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ABSTRACT Coherent integration of direct-sequence spread-spectrum (DSSS) signals is a commonly
used technique to improve receiver performance. However, this approach is susceptible to the code phase
migration (CPM) andDoppler frequencymigration (DFM) effects resulting from the relativemotion between
transmitter and receiver. In this paper, the CPM and DFM effects are explored and characterized. To evaluate
the CPM effect, a simple analytic expression for the coherent integration results under motions of arbitrary
orders is developed. In addition, the theoretically derived integration loss and time synchronization error
caused by CPM are quantitatively examined. The DFM effect is evaluated under the motions of arbitrary
orders by Fresnel integration and numerical fitting. The obtained closed-form expressions are verified by
simulation and are shown to be useful for the performance analysis and the DSSS receiver design. The
theoretical and the numerical results show that when the amount of CPM is larger than about one code
chip duration, the signal-to-noise ratio gain obtained by coherent integration no longer increases because
of the integration loss caused by CPM. In addition, the integration loss (in decibel units) caused by DFM is
approximately inversely proportional to the square of the time–bandwidth product when the time–bandwidth
product is small, and it is inversely proportional to the logarithm of the time–bandwidth product when this
product is large.

INDEX TERMS Arbitrary motion order, code phase migration, coherent integration, Doppler frequency
migration, direct-sequence spread-spectrum (DSSS), motion effect.

I. INTRODUCTION
Direct-sequence spread-spectrum (DSSS) signals are widely
used in communication systems, in the global naviga-
tion satellite system, and in telemetry, tracking and com-
mand systems, to name just a few examples. Coherent
integration of these signals is commonly used to improve
receiver performance [1]. However, the relative motions
between transceivers may generate Doppler frequencymigra-
tion (DFM) and code phase migration (CPM) [2] during
integration, leading to integration loss and synchronization
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errors. It is therefore crucial to investigate these effects quan-
titatively and mitigate them. Some resolutions, such as the
ACCF [3] and GRFT [4], have been proposed to solve the
CPM and DFM. In this study, we attempt to analyze their
influence.

The influence of range migration (RM) and DFM has
recently been studied in the context of chirp signals in radar
applications, and some corresponding solutions have been
proposed [5]–[7]; the related issues in DSSS applications
have received less attention.

The RM/CPM effect—the effect of motion on the modu-
lated baseband waveform—results in an envelope migration
of the integration result in the time-delay dimension [8].
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Therefore, the conclusions concerning the RM problem
obtained for chirp signals are not directly applicable to the
CPM problem within the context of DSSS signals. Moreover,
the previous studies on RM in chirp signals [9] considered
only velocity and acceleration, and closed-form expressions
were not provided. Based on the correlation properties of the
pseudo-noise (PN) codes used in DSSS signals, an analytic
expression for the CPM effect as a function of velocity was
obtained in [10].

The DFM effect—which can be regarded as the effect of
motion on the carrier—has a similar expression in both radar
(with chirp signals) and DSSS communication applications,
the difference being the factor of two resulting from the direct
path versus round-trip delay contexts. Therefore, the DFM
results obtained for chirp signals can be applied to DSSS
signals with only a coefficient amendment. In [9], the results
of integration with DFM were modeled as polynomial phase
signals [11]–[14]; the optimal and threshold integration times
were obtained by simulation and numerical fitting, assuming
that the motion components of orders higher than two (accel-
eration) [15] or three (jerk) [16] could be omitted.

All the literature works mentioned above explore the
RM/CPM and DFM effects under lower order motions. The
second-order motion (acceleration) and third-order (jerk)
motions have not been examined adequately. However, it is
necessary to expand this result to higher-order motions in
order to account for increased dynamics, longer integration
times, and super-resolution time-delay estimation demands,
and also, to achieve a comparatively complete theory.

This paper presents a closed-form analytic expression for
the integration of signals affected by CPM under arbitrary-
order motions. The integration loss, time synchronization
error, optimal integration time—from a signal-to-noise-
ratio (SNR) point of view—and threshold integration time—
from a synchronization error point of view—are also exam-
ined. The DFM effects are analyzed using the principle of sta-
tionary phase and numerical analysis. The main contribution
of this paper is the extension to higher-order motion situations
in previously existing integration performance analyses for
the specific cases of second- and third-order motion. In addi-
tion, this study derives generalized equations applicable to
motions of arbitrary order. The derived expressions are veri-
fied through simulation, and can be used to not only evaluate
integration performance but also guide motion order config-
uration of the received signal and optimize receiver design.

The remainder of this paper is organized as follows. The
signal model is introduced in Section II, and the CPM and
DFM effects are analyzed in Sections III and IV, respectively.
Section V presents some numerical results to validate the
analytical work. Finally, conclusions are drawn in Section VI.

II. SIGNAL MODEL
To speed up the acquisition of DSSS signals with large
uncertainty in theDoppler dimension, a partial matched filter-
fast Fourier transform (FFT) architecture is generally used,
in which the received digital baseband DSSS signal must be

segmented. Let us assume that the inter-segment and intra-
segment indices are denoted by k(k = 0, 1, 2, . . . ,K − 1)
and n (n = 0, 1, . . . ,N − 1), respectively; the intra-segment
sampling times are therefore Tn = nTs, and the segment
starting time instants are Tk = kNTs, where Ts denotes the
sampling interval. The received baseband signal can therefore
be expressed as

x (Tn + Tk)

= A× D [Tn + Tk − τ (n, k)]C [Tn + Tk − τ (n, k)]

× exp [−j2π f0τ (n, k)]+ w (Tn + Tk) , (1)

where A and f0 denote the amplitude and carrier frequency,
respectively;D(t),C(t), andw(t) represent the data, PN code,
and additive white Gaussian noise component, respectively;
τ (n, k) is the instantaneous transmitting delay. As is cus-
tomary, the CPM and high-order DFM within the segment
duration is omitted, because NTs is relatively small [3].
Then (1) can be expressed as

x (Tn + Tk) = A× D [Tn + Tk − τ (k)]C [Tn + Tk − τ (k)]

× exp [−j2π f0τ (k)] exp (−j2π f0a1Tn)

+w (Tn + Tk) , (2)

τ (k) is the degenerated instantaneous transmitting delay that
can be expressed as

τ (k) =
r (k)
c
= τ0 +

∞∑
i=1

ai
i!
(Tk)i, (3)

where r(k) denotes the instantaneous range between transmit-
ter and receiver, which is modeled as a polynomial function
in terms of motion parameters [3], c is the velocity of light,
τ0 denotes the initial time delay (corresponding to the initial
range), and

∑
∞

i=1 ai (Tk)
i/i! denotes the time delay caused by

CPM. Herein, i denotes the motion order, and ai denotes the
corresponding motion parameter normalized by c; in particu-
lar, a1 and a2 denote the normalized velocity and acceleration,
respectively.

