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ABSTRACT Bolt-loosening can cause poor running quality of trains, even resulting in terrible accidents.
Currently, existing bolt-loosening detection methods for running trains need 3D data of the whole train
body, extremely decreasing the efficiency of fault detection. In this paper, we propose a fast bolt-loosening
detection method for the running train’s key components based on binocular vision. Since a train generally
consists of many cars with the same structure, the position distribution of train’s key components is regular
and periodic. First, we propose a novel method to detect key component regions including bolts, taking
full advantage of this periodic distribution rule. Second, the sub-pixel edges of the bolt cap and mounting
surface in the localized regions are extracted and segmented, respectively, combining with the convolutional
neural network (CNN). Finally, based on stereo matching and the binocular vision model, the 3D data of
these edges are obtained to calculate the distance between the bolt cap and mounting surface. By comparing
the calculated distance with the reference value, we can judge whether bolt-loosening has occurred. The
experimental results indicate that multi-bolt looseness can be calculated simultaneously. The measurement
repeatability and precision are superior to 0.03 and 0.08 mm, respectively, and the relative error is less
than 1.42%.

INDEX TERMS Binocular stereo vision, bolt loosening, convolutional neural network, edge extraction.

I. INTRODUCTION
Faults of running trains can be generally divided into two cat-
egories: visible faults and hidden faults. Visible faults mainly
include missing [1], [2], displacement [3] and deformation
of larger parts. Hidden faults consist of various gradual
faults, such as loose wire breakage, anti-loose mark ectopic
and bolt-loosening [4]. Since bolt is an important compo-
nent of the structural support, bolt-loosening without timely
maintenance may bring about security risk. For example,
brake power and transmission force would result in bolt’s
absence or breaking, causing serious traffic accidents. There-
fore, it is necessary to develop a fast bolt-loosening detection
method, for the safety of running trains.

At present, manual inspection based on Trouble of Run-
ning Freight Train Detection System (TFDS) [5], [6] is
still the prevailing method for fault detection of running
trains. TFDS captures key components’ images of the running
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train firstly. And then, inspectors indoor determine whether
faults exist by observing the images, consuming a lot of
time and manpower. Aiming to avoid disadvantages of
manual inspection, some methods based on features of
2D images [7]–[12] were introduced. Although these
approaches could recognize certain visible faults, it cannot
detect bolt-loosening due to lack of depth information.

In other fields, such as aerospace structure [13] and civil
structure [14], several vision-based methods have been pro-
posed to detect bolt-loosening. Kong and Lin [15] detected
bolt loosening of steel joints, by eliminating misalignments
between two images collected during different inspection
periods. However, slight changes of lighting conditions and
camera poses would have negative effect on the performance
of bolt-loosening detection. For bridge system, Cha et al.
first used the Hough transform and other image processing
techniques to obtain simple damage-sensitive features. And
then a liner support vector machine (LSVM) was trained to
differentiate tight bolts from loose bolts [16]. Ramana et al.
first used the Cascade detector to localize all bolts on images.
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FIGURE 1. Principle of the bolt-loosening detection.

Then a LSVM is trained to separate loosened and tight struc-
tural bolts, by feeding into the bolt head dimensions and
exposed shank length features [17]. Since bolt head dimen-
sions and exposed shank length are calculated in 2D image
plane rather than 3D space, the calculated values will be dif-
ferent once the angle and distance of the camera are changed.
Namely, these methods can only detect distinctively-
loosened bolts in condition of limited camera angles and
distances [16], [17]. Compared with the static structure
(such as bridge system and steel joints), trains have more
complex structures and higher running speed. Therefore,
adopting these methods above directly to detect bolt-
loosening for running trains is not practical.

Recently, some inspection equipment manufacturers
focused on the exploratory study about 3D detection of
hidden faults such as bolt-loosening [18], [19]. They cus-
tomized 3D vision sensors to obtain 3D data by scanning the
whole train body, completing the fault recognition directly
through 3D information. However, on one hand, these 3D data
contain lots of useless information, extremely reducing the
detection efficiency. On the other hand, since the train run-
ning isn’t a rigorous one-dimensional motion, the collected
3D data would carry larger errors. In our previous work [20],
we firstly localized target regions by a CNN-based target
detectionmodel. Then stereomatching and 3D reconstruction
were performed to detect bolt-loosening faults. However, this
method cannot judge whether a bolt region is omitted, laying
a potential risk to the safety of running trains.

On basis of our previous work [20], a novel bolt-loosening
detection method is proposed in this paper. When the train
wheels pass the magnetic steels, the binocular stereo vision
sensor is triggered to collect image sequence. Since a train
generally consists of many cars with same structure, the

position distribution of key component regions in the image
sequence has a periodicity.With the periodic distribution rule,
the current detection method has significant improvement
over the previously proposed: 1) The omission rates of key
components including bolts are reduced; 2) All undetected
regions are outputted as suspected visible fault regions to
guarantee the safety of running trains. Afterwards, the edges
of bolt caps and mounting surface in the localized regions
are extracted and segmented based on CNN. Then, stereo
matching and 3D reconstruction is performed to obtain the
3D data of segmented edges. Finally, the calculated distance
between the bolt cap and the mounting surface is compared
with its reference distance to determine whether the bolts are
loose or not, thus increasing the efficiency of bolt-loosening
detection.

The rest of this paper is organized as follows: section II
is an overview of our proposed method; the key methods
involved are elaborated in section III; in section IV, the mea-
surement system is described and the experimental results
of bolt-loosening are given; finally, section V concludes this
paper.

