tracker to recognize partially blocked persons. The pedestrian
detection model proposed in this paper includes four stages,
which are shown in Figure 4.

Figure 4 describes the four stages of the proposed process
of pedestrian detection model based on faster R-CNN.

In the 1st stage, a deep convolution network is used to
extract the features of the regional proposals. The details

TABLE 1. Tracking framework pseudocode.

are illustrated in Figure 5. VGG-16 models [20] are used
as feature extractor for RPN and region of interest (RoI)
Pooling layer. VGG-16 [20] uses several consecutive 3 × 3
convolution kernels instead of the larger convolution kernels
in AlexNet [44] (11 × 11, 7 × 7, 5 × 5). For a given
receptive field (the local size of the input picture associated
with the output), stacked small convolution kernels are better
than large convolution kernels because multiple layers of
nonlinear layers can increase network depth to ensure more
learning accuracy. Meanwhile, its cost is still small and has
fewer parameters. As such, three 3 × 3 convolution kernels
are used in VGG-16 instead of the 7× 7 convolution kernels.
Also, two 3× 3 convolution kernels are used instead of 5× 5
convolution kernels.
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TABLE 2. Detection results on 30 pedestrian sequences of VOT2016-2018. The hardware configuration is Intel I7 4.2 GHz (4 cores) CPU, 16GB RAM and
NVIDIA GeForce GTX 1080Ti GPU with memory of 11 GB.

FIGURE 3. The solid green boxes denote the full pedestrian extent while
the dashed yellow boxes denote the visible regions. The Caltech
Pedestrian Dataset consists of approximately 10 hours of 640× 480 30Hz
video taken from a vehicle driving through regular traffic in an urban
environment. About 250,000 frames (in 137 approximately minute long
segments) with a total of 350,000 bounding boxes and 2300 unique
pedestrians were annotated. The annotation includes temporal
correspondence between bounding boxes and detailed occlusion labels.

In the 2nd stage, the regional proposal network (RPN) is
used to generate the proposed area for each image. RPN uses
pre-trained convolution neural networks (CNNs) to segment
images. It requires an image of any size as input and outputs
multiple rectangular area proposals. Due to the high flexibil-
ity of the CNN, there is no need to use similar behavior class
objects to generate specialized regional proposals. Figure 4
shows the specific structure of the RPN network. It can be
seen that the RPN network is divided into 2 components.
The upper one is used to calculate the bounding box regres-
sion offset for the anchors. The lower one uses softmax to
classify whether the anchors belong to the foreground or the
background to obtain the precise proposal. The final proposal
layer is responsible for synthesizing foreground anchors and
bounding box traction offsets to acquire proposals, rejecting
proposals that are too small and out of bounds.

In the 3rd stage, RoI pooling layer is responsible for col-
lecting the proposal and calculating the proposal feature maps
for delivery to the subsequent network which first maps the
feature map into each region proposal so that the features are
in the same location of the feature map. Then, it uses max
pooling to transform this portion of the feature map into a
small region of interest of size 7×7. The RoI is a rectangular
window with four-tuple (x, y, w, h) which denotes the top left

corner, width and height. Each h×w region proposal is max
pooled using a sub-window of size approximately h/7×w/7.
The RoI layer is also a special case of a SPPNet [25] which
has only one level. The RoI is mapped to a fixed-sized vector
using two networks, and this is input to classification layer to
obtain the final confidence scores and refined bounding box
coordinates.

In the 4th stage, the classification layer uses the adopted
feature maps from RoI Pooling layer to determine whether
each proposal is a pedestrian through the full connect layer
and softmax, and outputs a probability vector, at the same
time, using the bounding box regression to obtain the position
offset of each proposal, and finally obtain a more accurate
pedestrian detection box.

To test the feasibility of this proposed framework,
30 Pedestrian Sequences of Visual Object tracking bench-
mark (VOT) 2016-2018 [45] are tested. The measurements
are detection Average Precision (AP) and frame per sec-
ond (FPS). From Table 2 we can observe that our pedestrian
detector maintains the highest AP value while FPS can reach
the real-time requirement.