Denoting the candidate estimates of the initial time delay
by τ , the local replica is then

z (Tn + Tk) = C (Tn + Tk − τ) . (4)

Therefore, the coherent integration results can be derived as

R (τ, f )=
K−1∑
k=0

[
N−1∑
n=0

x (Tn+Tk) z∗ (Tn+Tk)

]
exp (−j2π fTk)

=

K−1∑
k=0

AN × Rc

[
τ−

∞∑
i=0

ai
i!
(Tk)i

]
Rf (f )+w′ (τ, f ) ,

(5)

where ∗ is the conjugate operator, and w′ denotes the inte-
grated noise component. In this paper, only the effect of
motion is analyzed; therefore, the data component is always
assumed to be 1, i.e., the data sign transition within the inte-
gration period are assumed to have been eliminated [17], [18].
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Rc and Rf are the normalized correlations of the segmented
code and carrier component, respectively, and are defined as

Rc

[
τ −

∞∑
i=0

ai
i!
(Tk)i

]

=
1
N

N−1∑
n=0

{
C [Tn + Tk − τ (k)]C∗ (Tn + Tk − τ)

}
, (6)

and

Rf (f ) = exp [−j2π f0τ (k)] exp (−j2π fTk)

×
1
N

N−1∑
n=0

exp (−j2π f0a1Tn)

= exp (−jπ f0a1TN ) sin c (π f0a1TN )

× exp [−j2π f0τ (k)] exp (−j2π fTk) , (7)

where sin c (x) = sin (x)/x.
According to the integration results, Rc (τ ) and Rf (f ) are

two separate entities, which allows CPM and DFM to be
discussed separately. The integrated motion effect can be
analyzed by simply multiplying these values.

Considering only the signal component and the effect of
CPM, the coherent integration results can be rewritten as

Ic (τ ) =
1
K

K−1∑
k=0

Rc

[
τ − τ0 −

∞∑
i=1

ai
i!
(Tk)i

]
, (8)

where Rc (τ ) is 1 − |τ |/Tc if |τ | ≤ Tc, and 0 otherwise,
Tc being the code chip duration. Therefore, if ai ≡ 0 for
i = 1, 2, . . . ,∞, Rc can reach its maximum value at the same
τ for all k . In this case, the maximum value of Ic (τ ) is 1;
otherwise, Ic (τ ) will be less than 1, and an integration loss
will occur because of CPM. Furthermore, when τ − τ0 =∑
∞

i=1 ai (Tk)
i/i!, Rc reaches its maximum segmental value,

and the segmental estimation error of the initial time delay
may lead to an overall estimation error that exceeds the time-
delay resolution (i.e., half the sampling interval). Therefore,
a time synchronization error will occur because of CPM.

In (7), exp (−jπ f0a1TN ) is a phase item which will not
bring about any integration loss; sin c (π f0a1TN ) represents
the integration loss caused by the first-order DFM within
the segment duration, which has been well examined by
many literatures. Therefore, only the effect of the remaining
part, i.e., exp [−j2π f0τ (k)] exp (−j2π fTk), will be analyzed
in this paper. Considering only the signal component, the
coherent integration results corresponding to the remaining
effect of DFM can be rewritten as

If (f ) =
1
K

K−1∑
k=0

{
exp

[
−j2π

∞∑
i=1

ai
i!
f0 (Tk)i

]
exp (−j2π fTk)

}
.

(9)

Therefore, if ai ≡ 0 for i = 2, . . . ,∞, Rf can reach its
maximum value at the same f for all k . In this case, the
maximum value of If (f ) is 1; otherwise, If (f ) will be less
than 1, and an integration loss will occur because of DFM.

Furthermore, when f + a1f0 = −
∑
∞

i=2 aif0 (Tk)
i−1/i!, Rf

reaches itsmaximum segmental value, and the segmental esti-
mation error of the initial Doppler frequency may lead to an
overall estimation error that exceeds the Doppler frequency
resolution (i.e., half the value of 1/TK ). Therefore, a fre-
quency synchronization error will occur because of DFM.

Based on the signal model presented above, this paper
divides the motion effect issue into two aspects—the CPM
effects and the DFM effects—and discusses them separately
in the following two sections, as shown in Fig. 1.

FIGURE 1. Diagram of the proposed solutions to the analysis of motion
effects consisting of CPM and DFM effects.

It is worth noting that the CPM and DFM effects are
determined by all the motion parameters, whose directions
may be diverse and cannot be pre-determined in practice; this
makes it difficult to obtain a closed-form solution to the inte-
gration according to the Descartes’ rule of signs. However,
as a compromise solution, the CPM and DFM effects can be
decomposed according to the individual motion orders, and
then analyzed separately for each of those orders. Doing this
is valuable because the single-order motion analyses provide
bounds for the combined-order motion cases. In addition,
the effect of the combined-order motion sometimes approx-
imates the sum of the effects of each motion order taken
separately. Furthermore, this approach provides guidance
for motion order configuration when modeling a specific
received signal, as well as for the selection and evaluation
of the dynamic focus algorithm (see Section V.D). Analyzing
each order of motion individually is similar to what is done
in many motion estimation and compensation methods [3],
[4], in which the motions are treated successively. Therefore,
in the following two sections, the integration results are cal-
culated for each motion parameter separately.

III. CODE PHASE MIGRATION EFFECTS
In this section, the code phase migration effects are theoreti-
cally derived.

Assuming that all motion parameters other than ai are
compensated, (8) can be simplified to

S (τ ) =
1
K

K−1∑
k=0

Rc
[
δτ −

ai
i!
(Tk)i

]
, (10)

where δτ stands for τ−τ0−
∑
∞

l=1,l 6=i δal (Tk)
l/l!. Herein δal

is the residual motion parameter, which—for simplicity—is
assumed to be zero in the following derivations.
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A. CLOSED-FORM EXPRESSION FOR THE
INTEGRATION RESULTS
To obtain a closed-form expression of (10), a geometric
approach is proposed. The code correlation function is an
isosceles triangle within a limited delay range; all the K code
segment correlations can be aligned to form a prism bended
along the k-axis because of the time-varying CPM [see
Fig. 2(a)]. The integration result in (10) can then be identi-
fied with the area of the shadowed cross section represented
in Fig. 2(a), which is a slice corresponding to a given δτ .

FIGURE 2. Geometric representation of the integration affected by CPM.
(a) 3D image. (b) Planform of the correlation prism.