II. OVERVIEW OF THE BOLT-LOOSENING DETECTION
METHOD
As shown in Fig. 1, our method is composed of two main
modules: images acquisition and 3D detection of faults.
The images acquisition module is designed to collect image
sequence of running trains. When the train is passing,
the binocular stereo vision sensor is triggered to acquire the
left and right images of key components, which are sent to
the 3D detection module at once.

The 3D detection module is used to measure bolts’
looseness. Three key tasks are involved in this module:
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FIGURE 2. The train structure and its wheelbase distribution. The car, part and component are in yellow, green, red box, separately.

(i) key component regions detection, (ii) edge extraction and
segmentation, and (iii) stereo matching and 3D reconstruc-
tion. Each task is a sub-task of the next. Correspondingly,
three key methods are proposed as follows:

1)KEYCOMPONENTREGIONSDETECTIONMETHOD
BASED ON THE PERIODIC DISTRIBUTION RULE

This method is proposed to detect key component regions
including bolts and to output all undetected regions as sus-
pected visible fault regions.

2)EDGE EXTRACTION AND SEGMENTATION
This method uses a ‘‘coarse-to-fine’’ scheme to extract

sub-pixel edges of bolt caps and their mounting surface in
the localized regions, then segments them based on a novel
shape feature descriptor.

3) STEREO MATCHING AND 3D RECONSTRUCTION
This method is introduced to calculate the distance

between bolt caps and their mounting surface, based on
epipolar constraint and binocular vision model. By compar-
ing the calculated distance with reference value, we can judge
whether the bolt is loose.

III. METHOD
A. KEY COMPONENT REGIONS DETECTION METHOD
BASED ON THE PERIODIC DISTRIBUTION RULE
If the bolt-loosening region is failed to be detected, it may
extremely affect the safety of running trains. Therefore, omis-
sion isn’t allowed in the detection task. Combining with
CNN for object detection [21]–[24], a novel detectionmethod
based on the periodic distribution rule is proposed. Taking full
advantage of this rule, the method can output all undetected
regions as suspected visible fault regions while ensuring high
detection recall rates.

1) PERIODIC DISTRIBUTION OF WHEELBASE
In this method, we use the train’s side frame to describe its
structure’s periodic distribution. As shown in Fig. 2, a train is
generally formed of many cars with same structure. And a car
usually consists many parts with various components. For any
car of the train, the position distribution of four wheelbases
satisfies

x (j) = {L1,L3,L1,L2; j = 1, 2, 3, 4} (1)

FIGURE 3. (a) Image acquisition method based on magnetic steel triggers.
(b) The filed size d of the binocular stereo vision sensor. d1 and d2 are the
length and width of the filed size. The filed size d satisfies d = d1 × d2.

where, j indicates the index of the wheelbase. L1 is the
wheelbase of a bogie, L2 is the nearest wheelbase between
two adjacent cars, and L3 is the adjacent wheelbase between
two bogies.

If a train has C cars, the wheelbase distribution x̃ (j) can be
periodically expressed as

x̃ (j) = x ((j))4 0 < j ≤ 4C, j ∈ N+ (2)

2) PERIODIC DISTRIBUTION OF IMAGE SEQUENCE
The image acquisition method mentioned in section II is
based on magnetic steel triggers. As shown in Fig. 3 (a), two
magnetic steels are mounted on the rail side at a distance of s.
When the train wheels pass the triggers, M1 and M2 generate
two pulse signals. One of them triggers the binocular stereo
vision sensor for image acquisition afterwards. According
to the pulse interval t0 and distance s, the train’s running
speed is calculated. Depending on the shooting range d1 in
the running direction (see in Fig. 3 (b)), we can obtain t by
t = d1t0/s.
Therefore, images of the train are sequentially collected

in the running direction with a shooting interval of t .
Fig. 4 shows several images

(
n, m̃, l̃

)
of bogies in different

cars. n and m̃ respectively indicate the car’s numbering and
part’s numbering to which the image belongs. And compo-
nent’s numbering can be determined by l̃ as well.
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FIGURE 4. Images of the first bogie in different cars. Three images in the
first row are different component images in the first car. Images in
the second row are different component images in the
second car.

a: COMPONENTS NUMBERING
Assume that different components in a part are numbered
sequentially from zero. When images of components are
collected in order of their position, their corresponding num-
berings are incremented by adding 1. Therefore, compo-
nents’ numberings in any wheelbase of a car can be given
in Eq. (3). Its maximal numbering lmax depends on the
fixed field size d of the binocular stereo vision sensor
(see in Fig. 3 (b)).
li (k) = {k − 1; k = 1, 2, . . . , (lmax (j)+ 1)} j ∈ [1, 4]

lmax (j) =
⌈
x̃ (j)
d

w
⌉
− 1

(3)

where k is the component index. j indicates the index of the
wheelbase, and w is the width of the train.

The components’ numbering l(k) in a car can be expressed
as

l (k) = l1 (k) ∪ l2 (k) ∪ l3 (k) ∪ l4 (k) (4)

For a train formed of C cars with same structure, the posi-
tion distribution of components is a sequence with periodM .
Its numbering l̃ (k) satisfies:

l̃ (k) = l ((k))M 0 < k ≤ M∗C, k ∈ N+

M =
4∑
i=1

(lmax (i)+ 1)
(5)

b: PARTS NUMBERING
When the numbering of components reaches lmax, the images
of current part have been completely obtained. For the follow-
ing part, images can be acquired subsequently with the part’s
numbering adding by 1, and so on.