C. TARGET REPRESENTATION AND MATCHING
In a visual tracker, target representation is a major com-
ponent. A number of algorithms [26] have been proposed,
such as global templates (raw gray scale values) [27]–[31],
color histograms, Scale-invariant feature transforms (SIFT),
HOGs [32], and covariance region descriptors. Of these
approaches, the color histogram approach is fast and easy
to implement but less accurate when there are environment
changes: light, blocking, etc. In contrast, SIFT is a little
slower but more accurate and shows good resistance to these
environmental changes.

As such, in Line 9-11 of the pseudocode in Table 1, we first
propose an improved form of color histogram to represent the
target. The main advantage of the color histogram is that it
has faster than real-time calculation speed. SIFT is used as
a second choice because of its robust accuracy and real-time
performance. The details are as follows.

1) COLOR HISTOGRAM MATCHING
In this paper, we convert all the images to the same size of
256 ∗ 256 pixels. Then, we calculate the similarity of the
pictures’ RGB channels. The average value of these three
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FIGURE 4. The process of pedestrian detection model based on faster R-CNN.

FIGURE 5. Red box represents convolution operation. Blue box and green
box are Max Pooling and Relu operations, respectively. There are
13 convolution layers and 4 Max Pooling layers. The input image is
resized to 448∗448, resulting in a 512-level 28∗28 size feature maps.

similarities is used as the final similarity of the compared
images.

Although the traditional color similarity calculation meth-
ods [18], [40], [41] are useful, their discrimination rates are
not high. We carried out several experiments with the video
sequences in OTB-50 [33] and found that the main difference
between the histograms of the image is the peak segment of
the histogram, shown in Figure 6. Therefore, we hypothesize
that we can compute the similarity of the peaks in order to
discriminate between different persons.

To test this hypothesis, this paper proposes a new similar-
ity calculation method: compute the mean RGB value (the

FIGURE 6. Comparison of color histograms of two images. The horizontal
axis is the RGB brightness, ranging from 0 to 255. The vertical axis is the
number of pixels that possess a certain RGB value in an image. (a) shows
two different people in the same frame. (b) shows the same person in
two frames.

FIGURE 7. The effects of feature matching in different locations with
various thresholds. C and F are correct and false matching rate,
respectively. (b) ratio = 0.3, C = 0.62, F = 0.15. (c) ratio = 0.4, C = 0.82,
F = 0.17. (d) ratio = 0.5, C = 0.83, F = 0.21. (e) ratio = 0.6, C = 0.83,
F = 0.35. (f) ratio = 0.8, C = 0.84, F = 0.52.

yellow line in Figure 6) and only consider the peak values
higher than this average value. Then, calculate the similar-
ity of each peak segment value and their average similarity
value. To compute the similarity of a RGB channel, we first
normalize the pixel values, then use Equation (1) to calculate
the color histogram similarity of people i and j in image
frame m:

Sim,jm =
1
N

N∑
n=1

 1
o′n − on

o
′

n∑
k=on

1−

∣∣∣Ck
im − C

k
jm

∣∣∣
Max

(
Ck
im ,C

k
jm

)


(1)
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FIGURE 8. Removing the background matching points with FCN can generate more detection accuracy with SIFT. The two leftmost images (of different
persons) might have the same SIFT key points because their backgrounds are similar. SIFT might confuse the target and the background noise. The upper
images show that we only need to mask the background of the target. Then, SIFT will not find similar noise points in the upper and lower images.

FIGURE 9. The structure of the full convolution network.

where, Sim,jm ∈ [0, 1], Ck
im and Ck

jm are the color histogram
pixel values of persons i and j in frame m. k is the index of
RGB brightness. N is the number of peaks, o

′

n− on(on < o
′

n)
is the interval of RGB brightness (horizontal axis of Figure 6)
for each peak higher than the mean RGB value.