The maximum delay increment caused by CPM (labeled
as 1τ in Fig. 2) is ai (TK )i/i!. According to the value of 1τ ,
the computation of (10) may be divided into three cases.
Case 1 (0 ≤ 1τ < Tc):
The integration is a piecewise function of δτ , which can

be divided into six sections, according to the intersection
points marked by dots in Fig. 2(b)—the planform of Fig. 2(a).
Five of these sections are illustrated in Fig. 3; the remaining
section corresponds to the slices located outside the bended
prism, i.e., {δτ | δτ > 1τ + Tc or δτ < −Tc}.
The upper and lower integration limits in (10) can be

obtained according to the range of δτ . The corresponding
integration results can be written as (see Appendix A for the
mathematical derivation of these results)

S (δτ ) =



i (Tc + δτ)1+1/i

(i+ 1)Tc1τ 1/i
, − Tc ≤ δτ < 1τ − Tc

1−
1τ − (i+ 1) δτ
(i+ 1)Tc

, 1τ − Tc ≤ δτ < 0

1+
δτ

Tc
−

2i (δτ )1+1/i +1τ 1+1/i

(i+ 1)Tc1τ 1/i
,

0 ≤ δτ < 1τ

1−
δτ

Tc
+

1τ

(i+ 1)Tc
, 1τ ≤ δτ < Tc

1−
δτ

Tc
+
i (δτ − Tc)1+1/i +1τ 1+1/i

(i+ 1)1τ 1/i
,

Tc ≤ δτ ≤ 1τ + Tc
0, others.

(11)

The integration results can be similarly obtained for the
other ranges of 1τ , i.e., Tc ≤ 1τ ≤ 2Tc and 1τ ≥ 2Tc,
as presented below; the only difference lies in the variation
of the relative position of the intersection points, as shown
in Figs. 4(a) and 4(b).

Case 2 (Tc ≤ 1τ < 2Tc):

S (δτ )

=



i (Tc + δτ)1+1/i

(i+ 1)Tc1τ 1/i
, −Tc ≤ δτ < 0

i (Tc + δτ)1+1/i − 2i (δτ )1+1/i

(i+ 1)Tc1τ 1/i
,

0 ≤ δτ < 1τ − Tc

1+
δτ

Tc
−

2i (δτ )1+1/i +1τ 1+1/i

(i+ 1)Tc1τ 1/i
,

1τ−Tc ≤ δτ < Tc

1+
δτ

Tc
−

2i (δτ )1+1/i +1τ 1+1/i − i (δτ − Tc)1+1/i

(i+ 1)Tc1τ 1/i
,

Tc ≤ δτ < 1τ

1−
δτ

Tc
+
1τ 1+1/i + i (δτ − Tc)1+1/i

(i+ 1)Tc1τ 1/i
,

1τ ≤ δτ ≤ 1τ + Tc
0, others.

(12)

Case 3 (1τ ≥ 2Tc):

S (δτ )

=



i (Tc + δτ)1+1/i

(i+ 1)Tc1τ 1/i
, −Tc ≤ δτ < 0

i (Tc + δτ)1+1/i − 2i (δτ )1+1/i

(i+ 1)Tc1τ 1/i
,

0 ≤ δτ < Tc
i (Tc + δτ)1+1/i + i (δτ − Tc)1+1/i − 2i (δτ )1+1/i

(i+ 1)Tc1τ 1/i
,

Tc ≤ δτ < 1τ − Tc

1+
δτ

Tc
−

2i (δτ )1+1/i +1τ 1+1/i − i (δτ − Tc)1+1/i

(i+ 1)Tc1τ 1/i
,

1τ − Tc ≤ δτ < 1τ

1−
δτ

Tc
+
1τ 1+1/i + i (δτ − Tc)1+1/i

(i+ 1)Tc1τ 1/i
,

1τ ≤ δτ ≤ 1τ + Tc
0, others.

(13)

Based on these results, the CPM effects—such as integration
loss and synchronization error—are examined next.

B. INTEGRATION LOSS
The integration loss η (the ratio of the integrated signal pow-
ers with and without CPM influence) is obtained by searching
for the maximum value of |S (δτ )|2, i.e.,

η = max
δτ

{
|S (δτ )|2

}

=



(
1−

1− 2−i

i+ 1
1τ

Tc

)2
, 0 ≤ 1τ <

Tc
1− 2−i i

i+ 1

[
Tc(

1− 2−i
)
1τ

]1/i2

, 1τ ≥
Tc

1− 2−i
.

(14)
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FIGURE 3. Planform of the correlation prism when 0 ≤ 1τ < Tc (which provides a comprehensive approach
to obtain the upper-lower limit and integrand function of the integration). (a) −Tc ≤ δτ < 1τ − Tc .
(b) 1τ − Tc ≤ δτ < 0. (c) 0 ≤ δτ < 1τ . (d) 1τ ≤ δτ < Tc . (e) Tc ≤ δτ ≤ 1τ + Tc .

FIGURE 4. Planform of the correlation prism (which provides a
comprehensive approach to obtain the upper-lower limit and integrand
function of the integration). (a) Tc ≤ 1τ ≤ 2Tc . (b) 1τ ≥ 2Tc .

The solution to this maximization problem was obtained
by setting the derivatives of S (δτ ) to zero; additionally,
when b ≤ a and 0 < c < 1, (a+ b)c + (a− b)c ≤
2ac was used. The detailed derivations are presented in
Appendix B.

C. SNR GAIN AND OPTIMAL INTEGRATION TIME
The SNR gain G is the product of the integration loss and the
ideal SNR gain Gideal , which can be denoted as

Gideal = BinTK , (15)

Bin being the input signal’s bandwidth and TK the integration
time. Therefore,

G = ηGideal

=



BinTK

(
1−

1− 2−i

i+ 1
aiT iK
i!Tc

)2
, 0 ≤ 1τ <

Tc
1− 2−i

Bin
TK

 i
i+ 1

[
i!Tc(

1− 2−i
)
ai

]1/i2

,

1τ ≥
Tc

1− 2−i
.

(16)

Herein, 1τ = ai (TK )i/i! is used in the derivations.
The maximum SNR gain and the corresponding optimal

integration time can be found to be

Gopt = Bin

(
2i

1+ 2i

)2
[

(i+ 1) i!Tc(
1− 2−i

)
(1+ 2i) ai

]1/i
, (17)

Topt =

[
(i+ 1) i!Tc(

1− 2−i
)
(1+ 2i) ai

]1/i
. (18)

The value of Topt places a restriction on the maxi-
mum integration time that can be used in the presence
of CPM.