There are four wheelbases for any car of the train. The
parts’ numbering m(p) can be expressed as

m (1)=0

m (p+1)=(m (p)+1)∗
(
1− sgn

(
lmax (p)− l̃ (k)

))
+m (p+ 1)∗ sgn

(
lmax (p)− l̃ (k)

)
p ∈ [1, 3] , k ∈ [k1, k2]
k1=(lmax (1)+ 1)∗ sgn (p− 1)

+
lmax (2)+1
(p− 1)!

(p− 1) (p− 2)

k2 = (lmax (1)+ 1)+ (lmax (2)+ 1)∗ sgn (p− 1)

+
lmax (2)+ 1
(p− 1)!

(p− 1) (p− 2)

(6)

where p indicates the index of the part, and sgn(.) is the sign
function.

Similar to the wheelbase, the position distribution of parts
shows periodicity as well. Its period is four. Therefore, its
numbering m̃ (p) can be calculated by:

m̃ (p) = m ((p))4 0 < p ≤ 4C, p ∈ N ∗ (7)

c: CARS NUMBERING
Similarly, the numbering of the car adds by 1 once its parts’
images are completely collected. Therefore, the cars’ num-
bering n(q) satisfies

n (1) = 0
n (q+ 1) = (n (q)+ 1)∗ (1− sgn (3− m̃ (p)))
+n (q+ 1)∗ sgn (3− m̃ (p)) 0 < q < C, p ∈ N+

(8)

Therefore, any image
(
n (q) , m̃ (p) , l̃ (k)

)
can be uniquely

determined by the numbering sequence of cars, parts and
components. Besides, the image sequence

(
n, m̃, l̃

)
has obvi-

ous periodicity.

3) KEY COMPONENT REGIONS DETECTION
In this paper, we design one CNN network architecture to
detect all key component regions of trains. The network archi-
tecture is the same as the detection model introduced in our
previous work [20]. Since the image sequence

(
n, m̃, l̃

)
can

be classified into 4 groups according to the various parts m̃,
we respectively train the network with different kinds of
images. Therefore, we can obtain 4 CNN-based detection
models correspondingly.

Its detection principle is shown in Fig. 5. For any image(
n (q) , m̃ (p) , l̃ (k)

)
inputted at the predicted time, one

detection model is selected depending on the value m̃ (p).
Based on the regression theory [25], a series of 3 × 3 con-
volutional filters have been used to obtain predictions on
six network layers. And then combine the selected detection
model with those predictions. The following method of non-
maximum suppression (NMS) eliminates highly duplicate
detections and generates the final detection.
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FIGURE 5. Principle of key component regions detection. Layers which are used to predict both location and confidences are shown in
orange. And the regions to be detected and the localized regions are in yellow, red boxes, separately.

For each kind of image, the type and total number of key
component regions are fixed. Based on the prior information,
the total number of localized and undetected regions is auto-
matically counted. The undetected regions are finally output
as the suspected visible fault regions.

B. EDGE EXTRACTION AND SEGMENTATION
The method mainly consists of two pieces: edge extraction
and edge segmentation. Edge extraction is to obtain sub-pixel
edges of the localized key component regions. Based on a
novel shape feature descriptor, edge segmentation is applied
to separate edges of bolt caps and the mounting surface from
others.

1) EDGE EXTRACTION
Fine edge extraction is the premise of accurate 3D measure-
ment. In this paper, we adopt a ‘‘coarse-to-fine’’ scheme to
extract sub-pixel edges. First, an CNN-based edge detec-
tion network is established and trained for pixel edge detec-
tion [26]–[29]. Then, edge center points are extracted based
on Hessian Matrix Method proposed by Steger [30], [31].
Thus, we can obtain sub-pixel edges of the localized key
component regions.

a: COARSE EXTRACTION
In this paper, another CNN network architecture is con-
structed to obtain pixel edges. It includes five output layers
and a base network for classification with 5 stages (16 weight
layers) [32], as shown in Fig. 6. The output layers are con-
nected to 5 different layers of the base network respectively.
And each output layer is associated with a classifier. Its object

FIGURE 6. Architecture of the CNN-based edge detection network. The
different convolutional layers in each stage are denoted as
Conv(stage)_(layer). ‘‘Output’’ means the ‘‘output layer’’.

function Loutput (W,w) is defined as

Loutput (W,w) =
5∑

m=1

αml
(m)
output

(
W,w(m)

)
(9)

where parameters of the CNN-based edge detection are
denoted as W. w indicates the weight of each classifier.
αm is scale factor. l(m)output

(
W,w(m)

)
is the class-balanced

cross-entropy loss function proposed in [26], which aims to
offset the heavily imbalance between edge pixels and non-
edge pixels of any inputted image.
And then, parameters W and w are updated via min-

imizing the object function with back propagation algo-
rithm. In this CNN-based network, different output layers
can output different scale edge predictions. In virtue of
continuous inheritance and learning, the accuracy of pre-
diction in deeper layer is no longer lower than the early
prediction.
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FIGURE 7. Schematic diagram of the shape feature descriptor.

Finally, multi-scale edge predictions Ypredict are averaged
to obtain pixel edges.

Ypredict = Average
(
Y 1
output ,Y

2
output , . . . ,Y

5
output

)
(10)

where Y ioutput is the edge prediction in the i-th output layer.

b: FINE EXTRACTION
For line edges, its first directional derivative

(
nx , ny

)
should

vanish and second directional derivative should be a large
absolute value [30]. Especially, the maximum and minimum
values of second derivative correspond to the two eigenvalues
of the Hessian matrix of the 2D image f (x, y). Therefore,
the direction

(
nx , ny

)
can be determined by the eigenvector

corresponding to the eigenvalue of maximum absolute value
of the Hessian matrix.

