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ABSTRACT As one of the great advances in modern technology, the microarray is widely used in many
fields, including biomedical research, clinical diagnosis, and so on. Evidently, in order to extract the intensity
of fluorescence bio-probes accurately, we need to pay special attention to the gridding of microarray
at first. To solve the poor effect of the traditional Otsu method for microarray gridding, an innovative
algorithm of Otsu optimized by multilevel thresholds is proposed to improve the accuracy and effectiveness
of the microarray image gridding and segmentation. The experimental results indicate that considering
the physical information carried by microarrays, the improved algorithm of Otsu optimized by multilevel
thresholds achieves high-quality gridding and establishes the bio-spot coordinates more precisely. Compared
with the traditional Otsu method, its gridding error is reduced to zero, and the integrated relative error
of bio-spot coordinates is decreased from 2.89% to 1.05%. This optimization of Otsu combined with
physical information of spot-matrix will greatly improve the performance of segmentation so as to make
the contribution to extracting the fluorescence intensity of microarray accurately.

INDEX TERMS Microarray image, Otsu method, multilevel thresholds, gridding, physical information.

I. INTRODUCTION
DNA microarray was designed to analyze a large number of
gene sequences. It was developed as spot-matrix fixed on
the specified position of glass slide to perform thousands
of hybridization experiment simultaneously [1]. As one of
the great advances in current era, DNA microarray tech-
nique is widely applied in many fields including molecular
biology, genetics, disease diagnosis, medical treatment, and
food safety supervision, etc [2]. There are three important
steps, namely, hybridization experiment, image processing
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and sequence analysis, to determine the success or not of
the microarray application. Especially, the image processing
plays a potentially tremendous impact on the subsequent
analysis [3], [4]. In recent years, a large number of algorithms
have been developed in processing the microarray images,
and they are mainly focused on image gridding, spot seg-
mentation and bio-probe intensity extraction to analyze the
DNA microarray response data [5]. Especially, gridding of
microarray is the most important stage in image processing,
because it significantly affects the spot segmentation and
intensity extraction. Evidently, in order to obtain the accurate
intensity conveniently, we also need to pay more attention to
the automatic gridding at first.
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Over the past decade, different softwares have been suc-
cessfully developed to pursuit the perfect gridding for the
microarray application, such as ScanAlyze, GenePix, Quant
Array, and so on. However, there are serious disadvantages
to be tolerated. For instance, the parameters need to be preset
manually, and the artificial intervention is a necessary pro-
cedure during the segmentation processing [6]. In addition,
there are many other related algorithms to be concerned.
The Hill-Climbing method for automatic gridding, expressed
in [7], can perform gridding properly only if the ideal grids
are present. Yet it is difficult to satisfy this ideal situation in
practice. And the gridding methods based on pattern clas-
sification or intelligence algorithm, such as K-mean clus-
ter, Fuzzy analysis and Genetic algorithm, however, are
too computational to be applied [8]–[10]. Other well known
approaches are based on histogram segmentation of pixel
intensity information. And they have attractive advantages
of computational efficiency and few input parameters to
automatic gridding, although the optimal threshold is not
easy to be searched to distinguish the fluorescence spots
from the image background perfectly [11], [12]. Especially,
the maximum between-class variance (i.e., the Otsu method)
could provide a very simple way to automatic gridding of
microarray images [13], [14]. It seems to be a straw for the
gridding of microarray automatically. Unfortunately, the Otsu
method is only an optimal way to achieve the threshold for
histogram with bimodal or multimodal distribution, yet it
would fail in confirming the segmentation if the histogram is
unimodal or close to unimodal distribution [15]. Worst of all,
the area of fluorescent spots is inadequate compared with the
entire region of microarray image, which leads to the poor
effect on separating the bio-spots from the background.

Though many efforts are focused on this particular grid-
ding problem, they are all limited to scanning the problems
in image property alone. Considering the localization infor-
mation of the fluorescent bio-spots fixed onmicroarray, a new
gridding method is proposed by taking the uniformity of
gridding or locating interval as an optimization parameter,
to improve the accuracy and the effectiveness of microarray
segmentation. Our work employs this novel segmentation
algorithm based on Otsu optimized by multilevel thresholds
with the physical information, and the results show that
this improved Otsu is superior and effective on gridding
the microarray image. The rest of the paper is organized
as follows: the related knowledge about DNA microarray,
Otsu method and novel gridding technique are introduced in
Section II. And then, the experimental results and analyses are
given in Section III. Finally, the conclusions and discussions
are drawn in Section IV.