D. SYNCHRONIZATION ERROR AND THRESHOLD
INTEGRATION TIME
As mentioned above, CPM leads to time synchronization
errors (denoted by ετ ). This error can be obtained as the
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argument that maximizes S (δτ ), i.e.,

ετ = argmax
δτ

{
|S (δτ )|2

}

=


1τ

2i
, 0 ≤ 1τ ≤

Tc
1− 2−i

Tc
2i − 1

, 1τ ≥
Tc

1− 2−i
and i > 1

[Tc,1τ − Tc] , 1τ ≥ 2Tc and i = 1.

(19)

This shows that when 1τ ≤ Tc/
(
1− 2−i

)
, ετ increases

linearly with 1τ , and stabilizes for 1τ ≥ Tc/
(
1− 2−i

)
if

i > 1; when 1τ ≥ 2Tc and i = 1, ετ is randomly distributed
within [Tc ,1τ − Tc]. For fixed ai, 1τ is a monotonic
function of the integration time; therefore, the threshold inte-
gration time, defined as the integration time corresponding to
1τ = Tc/

(
1− 2−i

)
, is given by

Tth =
(

i!
1− 2−i

Tc
ai

)1/i
. (20)

The sign of1τ determines only the direction of the band of
the prism mentioned above; therefore, when 1τ is negative,
η (1τ) = η (−1τ), G (1τ) = G (−1τ), and ετ (1τ) =
−ετ (−1τ).

IV. DOPPLER FREQUENCY MIGRATION EFFECTS
In this section, the Doppler frequency migration effects are
studied using a Fresnel-integral-based approach in the large
time-bandwidth product case, and numerical analysis in the
small time-bandwidth product case.

Assuming that all motion parameters other than ai are
compensated, (9) can be simplified to

Sf (f ) =
1
K

K−1∑
k=0

{
exp

[
−j2π

ai
i!
f0 (Tk)i

]
exp (−j2π fTk)

}
.

(21)

Given that the integration time is TK , the signal bandwidth
is

B =
ai

(i− 1)!
f0 (TK )i−1. (22)

When the signal’s time-bandwidth product is large enough,
(21) can be regarded as a Fresnel integral [19], which can be
solved using the principle of stationary phase [20]; in all other
cases, it must be numerically solved [21].

A. LARGE TIME-BANDWIDTH PRODUCT CONDITIONS
According to the principle of stationary phase, when the
signal time-bandwidth product is large enough (BTK � 1)
we can obtain the stationary point T ∗k as follows

T ∗k =
[
−
(i− 1)!
ai

f
f0

]1/(i−1)
U
(
−
f
ai

)
, (23)

where U (·) is the unit step function, i.e., U (x) = 1 if x ≥ 0
and 0 otherwise. Herein, function U (·) ensures that T ∗k is the

only solution for the physical significance of the equation in
which the phase of (21) equals zero.

In these conditions, (21) can be rewritten as

Sf (f )

= U
(
−
f
ai

)
1
TK

∣∣∣∣∣(i− 1) f
[
−
(i− 1)!
ai

f
f0

]−1/(i−1)∣∣∣∣∣
−1/2

× rect

(
1
TK

[
−
(i− 1)!
ai

f
f0

]1/(i−1))

× exp

{
−j2π

{
ai
i!
f0

[
−
(i− 1)!
ai

f
f0

]i/(i−1)
+ f

[
−
(i− 1)!
ai

f
f0

]1/(i−1)}}

= U
(
−
f
ai

)[
(i− 1)B1/(i−1)TK |f |

i−2
i−1

]−1/2
× rect

[
(|f |/B)1/(i−1)

]
× exp

{
−j2π

(
i− 1
i

B−1/(i−1)TK |f |
1
i−1 f

)}
. (24)

where rect(·) is a rectangle window function, i.e., rect(x) = 1
if 0 ≤ x ≤ 1, and rect(x) = 0 otherwise.
Maximizing Sf (f ) in the f domain, we obtain the DFM

integration loss in large time-bandwidth product situations:

η = max
{[
(i− 1)B1/(i−1)TK |f |

i−2
i−1

]−1/2
× rect

[
(|f |/B)1/(i−1)

] }2
= max

 rect
[
(|f |/B)1/(i−1)

][
(i− 1)B1/(i−1)TK |f |

i−2
i−1

]
 . (25)

Therefore, when i = 2, η = 1/(BTK ) and the maximum is
obtained at |f | ≤ B/2, which indicates that the correlation
results in second-order motion situations are multi–peaked
in the f domain. When i > 2, η are impulse functions and
the maximum occurs at f = 0. According to the conducted
numerical simulations, η can then be expressed as

η = (BTK )−2/i . (26)

It is noteworthy to point out that the value of η for i = 2 is
also in good agreement with (26).

The corresponding integration gain can be derived as

GSNR = ηGideal =
BinTK
(BTK )i/2

= Bin
T (1−i/2)K

Bi/2
, BTK � 1.

(27)

The larger the time-bandwidth product is, the larger the
spectral range diffuses, and the worse the integration per-
formance becomes. Therefore, the optimal integration gain
and optimal integration time appear in small time-bandwidth
product conditions.
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B. SMALL TIME-BANDWIDTH PRODUCT CONDITIONS
When the signal’s time-bandwidth product is small, the inte-
gration performance must be numerically determined, using
computer simulations [9], [21]. The obtained numerical sim-
ulation results indicate that the integration performance with
DFM is related to the motion order, even if the motion order is
higher than three. Therefore, the performance analysis results
can be extended from the previously analyzed second [10]
and third [16] order cases to higher-order motion situations;
a generalized fitting formula to do so is deduced and proved
in this section. In contrast with the other order motion con-
ditions, the second-order DFM amount behaves linearly with
the integration time. This leads to a multi-peaked integration
result in the frequency domain when the integration time is
longer than a certain threshold. Therefore, the DFM effect of
second-order motion is analyzed separately.

1) SECOND-ORDER MOTION DFM EFFECT
The optimal integration gain and corresponding optimal
integration time are [10]

GSNR,opt = 1.14
Bin
√
|a2| f0

, (BTK )opt = 2.2 (28)

Topt =

√
(BTK )opt
|a2| f0

=

√
2.2
|a2| f0

. (29)

When the integration time is longer than a certain threshold
value, the integration result has multiple peaks in the fre-
quency domain, which impairs signal detection. This thresh-
old integration time can be expressed as

Tth =

√
(BTK )th
|a2| f0

=

√
5.1
|a2| f0

. (30)

2) ARBITRARY-ORDER MOTION DFM EFFECT
In the case of arbitrary-order motion, the obtained numerical
simulation results show that the maximum SNR gain has a
relationship with the motion order that can be written as

GSNR,opt (i) = CG
i

Bin
(|ai| f0)1/i

, (31)

where CG
i is a constant related to the motion order.