For any image point (x0, y0), there exists a variable t
satisfying

∂

∂x
f
(
(tnx + x0) ,

(
tny + y0

))
= 0 (11)

If
(
tnx , tny

)
∈ [−0.5, 0.5] × [−0.5, 0.5] and the sec-

ond derivative is larger than the given threshold, point
(tnx + x0) ,

(
tny + y0

)
is declared as an edge center point.

Hence, the sub-pixel edges could be extracted precisely.

2) EDGE SEGMENTATION
In this paper, we design a novel shape feature descriptor R
to separate the sub-pixel edges of bolt caps and the mount-
ing surface from others. The schematic diagram is shown
in Fig. 7, which is given by

R = sgn
(
ri
/
rc −
√
3α
/
2
)
A0 (12)

where ri and rc are the radius of the edge region’s inscribed
circle and circumscribed circle respectively. A0 indicates the
region’s area.

When the radius ratio ri/rc roughly equals to 0.866,
the edge region is a regular pentagon hexagon. In this paper,
we denote R ≥ 0 to indicate the region belongs to bolt cap,
otherwise R < 0. Because outer hexagon bolts are generally
used for trains’ structural support, the scale factor α is set
to 0.94.

C. STEREO MATCHING AND 3D RECONSTRUCTION
1) STEREO MATCHING
To get unique matching, points of the segmented edges in the
left and right images are first extracted to form the candidate

FIGURE 8. The binocular stereo vision model.

point set Pl and Pr . Then we perform the matching task
based on the epiploar constraint [33]. Unlike our previous
work [20], we use cross matching method to eliminate mis-
match, which will only return consistent point pairs. For any
point pairs, the following equation must be satisfied

mT
RFmL = 0 with mL ∈ Pl and mR ∈ Pr

F = K−TR [t]× RK−TL
Pl = {(xa, ya) |a = 1, . . . ,N }

Pr = {(xb, yb) |b = 1, . . . ,M}

(13)

where mL is a point in the left image and its corresponding
point in the right image is mR. The 3 × 3 matrix F is called
the fundamental matrix. R and t are structure parameters
(rotation and translation). KL and KR are camera intrinsic
matrixes. And [t]× is the anti-symmetric matrix defined
by t, supposed to satisfy t× r = [t]× r for all 3D vector r.
Subscript a and b are index of points included in point set Pl
and Pr , while the total number of point sets is denoted as N
and M separately.

2) 3D RECONSTRUCTION
After establishing the stereo correspondence between Pl and
Pr , the 3D coordinates of the spatial points can be solved
according to the binocular stereo vision model [34]. The
binocular stereo vision model is shown in Fig. 8. O-xyz is the
left camera coordinate system, which locates at the origin of
the word coordinate system. Ol-XlYl is the left image coor-
dinate system. Similarly, the right camera coordinate system
and its image coordinate system are Or-xryrzr, and Or-XrYr,
respectively.

For the spatial point P, its homogeneous coordinates
M̃ = (x, y, z, 1)T can be solved by two camera projection
models

λlm̃l = Al (I|0) M̃, Al =

 fl 0 0
0 fl 0
0 0 1

 (14)

λrm̃r = Ar (R|T) M̃, Ar =

 fr 0 0
0 fr 0
0 0 1

 (15)

T =
[
tx ty tz

]T
, R =

 r1 r2 r3
r4 r5 r6
r7 r8 r9

 (16)
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FIGURE 9. Distance between the bolt cap and its mounting surface.

where λl and λr are arbitrary scale factors. m̃l = (Xl,Yl, 1)T

and m̃r = (Xr ,Yr , 1)T are the homogeneous coordinates
of image points correspondingly. The 3 × 3 matrix R is the
rotation matrix fromO-xyz toOr-xryrzr, while the 3×1 vector
T is the translation vector between the origins of two camera
coordinate systems. Among them, tx , ty and tz represent the
translation amount in xr , yr and zr directions, respectively.
Al and Ar are intrinsic matrixes, consisting of the effective
focal length fl and fr .
Therefore, 3D coordinates of these points of the segmented

edges can be solved as

x = zXl
/
fl

y = zYl
/
fl

z =
fl (fr tx − Xr tz)

Xr (r7Xl + r8Yl + flr9)− fr (r1Xl + r2Yl + flr3)

=
fl
(
fr ty − Yr tz

)
Yr (r7Xl + r8Yl + flr9)− fr (r4Xl + r5Yl + flr6)

(17)

3) DISTANCE CALCULATION
After obtaining all the 3D coordinates of points on the mount-
ing surface, its spatial plane equation can be approached with
Least Square Fit Algorithm. As shown in Fig. 9, distance
from the 3D point on the bolt cap to its mounting surface
can be calculated. By averaging the point-to-plane distances,
we can calculate the distance between the bolt cap and its
mounting surface. By defining the distance between bolt cap
and mounting surface for a tight bolt as reference value,
we can finally judge whether a bolt is loose by comparing
the calculated distance with reference value.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. SYSTEM STRUCTURE DESIGNING AND PARAMETERS
SETTING
The system for bolt-loosening detection of trains is illustrated
in Fig. 10. It mainly includes a bogiemodel, a binocular stereo
vision sensor, and a computer with a single Titan X GPU.