Moreover, to measure the performance of the similarity
calculation method, a metric of degree of differentiation D
is designed in Equation (2), whereM is the number of frames
in the video sequence, and Pm is the total number of people
in image frame m. The numerator of D is the similarity of
the target in two adjacent frames minus the mean similarity
between the target and other non-targets in the same frame;
the denominator of D is the similarity of the target in two
adjacent frames.

D =

1
M−1

∑M
m=2

(
Sim,im−1 −

1
Pm−1

∑Pm
j=1,j6=i Sim,jm

)
1

M−1

∑M
m=2 Sim,im−1

(2)

Table 3 compares the traditional method and the pro-
posed method in four groups of experiments (these video
sequences are from OTB-50 [33]). It shows that the method

TABLE 3. The degree of differentiation D (equation 2) between two
methods.

proposed in this paper improves the ability to distinguish the
target.

2) SIFT MATCHING
In lines 22-26 of the pseudocode in Table 1, the color his-
togram is not valid when the above similarity Sim,jm is below
the threshold. We propose to use SIFT to detect the target
pedestrian. The threshold of Sim,jm is denoted by Threim ,
which is proposed to be affected by the number of pixels
and the difference among pedestrians in the image. Therefore,
we think Threim is not a fixed value. As such, we design
Equation (4) to compute Threim of person i in framem. If there
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TABLE 4. Correct matching rate and False matching rate of OTB-50 (Video 1, 4, 8, 5 that have occluded persons).

is only one person in the first frame, we set the threshold
to 0. If there are more than two persons, we use the maxi-
mum of set Lm (Equation 3), the second largest value of Lm
(SubMax (Lm)), and a parameter λ to calculate the threshold
for the next tracking step.

Lm =
(
Sim,1m , Sim,2m · ··, Sim,jm

)
, (i 6= j) (3)

Threim =


0, |Lm| = 1

(Max (Lm)− SubMax (Lm)) ∗ λ
+SubMax (Lm) , |Lm|> 1

(4)

In order to eliminate the key points which have no match-
ing relationship due to image occlusion and background
confusion, the SIFT matching method compares the nearest
and second nearest neighbor distances. All key points have
some nearest neighbor in the key point database. A key
point match is considered positive when the ratio between
its Euclidian distance and the distance of the second nearest
neighbor is greater than a certain threshold T and the pair is
matched.

Although Lowe [17] recommends this threshold ratio
is 0.8, our experiments on correct matching rate and false
matching rate of OTB-50 (videos 1, 4, 8, 5 that have occluded
persons) show that, after a large number of matches between
two pictures with arbitrary scale, rotation, and brightness
changes, the best ratio for detecting a target pedestrian is
between 0.4 and 0.6. As shown in Table 4, a ratio smaller
than 0.4 will reduce the correct matching point and produce
few successful matches. A ratio greater than 0.6 leads to a
large number of falsematches. For instance, Figure 7 a) shows
all the constant invariant feature points of the same person in
different positions in the video.

In this paper, SIFT feature matching is used to find
pedestrians after occlusion. As this detection requires high
accuracy, we take ratio = 0.4. To enhance the real-time
performance of SIFT, this paper uses the binary file provided
by the open source toolkit VLFeat [42] to calculate the SIFT
features of the image.

In the process of feature matching, we think that the
background of the target persons is characterized by noise
points, as shown in Figure 8. We only want to match the
feature points on the target pedestrian. Therefore, we propose
to employ full convolutional network (FCN)-based seman-
tic image segmentation to remove the background noise.

FIGURE 10. Visualization of the target representation in the traditional
trackers (lower row) and our method (upper row).

Our effect is better than that achieved in [38], which used
low- level feature video processing algorithms to extract the
shot boundaries from a video scene and to identify domi-
nant colors within these boundaries. As shown in Figure 8,
we combine the result of the input of the target model in the
FCN with the original image to eliminate the background.
The comparison between the left and right graphs shows
that our method can remove the influence of the background
feature points.