Combining the second-order motion into this result, the fit-
ting formula for CG

i is

CG
i =

{
1.14, i = 2

10
(
−0.04i2+1.2i−2.13

)
/10, i ≥ 3.

(32)

The corresponding optimal integration time is

Topt = CT
i (|ai| f0)

−1/i , (33)

where constant CT
i can also be obtained by numerical fitting,

resulting in CT
i = 10(0.55i+0.556)/10.

The SNR gain after integration reaches its peak value
when the integration time is Topt . Once the integration time
reaches Topt , raising the integration time further does not
improve the integration gain; however, the computational

load still increases. When the integration time is lower
than Topt , the integration loss and frequency synchronization
error are monotonic functions of the integration time for a
given motion parameter, and therefore can be analyzed by
numerical fitting.

The integration loss (in decibel units) fitting equation is

η (dB) = − (BTK )2
(
i−1 − Cηi

)
. (34)

The fitting values obtained for Cηi are Cη2 = 0.253,
Cη3 = 0.08, and Cηi = 0.064 for i > 3. The results for
the different motion parameters are almost coincident, and
therefore the integration loss is independent of aif0.
The frequency synchronization error fitting equation is∣∣εf (i)∣∣ = C f 1

i (|ai| f0)1/i (BTK )C
f 2
i . (35)

The fitting values obtained for C f 1
i and C f 2

i are C f 1
i =

1.7i−2 + 0.2i−1 − 0.03 and C f 2
i = 0.07i+ 0.5, respectively.

V. NUMERICAL RESULTS
In this section, the derived formulas are verified by numer-
ical simulations. The CPM and DFM effect components are
evaluated separately.

A. NUMERICAL EVALUATION OF THE CPM EFFECT
Numerical simulations were conducted to evaluate the inte-
gration performance in the presence of CPM, and thus verify
the expressions derived above. A 1023 bit C/A code with a
code rate of 1.023 Mcps was selected as PN code. TN was
50 µs (which is short enough to ignore the intra-segment
CPM effect), TK ranged from 0.1 s to 3 s, and the corre-
sponding CPM could reach 2.25 chips. The motion param-
eters were selected to comply with TK = 3 s and 1τ =
2.25 chips, i.e., ai = i!1τ/(TK )i = i!2.25/

(
1.023× 106

)
/3i;

N = 16384, which was high enough to allow the evaluation
of the synchronization error with motion of orders up to
seven. The initial time delay of the simulated received sig-
nal was randomly selected, and the subsequent results were
obtained with one hundred Monte Carlo runs.

1) INTEGRATION LOSS
Fig. 5 shows the integration loss caused by CPM; in this
figure’s legend, ‘‘Theo’’ and ‘‘Sim’’ stand for ‘‘Theoreti-
cal’’ and ‘‘Simulation,’’ respectively. The different orders of
motion are represented by dotted lines with different markers.
They all coincide with the theoretical results obtained by (14),
represented by solid lines. As shown, the integration loss
increased with 1τ and decreased with the order of motion.

2) SNR GAIN AND OPTIMAL INTEGRATION TIME
The SNR gain is shown in Fig. 6 as a function of CPM. The
ideal and maximum gains are shown with dashed and dashed-
dotted lines, (‘‘Ideal’’ and ‘‘Opt’’ in the legend, respectively).
As shown, the actual SNR gain is always below the ideal
value, and decreases with decreasing motion order for a
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FIGURE 5. Integration loss versus CPM.

FIGURE 6. SNR gain versus CPM.

given1τ . In addition, the SNR gain reaches its optimal value
when 1τ = aiT iopt/i!, i = 1, 2, 3, 5, 7 (which correspond to
the dotted vertical lines, from right to left).

3) TIME SYNCHRONIZATION ERROR AND THRESHOLD TIME
Fig. 7 illustrates the time synchronization error as a function
of CPM. The dotted vertical lines in this figure correspond
(from left to right) to the threshold integration times 1τ ≥
aiT ith/i! (i = 7, 5, 3, 2, 1), respectively. As shown, the time
synchronization error initially increases with 1τ , and then
stabilizes when 1τ ≥ aiT ith/i! and i > 1, which agrees
well with (19). The shadowed area is the range of ετ when
1τ ≥ a1Tth and i = 1. In addition, when the motion order is

FIGURE 7. Time synchronization error versus CPM.

higher than three, the largest synchronization error is less than
Tc/5, which is in general sufficient to meet the acquisition
requirements, and can therefore be neglected.

B. NUMERICAL EVALUATION OF THE DFM EFFECT
Numerical simulations were conducted to evaluate the inte-
gration performance in the presence of DFM, and thus verify
the expressions derived above. In these simulations, the sam-
pling rate was set to 1 MHz, and the FFT algorithm was used
to achieve coherent accumulation with Doppler frequency
search. To mitigate the picket fence effect, the time sequences
were zero-padded to four times their original length before
performing the FFT. To simulate large time-bandwidth prod-
uct conditions, BTK ranged from 10 to 105, with TK = 0.1 s;
in small time-bandwidth product conditions, the normalized
motion parameter aif0 ranged from 102 to 104, with f0 =
1.575 GHz. The respective motion parameters for different
motion orders (i.e., ai) were determined.

1) LARGE TIME-BANDWIDTH PRODUCT CONDITIONS
Fig. 8 illustrates the integration loss caused by DFM in large
time-bandwidth product conditions. The simulation results
obtained for different motion orders are represented by dot-
ted lines with different markers. They all coincide with the
theoretical results obtained with (26), which are represented
by solid lines. As shown in this figure, the integration loss
increases with BTK and decreases with the order of motion.

FIGURE 8. Integration loss caused by DFM in large time-bandwidth
product conditions.

2) SMALL TIME-BANDWIDTH PRODUCT CONDITIONS
Simulations were also carried out to test the fitting equations
presented above for the case of small time-bandwidth product
conditions. The simulation results are shown in Figs. 9 to 11.
In these figures the legend entry ‘‘Fit’’ stands for the numer-
ical fitting case.

Fig. 9 shows the behavior of the optimal SNR gain with
DFM in small time-bandwidth product conditions. As shown,
the optimal SNR decreases linearly as 10 log10 (aif0)
increases, which agrees well with (31).

Fig. 10 shows the integration loss caused by DFM in
small time-bandwidth product conditions. As shown, the inte-
gration loss increases with the time-bandwidth product and
decreases with the order of motion, which agrees with (34).
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FIGURE 9. Optimal SNR gain with DFM in small time-bandwidth product
conditions.

FIGURE 10. Integration loss caused by DFM in small time-bandwidth
product conditions.