II. MULTILEVEL OPTIMIZATION METHOD
FOR AUTOMATIC GRIDDING OF
MICROARRAY IMAGE
A. MICROARRAY
As one of the great advances technology for high-throughput
analysis and quantitative detection of DNA sequences, the

microarray has a large number of well defined bio-probes
fixed at the specified positions on a single glass sub-
strate [16], [17]. It is widely used inmany fields. Additionally,
traditional microarray usually locates the pre-defined bio-
probe as the spots in orderly ranks, like a matrix as shown
in Figure 1.

FIGURE 1. Cy3 response image of microarray provided by FZU in 30 um
resolution.

B. OTSU METHOD
Otsu method provides an optimal threshold, which is selected
by the identifying criterion to maximize the separability of
the classes in histogram and gray-level [6], [18]. It is a state-
of-the-art automatic threshold technique, which determines
the optimal threshold value by maximizing the between-class
variances of target and signal background [19].

Consider a digital signal g(x,y) which lies in the inter-
val [0, L-1], where L is the number of gray levels. We define
the number of pixels with gray value i will be fi, and denote
the total number of pixels as N , so the g(x,y) histogram is
defined as a probability distribution pi

pi =
fi
N
, pi ≥ 0, u =

L−1∑
i=0

ipi (1)

where, the u is the average gray-level of g(x,y).
Suppose T is a gray threshold between the target and the

background, we could divide these pixels into two classes

w0(T ) =
T∑
i=0

pi, w1(T ) =
L−1∑
i=T+1

pi = 1− w0(T ) (2)

where w0 = {g(x, y)|0 ≤ fi ≤ T} and w1 = {g(x, y)|T + 1 ≤
fi ≤ L − 1}. Normally, w0 is the target or foreground, and w1
is the background.

Then, there are the foregroundmean u0 and the background
mean u1 shown in the following

u0(T ) =
T∑
i=0

ipi/w0(T ), u1(T ) =
L−1∑
i=T+1

ipi/w1(T ) (3)

In Otsu method, it shows that the optimum threshold is
determined by considering the most significant distinction
between foreground and background. Thus under this crite-
rion, the optimal threshold T ∗ must make the between-class
variance to be maximized [20].

T ∗=arg max
0≤T≤L−1

{
w0(T )(u0(T )− u)2+w1(T )(u1(T )−u)2

}
(4)
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FIGURE 2. Optimal threshold selection in gray-level histogram
(a) bimodal distribution and (b) the unimodal or close to unimodal
distribution.

FIGURE 3. The microarray image gridding by Otsu method, (a) Cy3 image
of microarray provided by Fuzhou university and (b) sub-array(2,5) of
microarray image.

FIGURE 4. Multilevel segmentation method optimized by physical
information for gridding of microarray image.

In view of u = w0× u0+w1× u1, the (4) could be simply
transformed into the following equation [19].

T ∗ = arg max
0≤T≤L−1

{
w0(T )u20(T )+ w1(T )u21(T )

}
(5)

FIGURE 5. Gridding of sub-array(2,5) by Otsu with multilevel thresholds.
(a) Gridding of sub-array(2,5) by T1 threshold. (b) Gridding of
sub-array(2,5) by Tend threshold. (c) Gridding of sub-array(2,5) by Topt
threshold.

However, the Otsu method could achieve an acceptable
result when the foreground of image is sufficient different
from the background. That is, the image histograms have
bimodal or multimodal distributions [19]. Most poignantly,
the images of microarray have a large background and the
corresponding foreground (i.e., bio-probe region) is very
small, which prevents the Otsu algorithm from determining
the optimal threshold for efficacious gridding. Therefore,
the traditional Otsu is not appropriate for immediate gridding
of microarray image.

Several improvements on Otsu method for adapting to
the large background have been proposed to overcome the
unimodal or distribution close to unimodal. Their basic idea is
an addition of a small weight coefficient to adjust the segmen-
tation threshold level which ensures that the ideal threshold
should lie at the valley of bimodal, or at the bottom rim of uni-
modal distribution, as shown in Figure 2, and this improved
algorithm is called valley-emphasis method [21], [22].
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TABLE 1. Gridding performance of OTSU optimized by mulitilevel
thresholds for sub-array(2,5).

FIGURE 6. Gridding details of relative error under the threshold of T1 and
Tend, while (a) is demonstrated by T1, and (b) is demonstrated by Tend.