Since bolt-loosening is the main reason for the failure of
the bogie’s axle box (AB), traction motor (TM) and gear
box (GB), a bogie model of the high-speed train CRH380A
is made to build the bolts dataset, whose size ratio to the real
bogie is 1:5.

In this paper, the binocular stereo vision sensor is designed
to collect the left and right images of the bogie model.
It consists of 2 cameras (GC1380H) and 2 lenses (Cingeo1.4).

FIGURE 10. Measurement system. (1) Bogie. (2) Computer. (3) Camera.
(4) Tripod.

The resolution of camera images is 1360pixel × 1024pixel,
and the pixel size of its CCD is 6.45µm × 6.45µm. The
focal length of lens is 12mm. Since the train passes through
the fault detection system at the speed of 3km/h actually,
the camera exposure time is set to 24µs to keep the image
smear within 0.02mm. Moreover, since the object distance
is below 500mm, its baseline length of the binocular stereo
vision sensor is set to be 650mm. The angle between the
optical axis and baseline is 45◦. And its field size is set
to 230mm× 170mm.

B. DATASET DESCRIPTION
In this study, we construct two types of CNN networks: one
for the detection of key component regions and the other for
the edge detection. Correspondingly, two datasets need to be
built for CNN networks training.

1) DATASET FOR KEY COMPONENT REGION DETECTION
Because there isn’t available public dataset for training the
key component region detection network. In order to develop
a dataset containing AB, TM and GB regions, the left and
right images of the bogie are collected by the binocular
stereo vision sensor under different lighting conditions. These
images correspond to non-fault, bolt-loosening and bolt-
missing respectively. We select images randomly to build
training set, validation set and test set. The training and
validation set own 1448 images (404 AB images, 522 TM
images and 522 GB images). Each training image’s format
is the same as the PASCAL VOC dataset’s [35]. There are
660 images in the test set. The proportions of the training
and validation set, and test set can be seen in Table 1. Some
images of the AB, TM and GB are shown in Fig. 11.

2) DATASET FOR EDGE DETECTION
For the CNN-based edge detection network, we train it on
the public BSD500 dataset [36]. The dataset is composed of
200 train images, 100 validation and 200 test images. Each
training image corresponds to a file containing edges labeled
by annotators.
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TABLE 1. The proportion of train and validation set, and test set.

FIGURE 11. Some images of the bogie. (a-1) Non-fault image of AB.
(a-2) Image of AB with bolt-loosening. (b-1) Non-fault image of TM.
(b-2) Image of TM with bolt-loosening. (c-1) Non-fault image
of GB. (c-2) Image of GB with bolt-loosening.

TABLE 2. Key component regions detection results of the images with
non-fault or bolt-loosening.

C. KEY COMPONENT REGIONS DETECTION
1) DETECTION RESULTS
On the training set, we train the key component regions
detection network introduced in section III.A. During the
network training process, we firstly use the 10−3 learning
rate for 10000 iterations, and then decay it to 10−4 and
continue for another 10000 iterations training. Finally, we test
the detection model on the test set (660 images) to evaluate
its effectiveness. The localization results for some regions
are shown in Fig. 12. The detection results of images with
non-fault or bolt-loosening can be seen in Table 2. And
Table 3 shows the detection results of images with bolt-
missing.

As can be seen form Table 2, there is no omission or error
for detection of key component regions. Our proposed
method can simultaneously locate multiple key component
regions with non-fault or bolt-loosening, and obtain 100%
region detection recall rate.

TABLE 3. Key component regions detection results of the images with
bolt-missing.

TABLE 4. Key component regions detection results of the images with
noise.

From Table 3, the key component regions with bolt-
missing are all outputted as suspected visible fault regions.
And there is no wrong output.

In summary, key component regions are either detected
accurately for further diagnosis or output as suspected visible
fault regions, which suggests that the omission rate is 0% in
actual.

2) ROBUSTNESS TO NOISE
In this section, we add Gaussian noises of mean 0 and vary-
ing standard deviations (SD) to 600 test images. The key
component regions detection results are shown in Table 4.
The results show that when the SD of noise is within 50,
the performance of the detection is still satisfactory. Although
the detection recall of TM andGBdecreases slightly when the
SD of noise is greater than 25, it is still not lower than 93.5%.

In addition, noise has more negative effect on the detection
of smaller regions (such as TM and GB) than on lager regions
(such as AB). This is mainly because image features will be
corrupted by noise. Under the same noise level, the loss of
smaller regions’ features is more serious. So, it is harder to
detect the smaller region.

Since the noises in the Table 4 are sufficient to simulate
the actual noises, our proposed detection method is robust
enough to noise.

3) ROBUSTNESS TO LIGHTING CONDITION
Lighting condition is another important parameter to validate
the performance of our approach. In this paper, we adopt the
average intensity level of the image to quantify its lighting
condition, and conduct a further experiment with varying
lighting condition.
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FIGURE 12. Display of key component region localization results. The detected AB, TM and GB are in yellow, green and blue boxes, separately.
(a) Images with different lighting conditions include AB regions. (b) Images with different lighting conditions include TM regions. (c) Images with
different lighting conditions include GB regions.

FIGURE 13. The average intensity distribution of 800× 600 images with
varying lighting conditions.

Firstly, we equally divide 256 intensity level into 8 levels.
Different intensity levels represent varied lighting conditions.
Then, adjust the average intensity of each test sample sepa-
rately, so that it could be randomly distributed in the intensity
interval [i, i + 32). Hence, we can obtain 8 × 600 images
with different lighting conditions. The average intensity dis-
tribution of these images is shown in Fig.13. Some images
with different lighting conditions and their corresponding his-
tograms are shown in Fig. 14. Finally, our proposed method
is tested on 8× 600 images to validate its robustness towards
lighting condition.