The frequency synchronization error caused by DFM is
related to ai f0. As an illustrative example, the frequency
synchronization error when 10 log10 (aif0) = 20 is examined
in Fig. 11. As shown, the frequency synchronization error
increases with the time-bandwidth product, which agrees
with (35).

FIGURE 11. Frequency synchronization error caused by DFM when
10 log10

(
ai f0

)
= 20.

The derivatives of η and ετ /εf show that, for the same
CPM/DFM, the higher the motion order, the smaller the
integration loss and synchronization error, which agrees well
with the simulation results. It can therefore be concluded that
the CPM/DFM effects are mainly dictated by the lower-order
motions, which validates the finite order approximation using

the Weierstrass approximation principle [8]. This behavior
provides theoretical guidance for integration performance
analysis in the presence of CPM/DFM, for motion order
configuration when modeling the received signal, and for
selection and evaluation of the dynamic focus algorithm. The
latter two functions are illustrated in the next subsection.

C. NUMERICAL RESULTS IN SPECIFIC CONDITIONS
To sum up the above analyses, we conducted a quantitative
effect analysis for each order motion and particular integra-
tion times.

The modulated PN code and carrier frequency were set as
above, and integration times of 0.1 and 1 s were used. The
motion parameter values corresponding to an integration loss
of 1 dB are shown in Table 1.

TABLE 1. Motion parameter values for 1 dB integration loss.

Table 1 illustrates the fact that, when the integration time
is 0.1 s, only when the acceleration exceeds 25.51 km/s2

or the jerk exceeds 756.9 m/s3 will the effect of CPM and
DFM cause a 1 dB integration loss. However, these motion
values are not verified in practical situations. Therefore,
the influence on integration performance of the CPM related
to second-order motion and above, and of the DFM related
to third-order motion and above can be neglected in this
case. In other words, only the first-order CPM and second-
order DFM need to be considered. Therefore, a second-order
motion model can satisfy the motion modeling requirements,
and the corresponding dynamic focus algorithm is sufficient.

When the integration time is 1 s, only when the accelera-
tion exceeds 255.1 m/s2 or the jerk exceeds 0.757 m/s3 will
the effect of CPM and DFM cause a 1 dB integration loss.
In this case, the first- and second-order CPM effects, and the
second- and third-order DFM effects are relevant and must
be considered. Therefore, in this case, a signal model with
third-order motion and a dynamic focus algorithm suitable
for third-order motion models should be used.

As seen from the above discussion, the performance anal-
ysis proposed in this paper provides theoretical guidance for
motion order configuration when modeling specific received
signals, as well as for selection and evaluation of the dynamic
focus algorithm.

VI. CONCLUSION
This paper presented closed-form analytic expressions for
the integration of DSSS signals with CPM, and numerically
fitted equations for the integration performance in the pres-
ence of DFM. The CPM and DFM effects were analyzed in
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terms of integration loss, synchronization error, SNR gain,
and optimal integration time. The main contribution of this
paper was the extension to higher-order motion situations
of the integration performance analyses previously existing
for the specific cases of second- and third-order motion, and
the derivation of generalized equations applicable to motions
of arbitrary order. All derivations were verified by simulation.
This study provides guidance formotion order selectionwhen
modeling the received DSSS signals and, in general, to the
receiver design process. It can also be used to evaluate both
the performance of integration methods in the presence of
CPM/DFM and that of CPM/DFM mitigation methods. The
effect of pulse shaping will be addressed in a further study.

APPENDIX A
PROOF OF (11)
The summation is a discrete expression of the integral.
Therefore, for analytical simplification, it is replaced by an
integral operation in the following derivations. We will take
Case 1 (0 ≤ 1τ ≤ Tc) as an example herein. The integral
is a piecewise function of δτ , which can be divided into six
sections according to the intersection points marked by the
dots in Fig. 3.

A. SECTION 1: −Tc ≤ δτ < 1τ − Tc

When −Tc ≤ δτ < 1τ − Tc, the cross section is located in
the region labeled ¬ in Fig. 3(a), and the upper integration
limit (denoted by Tk_u) can be obtained by

δτ −
ai
i!

(
Tk_u

)i
= −Tc. (A.1)

Therefore, we obtain the upper limit Tk_u=[(Tc+δτ) i!
/
ai]1/i=[

(Tc + δτ)
/
1τ
]1/i TK , and the integral becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

=
1
TK

∫ Tk_u

0

{
1+

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

=
i (Tc + δτ)

i+1
i

(i+ 1)Tc (1τ)
1
i

. (A.2)

The relationship 1τ = ai (TK )i
/
i! has been used in the

derivation.

B. SECTION 2: 1τ − Tc ≤ δτ < 0
When 1τ − Tc ≤ δτ < 0, the cross section is located in the
region labeled ­ in Fig. 3(b), and the integral becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

=
1
TK

∫ TK

0

{
1+

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

= 1+ [(i+ 1) δτ −1τ ]
/
[(i+ 1)Tc]. (A.3)

C. SECTION 3: 0 ≤ δτ < 1τ

When 0 ≤ δτ < 1τ , the cross section is located in the region
labeled® in Fig. 3(c), and the integration limit corresponding
to the peak of the correlation function (denoted by Tk_p) can
be obtained by

δτ −
ai
i!

(
Tk_p

)i
= 0. (A.4)

Therefore, we obtain Tk_p =
(
i!δτ

/
ai
)1/i
=
(
δτ
/
1τ
)1/i TK ,

and the integral becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

=
1
TK

∫ Tk_p

0

{
1−

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

+
1
TK

∫ TK

Tk_p

{
1+

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

= 1−
2i (δτ )

i+1
i + (1τ)

i+1
i − (i+ 1) δτ (1τ)

1
i

(i+ 1)Tc (1τ)
1
i

.

(A.5)

D. SECTION 4: 1τ ≤ δτ < Tc

When 1τ ≤ δτ < Tc, the cross section is located in the
region labeled ¯ in Fig. 3(d), and the integral becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

=
1
TK

∫ TK

0

{
1−

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

= 1+ [1τ − (i+ 1) δτ ]
/
[(i+ 1)Tc]. (A.6)

E. SECTION 5: Tc ≤ δτ ≤ 1τ + Tc

When Tc ≤ δτ ≤ 1τ +Tc, the cross section is located in the
region labeled ° in Fig. 3(e), and the lower integration limit
(denoted by Tk_l) can be obtained by

δτ −
ai
i!

(
Tk_l

)i
= Tc. (A.7)

Therefore, we obtain the lower limit Tk_l=
[
(δτ−Tc) i!