As Figure 2 shows, corresponding in mathematics, there is
a small weight, denoted as τ , adjusting the output threshold
of (5), which is demonstrated in (6).

T ∗τ = arg max
0≤T≤L−1

{
τ (w0(T )u20(T )+ w1(T )u21(T ))

}
(6)

C. MULTILEVEL OPTIMIZATION METHOD
FOR AUTOMATIC GRIDDING
Valley-emphasis, partially resolves the problem that is the
histogram with unimodal or close to unimodal distribution
by weighting the threshold function of the Otsu method, but
it is also difficult to search an optimal coefficient τ for valley-
emphasis algorithm to adjust the acceptable threshold level.
So it is still not suitable to apply this improved method for

FIGURE 7. Segmentation optimized by multilevel for sub-array(2,5)
on the row 6.

gridding in practice. Considering the location information
of spot-matrix of microarray bio-probs, we could construct
an objective function of optimum criterion for gridding of
microarray by uniform interval. In this way, a target function
expressed as the average relative deviation W , which is con-
firmed based on the difference of geometric position between
the manufacturing coordinates and them in spatial gridding,
would be simply used to determine the optimal threshold.
Especially, this innovative solution perfectly avoids pursuing
the acceptable τ of valley-emphasis method for optimum
gridding.

The proposed gridding method of multilevel optimized
by physical information of spots is to be demonstrated as
following:

Firstly, wewould prepare themicroarray imagewith essen-
tial preprocessing, such as de-noise, enhance, sharpen, and
tilt-correction, etc [23], [24].

Secondly, in order to reduce the complexity of calcula-
tion, we could realize the row and the column projection
of microarray image, to establish the projection histogram
Hx or Hy, oriented to X -axis or Y -axis.
Thirdly, all the pixels of projection Hx or Hy are taken

to be divided into foreground and background, respectively.
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FIGURE 8. Segmentation optimized by multilevel for sub-array(2,5)
on the column 6.

Thus we could form a new background by Otsu segmenta-
tion, and denote this new background as Bx1 or By1 while
the corresponding Otsu gridding threshold as Tx1 or Ty1.
Besides, the number of rowsRN and the columnsCN would be
estimated as spot-matrix parameters for automatic gridding,
simultaneously.

Then, under the constraint of spot-matrix row and column
parameters, we could continue to separate a new background
from Bx1 or By1 on the above-stated method, and denote
them as By2 or By2, similarly. Furthermore, we also need
to estimate the number of rows R2 and columns C2 at this
time, and sign RN = max{Rn} and CN = max{Cn}. In this
manner, we could also obtain a series of thresholds and store
them as [Tx1,Tx2, . . . ,Tx−end] or [Ty1 Ty2, . . . ,Ty−end] until
a terminating condition come along with Rn−1 > Rn or
Cn−1 > Cn.
And finally, according to the thresholds [Tx1, Tx2, . . . ,

Tx−end] or [Ty1, Ty2, . . . ,Ty−end] of projection, we also
could get a series of corresponding relative deviations as
Wx1, Wx2, . . . Wx−end, or Wy1, Wy2, . . . Wy−end, respec-
tively. Therefore, the optimal threshold T ∗x−opt or T ∗y−opt
is going to be obtained from [Tx1, Tx2, . . . ,Tx−end] or
[Ty1, Ty2, . . . ,Ty−end] by solving an equation of T ∗opt(W ) =
argmin{W1,W2, . . .Wend }.

FIGURE 9. Re-gridding of sub-array(2,5) by Otsu with multilevel
thresholds. (a) Re-gridding of row 5 and column 5 by T1 threshold.
(b) Re-gridding of row 5 and column 5 by Tend threshold. (c) Re-gridding
of row 5 and column 5 by Topt , and achieve minimum Wrc = 2.11%.

III. EXPERIMENT RESULTS AND ANALYSES
A. GRIDDING OF MICROARRAY IMAGE
After tilt correction, adaptive contrast enhancement,
horizontal-vertical projection and morphological smooth-
ness, the sub-arrays image could be separated from the whole
image of microarray by Ostu method at first, and a diagram
of sub-array segmentation as shown in Figure 3.