The detection results are presented in the Table 5,
As can be seen, our method can obtain 100% detection recall
rate when the average intensity of each image is within the
interval [32, 192). However, when the average intensity

TABLE 5. Key component regions detection results of images with
varying lighting conditions.

exceeds this interval, the detection recall rate decreases. Espe-
cially, the detection recall of GB drops to 57.5% when its
average intensity is over 224. It is mainly due to image
details loss caused by extremely low lighting condition
(see in Fig.15(a)) or bright illumination (see in Fig. 15(b)).

All in all, without overexposure or underexposure, the per-
formance of our method is satisfactory under varying lighting
conditions.

D. EDGE EXTRACTION AND SEGMENTATION
After obtaining the location information of key component
regions, edge extraction and segmentation are conducted. The
CNN-based edge detection network is trained on the public
BSD500 dataset. During network training process, the initial-
izing learning rate is 10−6. Momentum is 0.9 and the number
of training iterations is 10000. After 5000 iterations training,
we decay learning rate to 10−5.
With thewell-trained edge detectionmodel, the edge detec-

tion result is shown in Fig. 16. For a clearer representation,
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FIGURE 14. Some images with different lighting conditions and their corresponding histograms. The average intensity level of the image is marked
with a red dotted line in its histogram. (a) The image of AB and its histogram with 29 average intensity. (b) The image of AB and its histogram with
49 average intensity. (c) The image of TM and its histogram with 84 average intensity. (d) The image of TM and its histogram with 114 average intensity.
(e) The image of GB and its histogram with 131 average intensity. (f) The image of GB and its histogram with 184 average intensity.

FIGURE 15. Images with undetected key component regions. (a) The image under extremely low lighting condition. (b) The image under bright
illumination.

the partial enlargement of the edge center points is shown
in Fig. 17. Edge center points are marked with red dots.

From Fig. 16, good edge connectivity and few false edges
demonstrate the superior performance of our method. In addi-
tion, our method can not only detect the completed edges
of key components, but also segment the edges of bolt caps
accurately.

E. BOLT-LOOSENING DETECTION
For a tight bolt in AB, TM and GB region, dis-
tance between the bolt cap and its mounting surface

is 3.52mm, 6.40mm and 7.74mm respectively, measured
by a Vernier caliper with precision of 0.02mm. We take
these measured distances as reference values in this
paper.

In order to detect single-bolt loosening and multi-bolt
loosening, the distance between the bolt cap and its mount-
ing surface is calculated based on the stereo matching and
3D reconstruction method introduced in section III.C. The
stereo matching result is shown in Fig.18. By comparing the
calculated distance with the reference value, we can judge
whether the bolt is loose.
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FIGURE 16. Results of edge extraction and segmentation. (a) Region of AB, TM and GB. (b) Edges with pixel
accuracy in the AB, TM and GB region. (c) Bolt cap edges of the AB, TM and GB region.

TABLE 6. The experimental results of repeated measurements.

1) REPETITIVE EXPERIMENT
In order to evaluate the reliability of our bolt-loosening detec-
tion method, the distance for the same bolt in AB, TM and
GB region are calculated for 10 times. The experimental
results are presented in Table 6. As can be seen, the standard
deviation (SD) of repeated calculation is less than 0.03mm.
The calculation results are small in dispersion. It suggests that
this method has good reliability.

2) SINGLE-BOLT LOOSENING
We select a bolt in AB, TM and GB regions respectively
and loosen them within 0.00mm to 9.00mm at intervals
of 3.00mm. The calculated results are given by Table 7.
According to the Table 7, our method has a high computa-
tional accuracy when the looseness of a bolt is within 9mm.
The absolute error and relative error of calculated distances
are less than 0.07mm and 1.42% separately. It means that our
proposed method can calculate the looseness of a single bolt
accurately.

3) MULTI-BOLT LOOSENING
In the experiment, three randomly selected bolts in the
AB regions are loosened by 3.00mm, 6.00mm and 9.00mm,
while two bolts in TM region are released by 3.00mm,
6.00mm. And its distances are calculated by our proposed

FIGURE 17. The partial enlargement of the GB’s edge center points. The
edge center points are marked with red dots.

method. The experimental results are shown in Table 8.
As can be seen, the method is still feasible and accurate when
multiple bolts are loosened in the same area. The absolute
error of experimental results is less than 0.08mm, and its
relative error is kept within 1.23%. It means that our method
can calculate the looseness of multiple bolts in the same area
simultaneously as well.

4) TIME CONSUMPTION
In the task of fault detection, the time consumption is one
of the most important indicators. According to the actual
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FIGURE 18. Stereo matching based on epiploar constraint. (a) The left image with AB region. Symbols
‘∗’ with varied colors are used to mark points on edges of bolt caps. (b) The right image with AB
region. Lines with distinct colors are polar lines of the right image corresponding to the feature points
with the same color on the left image.

TABLE 7. The calculated results for key component regions with single
bolt loosening.

TABLE 8. The calculated results for key component regions with
multi-bolt loosening.

requirements of the railway system in China, it is necessary
to complete fault detection within 5 minutes for a motor train
with 8 cars. Since the length of a car is about 25m, 250 images
of the train’s side frame are collected by the binocular stereo
vision sensor with the field size 800mm × 600mm. In this
paper, the average bolt-loosening detection time per image
is 1.1s approximately. The total processing time is 4.6 min-
utes. Therefore, our proposed method can meet requirement
of time consumption.