/
ai
]1/i
=[

(δτ − Tc)
/
1τ
]1/i TK , and the integral becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

=
1
TK

∫ TK

Tk_l

{
1−

[
δτ −

ai
i!
(Tk)i

]/
Tc
}
dTk

= 1+
i (δτ − Tc)

i+1
i + (1τ)

i+1
i − (i+ 1) δτ (1τ)

1
i

(i+ 1)Tc (1τ)
1
i

(A.8)

F. SECTION 6: δτ > 1τ + Tc or δτ < −Tc

Finally, when δτ > 1τ + Tc or δτ < −Tc, the cross
section is located in the region labeled ±, and the integral
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becomes

S (δτ ) =
1
TK

∫ TK

0
Rc
[
δτ −

ai
i!
(Tk)i

]
dTk

= 0. (A.9)

Summarizing, the results of the integration are

S (δτ )

=



i (Tc + δτ)
i+1
i

(i+ 1)Tc (1τ)
1
i

, −Tc ≤ δτ < 1τ − Tc

1−
1τ − (i+ 1) δτ
(i+ 1)Tc

, 1τ − Tc ≤ δτ < 0

1−
2i (δτ )

i+1
i + (1τ)

i+1
i − (i+ 1) δτ (1τ)

1
i

(i+ 1)Tc (1τ)
1
i

,

0 ≤ δτ < 1τ

1+
1τ − (i+ 1) δτ
(i+ 1)Tc

, 1τ ≤ δτ < Tc

1+
i (δτ − Tc)

i+1
i + (1τ)

i+1
i − (i+ 1) δτ (1τ)

1
i

(i+ 1)Tc (1τ)
1
i

,

Tc ≤ δτ ≤ 1τ + Tc
0, others.

(A.10)

APPENDIX B
PROOF OF (14)–(19)
To obtain the maximum S (δτ ) presented in (25), we first
examine the derivatives of S (δτ ).
Case 1 (0 ≤ 1τ < Tc):
When 0 ≤ 1τ < Tc, the derivative of the integration result

with respect to δτ is given by

∂ S (δτ )
∂ δτ

=



(Tc + δτ)
1
i

Tc (1τ)
1
i

> 0, −Tc ≤ δτ < 1τ − Tc

1
Tc
> 0, 1τ − Tc ≤ δτ < 0

−2 (δτ )
1
i + (1τ)

1
i

Tc (1τ)
1
i

, 0 ≤ δτ < 1τ

−
1
Tc
< 0, 1τ ≤ δτ < Tc

− (1τ)
1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

≤
(1τ)

1
i − (1τ)

1
i

Tc (1τ)
1
i

= 0,

Tc ≤ δτ ≤ 1τ + Tc
0, others.

(B.1)

Therefore, S (δτ ) first increases with δτ when δτ < 0, and
then decreases with δτ when δτ ≥ 1τ . Furthermore, when
0 ≤ δτ < 1τ , the derivative of S (δτ ) is a monotoni-
cally decreasing function of δτ and crosses zero. Therefore,
the maximum of S (δτ ) is located at the zero crossing point
within the region 0 ≤ δτ < 1τ . Setting the derivatives of

S (δτ ) in this region to zero, we can obtain the zero crossing
point as follows:

−2 (δτ )
1
i + (1τ)

1
i

Tc (1τ)
1
i

= 0

0 ≤ δτ < 1τ

⇒ δτ =
1τ

2i
. (B.2)

The maximum value of S (δτ ) in this case therefore
becomes

S
(
1τ

2i

)
= 1−

1− 2−i

i+ 1
1τ

Tc
(B.3)

The integration loss and synchronization error can there-
fore be found to be

η = max
δτ

{
|S (δτ )|2

}
=

(
1−

1− 2−i

i+ 1
1τ

Tc

)2

(B.4)

and

ετ = argmax
δτ

{
|S (δτ )|2

}
=
1τ

2i
. (B.5)

Case 2 (Tc ≤ 1τ < 2Tc):
When Tc ≤ 1τ < 2Tc, the derivative of the integration

result with respect to δτ is given by

∂ S (δτ )
∂ δτ

=



(Tc + δτ)
1
i

Tc (1τ)
1
i

≥ 0, −Tc ≤ δτ < 0

(Tc + δτ)
1
i − 2 (δτ )

1
i

Tc (1τ)
1
i

, 0 ≤ δτ < 1τ − Tc

−2 (δτ )
1
i + (1τ)

1
i

Tc (1τ)
1
i

, 1τ − Tc ≤ δτ < Tc

−2 (δτ )
1
i + (1τ)

1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

,

Tc ≤ δτ < 1τ

− (1τ)
1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

≤
− (1τ)

1
i + (1τ)

1
i

Tc (1τ)
1
i

= 0,

1τ ≤ δτ ≤ 1τ + Tc
0, others.

(B.6)

In this case, three distinct sections shall be discussed in detail.

A. SECTION 4: Tc ≤ δτ < 1τ

When Tc ≤ δτ < 1τ , we can obtain 1τ < 2Tc ≤ Tc + δτ .
In addition, because Tc

/
δτ ≤ 1, using a Taylor expansion for

i > 1 we obtain

(Tc + δτ)
1
i + (δτ − Tc)

1
i

= (δτ )
1
i

[(
1+

Tc
δτ

) 1
i

+

(
1−

Tc
δτ

) 1
i
]
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= (δτ )
1
i

[
1+

1
i

(
Tc
δτ

)
+

1
2!

1
i

(
1
i
− 1

)(
Tc
δτ

)2

+
1
3!

1
i

(
1
i
− 1

)(
1
i
− 2

)(
Tc
δτ

)3

+
1
4!

1
i

(
1
i
− 1

)(
1
i
− 2

)(
1
i
− 3

)(
Tc
δτ

)4

+ . . .

+ 1−
1
i

(
Tc
δτ

)
+

1
2!

1
i

(
1
i
− 1

)(
Tc
δτ

)2

−
1
3!
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)(
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< 2 (δτ )

1
i . (B.7)

If i = 1, we can obtain −2 (δτ )
1
i + (1τ)

1
i + (δτ − Tc)

1
i

= −δτ + 1τ − Tc < 0. Therefore, as stated in (B.6),
∂ S(δτ )
∂ δτ

∣∣∣
Tc≤δτ<1τ

≤
−2(δτ )

1
i +(Tc+δτ)

1
i +(δτ−Tc)

1
i

Tc(1τ)
1
i

< 0.