When we take the sub-array(2,5) from microarray image
of Figure 3, we could confirm the excellent performance of
gridding by using this improved Otsu method with multi-
level optimization. For considering the combined influence
of horizontal and vertical deviation, we define the integrated
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FIGURE 10. Re-gridding of sub-array(2,5) by Otsu with multilevel
thresholds. (a) Re-gridding of row 6 and column 6 by T1 threshold.
(b) Re-gridding of row 6 and column 6 by Tend threshold. (c) Re-gridding
of row 6 and column 6 by Topt, and achieve minimum Wrc = 1.11%.

relative errorWrc = (Wr+Wc)/2,Where theWr is the relative
deviation of line interval while the Wc is the corresponding
deviation of column interval [25].

The procedure ofmultilevel Otsu optimized by the physical
information for gridding of microarray image is illustrated as
Figure 4.

The Figure 5 demonstrates the sub-array(2,5) image
reaches the complete gridding by using the Otsu method of
multilevel thresholds with T1, Tend and the optimal thresh-
old Topt.

In order to distinguish the gridding performance of multi-
level thresholding conveniently, table 1 shows the comparison

of T1, Tend and the optimal status Topt, and the results indicate
that the Otsu method optimized by multilevel thresholding
could obtain high-accuracy gridding by the Topt.
In table 1, obviously, either the max relative error or the

mean relative error of image gridding is reduced to zero
for Topt. Moreover, the Figure 6 also indicates that the grid-
ding details of relative error under the threshold of T1 and
Tend. It clearly predicts that the optimal threshold Topt would
be between T1 and Tend under the constraint by closing Wrc
to zero.

B. COORDINATE MODIFYING BY MULITILEVEL
OPTIMIZATION METHOD
Due to the inevitable manufacturing errors, we should have to
reproject each row or column region after gridding, to modify
the spot-location for avoiding the interaction of multi-row or
multi-column as far as possible.

The Figure 7 indicates the reprojection region and opti-
mal thresholding for sub-array(2,5) segmentation on the row
region 6. Correspondingly, the optimal thresholding on the
column region 6 is illustrated in Figure 8.

When we iteratively remodify the bio-spot coordinates by
reprojection each row and column region, and achieve the
re-gridding constrained by the physical information one by
one, we could succeed in obtaining all the coordinate of bio-
spots accurately. The Figure 9 demonstrates the re-gridding
of row region 5 and column region 5 at T1, Tend and Topt,
and the good performance was showed for the minimum
Wrc = 2.11%. Furthermore, the minimum Wrc = 1.11% is
achieved at the optimal threshold Topt for row region 6 and
column region 6, which is illustrated in Figure 10.

To investigate the advantage and disadvantage of the mul-
tilevel segmentation method optimized by physical infor-
mation, a comparative analysis is to be carried out for the
maximum relative error, mean relative error, variance and the
failure rate of gridding. Table 2 certifies that the Otsu method
optimized by multilevel thresholds to be quite accurate for
gridding and segmentation of fluorescent bio-spots of sub-
array(2,5).

TABLE 2. Statistical deviation of coordinate center of each bio-probe in
sub-array(2,5).

According to the Table 2, Otsu method optimized by Topt
achieves all the spot segmentation with minimum deviation,
and it shows that the way of Otsu withmultilevel optimization
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has sufficient advantage in pursuing the bio-spot information
on microarray image, although there are inevitable manufac-
turing errors resulted from the spotting accuracy of genechip
array machine.

IV. SUMMARY AND CONCLUSIONS
There are many factors that significantly affect the gridding
and bio-spots location of microarray including bio-probe fab-
rication, fluorescence scanning and gridding algorithm. Yet
the existing methods for bio-spots segmentation are always
difficult to adapt to the complex features of fluorescent image,
which inevitably leads to manual intervention to improve
the accuracy of gridding and segmentation. Considering
the physical information carried by the microarray image,
we proposed a novel way based on Otsu method optimized by
the multilevel thresholds to achieve high-precision gridding
and establish accurate coordinates of bio-spots on microar-
ray. The experiment results show that the Otsu method with
multilevel optimization considering the physical information
of spot-matrix parameters, improves the accuracy of gridding
and bio-probe locations. In comparison with the traditional
Otsu method, its gridding error is reduced to zero and the
integrated relative error of bio-spot coordinates is decreased
from 2.89% to 1.05%. And this optimization combined with
physical information of spot-matrix will greatly improve the
effectiveness of segmentation so as to make the contribu-
tion to extracting the fluorescence intensity of microarray
accurately. However, due to the employ of projection for
horizontal-vertical direction, the application of this improved
Otsu method to high-density microarray gridding still need to
be studied further.
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[12] E. Küçükkülahli, Pakize Erdoǧmuş, and K. Polat, ‘‘Histogram-based auto-
matic segmentation of images,’’ Neural Comput. Appl., vol. 27, no. 5,
pp. 1445–1450, Apr. 2016.