V. CONCLUSION
In this paper, a fast bolt-loosening detection method based
on binocular vision is proposed to calculate bolts looseness

for AB, TM and GB regions. The experimental results verify
that our method can detect single-bolt loosening and multi-
bolt loosening with high precision. Unlike the existing fault
3D detection techniques, our proposed method only recon-
structs the 3D information of bolt caps and the mounting
surface, avoiding scanning the entire train body. It improves
the efficiency of 3D detection of bolt-loosening. Moreover,
the key component regions detection method based on the
periodic distribution can output all the undetected regions as
suspected visible fault regions while ensuring high detection
recall rates. The omission rate is 0% in actual, improving the
reliability of fault detection.

Although our proposed method is ideal for automatic bolt
looseness detection and has excellent performance, limitation
still remains. In this development stage, the method can only
calculate the looseness of the bolt with clean surface.

REFERENCES
[1] G. Sun, W. Feng, D. Zhao, and L. Yang, ‘‘An automatic fault recognition

method for side frame key in TFDS,’’ Open Mech. Eng. J., vol. 9, no. 1,
pp. 22–27, Feb. 2015.

[2] R. Zou, Z.-Y. Xu, J.-Y. Li, and F.-Q. Zhou, ‘‘Real-time monitoring of brake
shoe keys in freight cars,’’ Frontiers Inf. Technol. Electron. Eng., vol. 16,
no. 3, pp. 191–204, Mar. 2015.

[3] Z. Liu, D. Xiao, and Y. Chen, ‘‘Displacement fault detection of bearing
weight saddle in TFDS based on hough transform and symmetry valida-
tion,’’ Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD), Sichuan,
China, May 2012, pp. 1404–1408.

[4] G. Nan and J. Yao, ‘‘A real-time visual inspection method of fasten-
ing bolts in freight car operation,’’ Proc. SPIE., vol. 9675, Oct. 2015,
Art. no. 96752G.

[5] R. Liu, ‘‘Principle and application of TFDS,’’ Chin. Railways, no. 5,
pp. 26–27, Feb. 2005.

[6] J. Sun, Z. Xiao, and Y. Xie, ‘‘Automatic multi-fault recognition in
TFDS based on convolutional neural network,’’ Neurocomputing, vol. 222,
pp. 127–136, Jan. 2017.

[7] X. Yang, L. Ye, and J. Yuan, ‘‘Research of computer vision fault recog-
nition algorithm of center plate bolts of train,’’ Proc. 1st Int. Conf.
Instrum., Meas., Comput., Commun. Control, Beijing, China, Oct. 2011,
pp. 978–981.

[8] Z. Hongjian, H. Ping, and Y. Xudong, ‘‘Fault detection of train center
plate bolts loss using modified LBP and optimization algorithm,’’ Open
Automat. Control Syst. J., vol. 7, no. 1, pp. 1916–1921, Oct. 2015.

[9] N. Li, Z. Wei, Z. Cao, and X. Wei, ‘‘Automatic fault recognition for losing
of train bogie center plate bolt,’’ in Proc. IEEE 14th Int. Conf. Commun.
Technol. (ICCT), Chengdu, China, Nov. 2012, pp. 1001–1005.

32238 VOLUME 7, 2019



J. Sun et al.: Fast Bolt-Loosening Detection Method of Running Train’s Key Components Based on Binocular Vision

[10] L. Liu, F. Zhou, and Y. He, ‘‘Automated status inspection of fastening bolts
on freight trains using a machine vision approach,’’ Proc. Inst. Mech. Eng.
F, J. Rail Rapid Transit, vol. 230, no. 7, pp. 1629–1641, Sep. 2016.

[11] Y. Dou, Y. Huang, Q. Li, and S. Luo, ‘‘A fast template matching-based
algorithm for railway bolts detection,’’ Int. J. Mach. Learn. Cybern., vol. 5,
no. 6, pp. 835–844, Dec. 2014.

[12] C. Li, Z. Wei, and J. Xing, ‘‘Online inspection system for the automatic
detection of bolt defects on a freight train,’’ Proc. Inst. Mech. Eng. F, J. Rail
Rapid Transit, vol. 230, no. 4, pp. 1213–1226, Jun. 2016.

[13] Q. Li and X. Jing, ‘‘A second-order output spectrum approach for fault
detection of bolt loosening in a satellite-like structure with a sensor chain,’’
Nonlinear Dyn., vol. 89, no. 1, pp. 587–606, Mar. 2017.

[14] Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk,
‘‘Autonomous structural visual inspection using region-based deep learn-
ing for detecting multiple damage types,’’Comput.-Aided Civil Infrastruct.
Eng., vol. 33, no. 9, pp. 731–747, 2018.

[15] X. Kong and J. Li, ‘‘Image registration-based bolt loosening detection of
steel joints,’’ Sensors, vol. 18, no. 4, p. 1000, Mar. 2018.

[16] Y.-C. Cha, K. You, and W. Choi, ‘‘Vision-based detection of loosened
bolts using the Hough transform and support vector machines,’’ Automat.
Construction, vol. 71, pp. 181–188, Nov. 2016.

[17] L. Ramana,W. Choi and Y.-J. Cha, ‘‘Automated vision-based loosened bolt
detection using the cascade detector,’’ Sensors Instrum., vol. 5, pp. 23–28,
Apr. 2017.