VGG-16 is commonly used in object classification, but
it cannot be used to detect the background and extract the
foreground. To tackle this, we develop a full convolution
network based on the VGG-16 network [20], which is a
designed convolutional neural network (CNN). In this CNN
structure, the first five layers are convolutions. The 6th and
7th layers are one-dimensional vectors of length 4096. The
8th layer is a one-dimensional vector of length 2—the target
person and the background, respectively corresponding to the
probability of a section of the image being either a pedestrian
or part of the background.

Then, a convolution kernel of (4096, 1, 1), (4096, 1, 1),
(2, 1, 1) is employed to transform the 6-8th layers into con-
volution layers.

Next, as shown in Figure 9, the original image is con-
voluted and pooled to 1/2, 1/4, . . . , 1/32 after conv1-5 and
pool1-5. The image is reduced to 1/32 after the fifth con-
volution operation, conv5 and pool5. This produces a heat
map, labeled ‘Conv 7’ in Figure 9. Now, we implement an
up-sampling operation of this heat map, i.e., a de-convolution
operation. This operation is iterated to restore the features in
the original image, as Figure 9 shows.
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TABLE 5. Video sequence attribute description.

FIGURE 11. Comparison of the proposed frame and five existing tracking algorithms, based on CLE. Horizontal axis is the
sequence number of the video frame. Vertical axis is central location error (CLE). (a) simple scene, (b) blurred body (no
occlusion), (c) jogging 1 (occlusion), (d) jogging 2 (occlusion), (e) full occlusion, (f) partial occlusion, (g) pedestrian occlusion,
(h) multi-pedestrian occlusion.

3) TARGET REPRESENTATION AND UPDATE STRATEGY
Moreover, in traditional trackers, the model set consists of
a sequence of consecutive samples. This introduces large
redundancies due to slow change in appearance, while pre-
vious aspects of the appearance are forgotten. This can cause
over-fitting to recent samples. To overcome this shortcoming,
we collect the target representation as a mixture of Gaussian
components, where each component represents a different
aspect of the target appearance, shown in Figure 10. This
approach yields a compact yet diverse representation of the

data, thereby reducing the risk of losing target, when the
target appears after long-term occlusion.

IV. EXPERIMENTS
In this section, the tracking framework proposed in this
paper is compared with state-of-the-art tracking algorithms.
Our tracking target is a pedestrian who is partially or fully
occluded by another object or person. Occluded pedestrian
videos are not common in benchmarks. As such, some videos
used in our experiment are from benchmark OTB-50 [33],
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FIGURE 12. Precision plots for the 8 videos. The horizontal axis is the tracking center position offset threshold, in pixels. The
vertical axis is the tracking accuracy. For the results, only pixel distance below 50 is tracked.

and some were recorded by us following the rules of this
benchmark. These videos include typical occlusion situa-
tions, such as simple, unobstructed scenes, lens jitter, full
occlusion, partial occlusion, occlusion by the crowd, and
occlusion by a single pedestrian. The properties of the videos
are shown in Table 5, and their serial numbers correspond to
the sequences in Figures 11, 12, 13, and 15.

Our framework is tested on Intel 7 4.2GHz (4 cores) CPU,
16GB RAM and NVIDIA GTX 1080Ti GPU with memory
of 11 GB.

In Figure 11, using the metric central location error (CLE),
we compare our framework with five state-of-the-art tracking
algorithms, namely OCT-KCF [12], KCF [11], CSK [23],
CT [21], and STC [22].We can observe that the CLE of these
methods is almost the same in the simple scene, with a value
around 50 pixels. The OCT-KCF algorithm [12] performs
better in the case of (b), blurred body with no occlusion.
Note that all five algorithms lose the target if it is blocked.
In contrast, the proposed framework can always detect the tar-
get pedestrian after occlusion. For example, in the pedestrian
occlusion scenario of Figure 11 (g), the target is blocked from

frame 63 and the approach of this paper is able to redetect the
target at frame 73, while other algorithms cannot. The reasons
are as follows. First, Faster R-CNN can find all possible tar-
get candidates. Second, our model, combined with the FCN
network, extracts the pedestrian information and excludes
background noise. This is why our target can be found even
after long-term occlusion, as shown in Figure 11 (e), i.e., the
5th video of Figure 11, where a pedestrian is fully occluded
by a stone pillar with a width of 1.1m.