[13] C. C. Charalambous and G. K. Matsopoulos, ‘‘A new method for gridding
DNA microarrays,’’ Comput. Biol. Med., vol. 43, no. 10, pp. 1303–1312,
Oct. 2013.

[14] J.-S. Pan, Q. Feng, L. Yan, and L.-F. Yang, ‘‘Neighborhood feature line seg-
ment for image classification,’’ IEEE Trans. Circuits Sys. Video Technol.,
vol. 25, no. 3, pp. 387–398, Mar. 2015.

[15] J.-L. Fan and B. Lei, ‘‘A modified valley-emphasis method for auto-
matic thresholding,’’ Pattern Recognit. Lett., vol. 33, no. 6, pp. 703–708,
Apr. 2012.

[16] S. L. Aitken et al., ‘‘Real-world performance of a microarray-based rapid
diagnostic for Gram-positive bloodstream infections and potential utility
for antimicrobial stewardship,’’ Diagnostic Microbiol. Infectious Disease,
vol. 81, no. 1, pp. 4–8, Jan. 2015.

[17] J. Petrik, ‘‘Diagnostic applications of microarrays,’’ Transfusion Med.,
vol. 16, no. 4, pp. 233–247, Aug. 2006.

[18] H. Zhang andW.Y.Hu, ‘‘Amodified thresholdingmethod based on relative
homogeneity,’’ J. Inf. Hiding Multimedia Signal Process., vol. 9, no. 2,
pp. 285–292, Mar. 2018.

[19] M. T. N. Truong and S. Kim, ‘‘Automatic image thresholding using Otsu’s
method and entropy weighting scheme for surface defect detection,’’ Soft
Comput., vol. 22, no. 13, pp. 4197–4203, Jul. 2017.

[20] E. B. Harb, N. A. M. Isa, and S. A. Salamah, ‘‘Improved image magnifica-
tion algorithm based on Otsu thresholding,’’ Comput. Electr. Eng., vol. 46,
no. 8, pp. 338–355, Aug. 2015.

[21] X.-C. Yuan, L.-S. Wu, and Q. Peng, ‘‘An improved Otsu method using the
weighted object variance for defect detection,’’ Appl. Surf. Sci., vol. 349,
pp. 472–484, Sep. 2015.

[22] H.-F. Ng, ‘‘Automatic thresholding for defect detection,’’ Pattern Recognit.
Lett., vol. 27, no. 14, pp. 1644–1649, Oct. 2006.

[23] N. Zeng, H. Zhang, Y. Li, J. Liang, and A. M. Dobaie, ‘‘Denois-
ing and deblurring gold immunochromatographic strip images via gra-
dient projection algorithms,’’ Neurocomputing, vol. 247, pp. 165–172,
Jul. 2017.

[24] N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, and Y. Li, ‘‘A new
switching-delayed-PSO-based optimized SVM algorithm for diagno-
sis of Alzheimer’s disease,’’ Neurocomputing, vol. 320, pp. 195–202,
Dec. 2018.

[25] Z. Gan, ‘‘Study on the measuring technique of biochip based on image
detection and processing,’’ Ph.D. dissertation, Dept. Elect. Eng., Fuzhou
Univ., Fuzhou, China, 2017.

ZHENHUA GAN received the Ph.D. degree
in electrical engineering from Fuzhou University,
Fuzhou, China, in 2017. He is currently with the
Key Laboratory of Automotive Electronics and
Electric Drive Technology of Fujian Province,
Fujian University of Technology, China. His
research interests include the cross-subject field
between electrician theoretic and biomedicine,
such as biological systems modeling and simu-
lation, biomedical signal detection and analysis,

biomedical imaging and image processing, and related medical equipment
development.

32152 VOLUME 7, 2019



Z. Gan et al.: Multilevel Segmentation Optimized by Physical Information for Gridding of Microarray Images

NIANYIN ZENG received the B.Eng. degree
in electrical engineering and automation and
the Ph.D. degree in electrical engineering from
Fuzhou University, Fuzhou, China, in 2008 and
2013, respectively.