[18] Harbin Kejia General Mechanical and Electrical Company. (2017).
Trouble of Moving EMU Image Detection System. [Online]. Available:
http://www.kejiajidian.cn/products_detail/productId=31.html

[19] New Vision. (2017). Trouble of Moving EMU 3D Detection
System (TEDS-3D). Accessed: Dec. 7, 2017. [Online]. Available:
http://www.huaxingzhiyuan.com/Web/News/170.aspx

[20] Y. Xie and J. Sun, ‘‘On-line bolt-loosening detection method of key com-
ponents of running trains using binocular vision,’’ Proc. SPIE, vol. 10605,
Nov. 2017, Art. no. 1060513.

[21] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Santiago, Chile, Dec. 2015, pp. 1440–1448.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 580–587.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[24] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2016.

[25] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’ in Proc. ECCV,
Sep. 2016, pp. 21–37.

[26] S. Xie and Z. Tu, ‘‘Holistically-nested edge detection,’’ in Proc. IEEE Int.
J. Conf. Comput. Vis., Santiago, Chile, Dec. 2015, pp. 1–16.

[27] G. Bertasius, J. Shi, and L. Torresani, ‘‘DeepEdge: A multi-scale bifur-
cated deep network for top-down contour detection,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, vol. 52, no. 3,
pp. 4380–4389.

[28] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, ‘‘DeepContour:
A deep convolutional feature learned by positive-sharing loss for contour
detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Boston,
MA, USA, Jun. 2015, pp. 3982–3991.

[29] J.-J. Hwang and T.-L. Liu, ‘‘Pixel-wise deep learning for contour detec-
tion,’’ in Proc. ICLR, 2015.

[30] C. Steger, ‘‘An unbiased detector of curvilinear structures,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 20, no. 2, pp. 113–125, Feb. 1998.

[31] C. Steger, ‘‘Analytical and empirical performance evaluation of sub-
pixel line and edge detection,’’ Empirical Eval. Methods Comput. Vis.,
Apr. 1998, pp. 188–210.

[32] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. ICLR, 2015.

[33] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. New York, NY, USA: Cambridge Univ. Press, 2003, ch. 9,
sec. 2, pp. 241–246.

[34] G. Zhang, Machine Vision. Beijing, China: Science Press, 2005, ch. 5,
sec. 1, pp. 99–101.

[35] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, ‘‘The PASCAL visual object classes (VOC) challenge,’’ Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[36] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, ‘‘Contour detection and
hierarchical image segmentation,’’ IEEE Trans. Pattern Anal.Mach. Intell.,
vol. 33, no. 5, pp. 898–916, May 2011.

JUNHUA SUN was born in Hubei, China, in 1975.
He received the B.E. and M.E. degrees from the
Beijing Institute of Machinery, China, in 1997 and
2003, respectively, and the Ph.D. degree in pre-
cision instrument and machinery from Beihang
University, Beijing, China, in 2006, respectively,
where he is currently a Professor and also a
key member with the Key Laboratory of Preci-
sion Opto-Mechatronics Technology, Ministry of
Education.

His research interests include machine vision, image processing and
recognition, and machine learning.

YANXIA XIE was born in Hunan, China, in 1993.
She received the B.E. degree from Chang’an
University, Xi’an, China, in 2015, and the M.E.
degree from Beihang University, Beijing, China,
in 2018, where she is currently pursuing the Ph.D.
degree with the Key Laboratory of Precision Opto-
Mechatronics Technology, Ministry of Education.

Her research interests include image recognition
and machine learning.

XIAOQI CHENG was born in Henan, China,
in 1987. He received the B.E. degree from
the Zhengzhou University of Aeronautics,
Zhengzhou, China, in 2009, and the M.E. degree
from Henan Polytechnic University, Jiaozuo,
China, in 2012. He is currently pursuing the Ph.D.
degree in measurement technology and instru-
ments with the Key Laboratory of Precision Opto-
Mechatronics Technology, Ministry of Education,
Beihang University, Beijing, China.

His current research interests include machine vision, image recognition,
and machine learning.

VOLUME 7, 2019 32239


	INTRODUCTION
	OVERVIEW OF THE BOLT-LOOSENING DETECTION METHOD
	METHOD
	KEY COMPONENT REGIONS DETECTION METHOD BASED ON THE PERIODIC DISTRIBUTION RULE
	PERIODIC DISTRIBUTION OF WHEELBASE
	PERIODIC DISTRIBUTION OF IMAGE SEQUENCE
	KEY COMPONENT REGIONS DETECTION

	EDGE EXTRACTION AND SEGMENTATION
	EDGE EXTRACTION
	EDGE SEGMENTATION

	STEREO MATCHING AND 3D RECONSTRUCTION
	STEREO MATCHING
	3D RECONSTRUCTION
	DISTANCE CALCULATION


	EXPERIMENTAL RESULTS AND DISCUSSION
	SYSTEM STRUCTURE DESIGNING AND PARAMETERS SETTING
	DATASET DESCRIPTION
	DATASET FOR KEY COMPONENT REGION DETECTION
	DATASET FOR EDGE DETECTION

	KEY COMPONENT REGIONS DETECTION
	DETECTION RESULTS
	ROBUSTNESS TO NOISE
	ROBUSTNESS TO LIGHTING CONDITION

	EDGE EXTRACTION AND SEGMENTATION
	BOLT-LOOSENING DETECTION
	REPETITIVE EXPERIMENT
	SINGLE-BOLT LOOSENING
	MULTI-BOLT LOOSENING
	TIME CONSUMPTION


	CONCLUSION
	REFERENCES
	Biographies
	JUNHUA SUN
	YANXIA XIE
	XIAOQI CHENG