To fully analyze the performance of the algorithm,
Figure 12 shows the precision of the proposed algorithm and
other algorithms for tracking different sequences. It can be
seen that this framework is similar to other algorithms in
a simple scene without occlusion, but is clearly superior in
scenes with occlusion. In the case of Figure 12 (b), lens jitter,
the accuracy of the OCT-KCF algorithm is higher because the
video pixels from the tracking benchmark are too low, which
is not suitable for the SIFT feature matching module in our
framework.

This paper adopts the success rate evaluation method
proposed in [33]. Results are shown in Figure 13.
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FIGURE 13. Success plots for the 8 videos. Horizontal axis is the intersection ratio S between the target rectangle and the ideal
calibration rectangle. Vertical axis is the success rate of tracking, and the curve indicates that the crossings of all the detection
targets are greater than the ratio of the different thresholds to the total number of frames.

TABLE 6. Speed comparisons with state-of-the-art trackers.

The calculation method for the threshold S is formula (5)
(Ri is the tracking rectangle, which represents the ideal rect-
angular box).The red line represents the algorithm in our
paper. The crossings of the different algorithm curves and the
ordinate show the ratio of the target to the whole sequence,
and the area integral of the curve shows the overall success
rate of the tracking algorithm. It can be seen from Figure 12
and Figure 13 that the proposed tracking framework has not
only high tracking accuracy but also a better success rate than
the other tracking algorithms. Moreover, the performance of
our method is tested with 8 video sequences, the results are
shown in Table 6. We can observe that our processing speed
is about 29 FPS, which is slower than the other algorithms

FIGURE 14. Long-term tracking performance. The average tracking
precision-recall curves of VOT2018 long-term benchmark.

because our precision is always higher. However, the perfor-
mance still meets the real-time requirement.

S =
|Ri ∩ R0|
|Ri ∪ R0|

(5)
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FIGURE 15. Illustration of some key frames.

Moreover, the proposed pedestrian tracking framework is
tested with the latest VOT2018 long-term tracking bench-
mark [45]. This benchmark has a total of 20 pedestrian video
sequences. The target of each sequence averagely disappears
12 times (including occlusion), and the target disappears
every 40 frames. As results, the average accuracy and recall
values of these 20 sequences are shown in Figure 14. It is
observed that our framework outperforms other algorithms
in terms of accuracy and recall.

We also show tracking results of key frames of 8 sequences
shown in table 4 in Figure 15. The 1st row is a simple scene;
all the tracking algorithms can achieve good results. The 2nd
row is the situation with lens jitter or a blurred body, in which

the OCT-KCF tracking effect is better because of the very
low resolution of the video. The 3rd to 8th rows are occlusion
situations, in which all existing trackers failed to detect the
blocked targets but the proposed tracking framework can
ensure the occluded target will not be missed after occlusion.

V. CONCLUSION
In this paper, the performance and accuracy of occluded
pedestrian tracking are jointly considered, combining RGB
histograms with SIFT for target representation. Also, a new
method of calculating the similarity of RGB histograms is
proposed. To enhance tracking accuracy, the matching thresh-
old for SIFT is calculated. To further enable accurate SIFT
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feature matching, the full convolutional network method is
utilized to implement image semantic segmentation in back-
ground denoising. Multiple experiments were carried out to
compare our framework with five state-of-the-art tracking
approaches. The results of benchmark OTB-50 and VOT2018
long-term show that our framework achieves better perfor-
mance than most of the existing trackers and is highly effi-
cient in dealing with high-resolution images. On the other
hand, one shortcoming of the proposed framework is that
its accuracy is lowered when dealing with low-resolution
images with fewer SIFT features. To achieve higher tracking
performance, future work might focus on finding a new tar-
get representation method. In addition, we need to improve
the framework of this paper based on other advanced deep
learning methods to address long-term tracking problems.
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