B. SECTION 3: 1τ − Tc ≤ δτ < Tc

When1τ − Tc ≤ δτ < Tc, the sign of the derivative is given
by

sign

{
−2 (δτ )

1
i + (1τ)

1
i

Tc (1τ)
1
i

}
= sign

{
−2 (δτ )

1
i + (1τ)

1
i

}
= sign

{
−2i (δτ )+1τ

}
,

(B.8)

where sign{x} denotes the sign of x. Since 1τ − Tc ≤ δτ <
Tc, we have−2i (δτ )+1τ ≤ −2i (1τ − Tc)+1τ = 2iTc−(
2i − 1

)
1τ . If 1τ ≥ Tc

/(
1− 2−i

)
, the derivative is always

negative within this region. Therefore, the maximum value
is S (1τ − Tc). If 1τ < Tc

/(
1− 2−i

)
, the derivative is a

monotonically decreasing function of δτ and crosses zero; the
maximum value of S (δτ ) will then be given by

S
(
1τ

2i

)
= 1−

1− 2−i

i+ 1
1τ

Tc
. (B.9)

C. SECTION 2: 0 ≤ δτ < 1τ − Tc

When 0 ≤ δτ < 1τ − Tc, the sign of the derivative is given
by

sign

{
(Tc + δτ)

1
i − 2 (δτ )

1
i

Tc (1τ)
1
i

}
= sign

{
(Tc + δτ)

1
i − 2 (δτ )

1
i

}

= sign
{
(Tc + δτ)− 2iδτ

}
= sign

{
Tc −

(
2i − 1

)
δτ
}
. (B.10)

Given that 0 ≤ δτ < 1τ − Tc, we have that Tc −(
2i − 1

)
δτ > Tc−

(
2i − 1

)
(1τ − Tc) = 2iTc−

(
2i − 1

)
1τ .

If 1τ < Tc/
(
1− 2−i

)
, the derivative is always posi-

tive within this region. Therefore, the maximum value is
S (1τ − Tc). If 1τ ≥ Tc/

(
1− 2−i

)
and 0 ≤ δτ <

Tc
/(

2i − 1
)
, the derivative is positive; therefore, if 1τ ≥

Tc/
(
1− 2−i

)
and the derivative is non-positive, 0 ≤ δτ <

1τ − Tc and the maximum value of S (δτ ) is

S
(

Tc
2i − 1

)
=

i
i+ 1

[
Tc(

1− 2−i
)
1τ

] 1
i

. (B.11)

Consequently, the maximum value of S (δτ ) is a piecewise
function of 1τ that can be expressed as

max {S (δτ )}

=



S
(
1τ

2i

)
= 1−

1− 2−i

i+ 1
1τ

Tc
, Tc ≤ 1τ <

Tc
1− 2−i

S
(

Tc
2i − 1

)
=

i
i+ 1

[
Tc(

1− 2−i
)
1τ

]1
i
,

Tc
1−2−i

≤ 1τ < 2Tc.

(B.12)

The integration loss and synchronization error can then be
found to be

η = max
δτ

{
|S (δτ )|2

}

=



(
1−

1− 2−i

i+ 1
1τ

Tc

)2

, Tc ≤ 1τ <
Tc

1− 2−i i
i+ 1

[
Tc(

1− 2−i
)
1τ

] 1
i


2

,
Tc

1− 2−i
≤ 1τ < 2Tc

(B.13)

and

ετ = argmax
δτ

{
|S (δτ )|2

}

=


1τ

2i
, Tc ≤ 1τ <

Tc
1− 2−i

Tc
2i − 1

,
Tc

1− 2−i
≤ 1τ < 2Tc.

(B.14)

Case 3 (1τ ≥ 2Tc):
When 1τ ≥ 2Tc, the derivative of the integration result

with respect to δτ is given by

∂ S (δτ )
∂ δτ
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=



(Tc + δτ)
1
i

Tc (1τ)
1
i

≥ 0, − Tc ≤ δτ < 0

(Tc + δτ)
1
i − 2 (δτ )

1
i

Tc (1τ)
1
i

, 0 ≤ δτ < Tc

(Tc + δτ)
1
i + (δτ − Tc)

1
i − 2 (δτ )

1
i

Tc (1τ)
1
i

,

Tc ≤ δτ < 1τ − Tc
−2 (δτ )

1
i + (1τ)

1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

≤
−2 (δτ )

1
i + (Tc + δτ)

1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

≤ 0,

1τ − Tc ≤ δτ < 1τ

− (1τ)
1
i + (δτ − Tc)

1
i

Tc (1τ)
1
i

≤
− (1τ)

1
i + (1τc)

1
i

Tc (1τ)
1
i

= 0,

1τ ≤ δτ ≤ 1τ + Tc
0, others.

(B.15)

In this case, two distinct sections shall be discussed in
detail.

D. SECTION 2: 0 ≤ δτ < Tc

As stated in Case 2, Section 2, when1τ ≥ 2Tc the derivative
is first positive (when 0 ≤ δτ < Tc/

(
2i − 1

)
), and then non-

positive (when Tc/
(
2i − 1

)
≤ δτ < 1τ − Tc). Therefore,

the maximum value of S (δτ ) is

S
(

Tc
2i − 1

)
=

i
i+ 1

[
Tc(

1− 2−i
)
1τ

] 1
i

. (B.16)

E. SECTION 3: Tc ≤ δτ < 1τ − Tc

As stated in Case 2, Section 4, when i > 1 a Taylor expan-
sion shows that the derivative is always negative. If i = 1,
we have that −2 (δτ )

1
i + (δτ + Tc)

1
i + (δτ − Tc)

1
i = 0, and

the derivative is therefore zero. Consequently, the maximum
value of S (δτ ) is

max {S (δτ )} =
i

i+ 1

[
Tc(

1− 2−i
)
1τ

] 1
i

. (B.17)

The integration loss and synchronization error can
therefore be found to be

η = max
δτ

{
|S (δτ )|2

}
=

 i
i+ 1

[
Tc(

1− 2−i
)
1τ

] 1
i


2

(B.18)

and

ετ = argmax
δτ

{
|S (δτ )|2

}
=


Tc

2i − 1
, i > 1

[Tc,1τ − Tc] , i = 1.
(B.19)

Combining (B.4), (B.13), and (B.18), the integration loss
can be obtained as

η = max
δτ

{
|S (δτ )|2

}

=



(
1−

1− 2−i

i+ 1
1τ

Tc

)2

, 0 ≤ 1τ <
Tc

1−2−i i
i+ 1

[
Tc(

1− 2−i
)
1τ

]1/i2

, 1τ ≥
Tc

1− 2−i
.

(B.20)

Similarly, the synchronization error can be obtained by
combining (B.5), (B.14), and (B.19), resulting in

ετ = argmax
δτ

{
|S (δτ )|2

}

=


1τ

2i
, 0 ≤ 1τ <

Tc
1− 2−i

Tc
2i − 1

, 1τ ≥
Tc

1− 2−i
and i > 1

[Tc,1τ − Tc] , 1τ ≥ 2Tc and i = 1.

(B.21)
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