From 2012 to 2013, he was a Research Assistant
with the Department of Electrical and Electronic
Engineering, The University of Hong Kong. From
2017 to 2018, he was an ISEF Fellow founded
by the Korea Foundation for Advance Studies and

also a Visiting Professor with the Korea Advanced Institute of Science and
Technology. He is currently an Associate Professor with the Department
of Instrumental and Electrical Engineering, Xiamen University. He has
authored or co-authored several technical papers, including five ESI highly
cited papers according to the most recent Clarivate Analytics ESI report and
also a very active Reviewer for many international journals and conferences.
His current research interests include intelligent data analysis, computational
intelligent, time-series modeling, and applications.

Dr. Zeng also serves as a Technical Program Committee Member of
ICBEB 2014 and an Invited Session Chair for ICCSE 2017. He is currently
serving as an Associate Editor for Neurocomputing and an Editorial Board
Member for Computers in Biology and Medicine, Biomedical Engineering
Online, the Journal of Advances in Biomedical Engineering and Technology,
and Smart Healthcare.

FUMIN ZOU received the Ph.D. degree in traffic
information engineering and control from Cen-
tral South University, Changsha, China, in 2009.
He visited Texas Tech University, from 2013 to
2014. He is currently a Professor with the School
of Information Science and Engineering and with
the Beidou Navigation and Smart Traffic Innova-
tion Center of Fujian Province, Fujian University
of Technology, China. His current research inter-
ests include machine learning, big data, and signal
processing.

JIANGUO CHEN received the B.Sc. degree from
Fuzhou University, Fuzhou, China, in 1991. He is
currently a Senior Experimentalist with the Col-
lege of Electrical Engineering and Automation,
Fuzhou University. His research interests mainly
include the electrical and electronic systems, bio-
medicine systems, and related medical equipment
development.

MIN DU was born in Fujian, China. She received
the Ph.D. degree in electrical engineering from
Fuzhou University, Fuzhou, China, in 2005. She
is currently a Professor and a Doctoral Super-
visor with Fuzhou University. She has been the
Associate Director of the Fujian Key Laboratory
of Medical Instrumentation and Pharmaceutical
Technology, Wuyi University, since 2007. Her
research interests include biomedical signal detec-
tion and analysis, smart instrument, and photoelec-
trical systems.

LYUCHAO LIAO received the B.E. and M.S.
degrees in information science from Fuzhou Uni-
versity and the Ph.D. degree in traffic information
engineering and its control from Central South
University, in 2015. He completed the Postdoctoral
research at Tsinghua University. He is currently
with the Fujian University of Technology. His
research interest includes the field of learning from
big data of transportation. In particular, he is inter-
ested in artificial intelligence and its applications,

such as driving behavior analysis, traffic state prediction, and traffic signal
timing.

HAN LI received the bachelor’s degree inmeasure-
ment and control technology and instrumentation
from the Department of Instrument and Electrical
Engineering, Xiamen University, Xiamen, China,
in 2018, where he is currently pursuing the mas-
ter’s degree in electrical testing technology and
instruments. His research interests includemedical
image processing and deep learning techniques.

YUDONG ZHANG received the Ph.D. degree
fromSoutheast University, China, in 2010. He held
a postdoctoral position, from 2010 to 2012, and
was a Research Scientist, from 2012 to 2013,
with the Research Foundation in Mental Hygiene,
Columbia University, USA. From 2013 to 2017, he
served as a Professor with NanjingNormal Univer-
sity, where he was the Director and the Founder of
the Advanced Medical Image Processing Group,
NJNU. Since 2017, he has been a Professor (per-

manent) with the Department of Informatics, University of Leicester, U.K.
His research interests include deep learning in communication and signal
processing, and medical image processing.

VOLUME 7, 2019 32153


	INTRODUCTION
	MULTILEVEL OPTIMIZATION METHOD FOR AUTOMATIC GRIDDING OF MICROARRAY IMAGE
	MICROARRAY
	OTSU METHOD
	MULTILEVEL OPTIMIZATION METHOD FOR AUTOMATIC GRIDDING

	EXPERIMENT RESULTS AND ANALYSES
	GRIDDING OF MICROARRAY IMAGE
	COORDINATE MODIFYING BY MULITILEVEL OPTIMIZATION METHOD

	SUMMARY AND CONCLUSIONS
	REFERENCES
	Biographies
	ZHENHUA GAN 
	NIANYIN ZENG
	FUMIN ZOU
	JIANGUO CHEN
	MIN DU
	LYUCHAO LIAO
	HAN LI
	YUDONG ZHANG


