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ABSTRACT Nowadays, the tool path in five-axis machining is usually described with linear segments.
Tangential and curvature discontinuities of the linear tool path lead to poor machining efficiency and quality.
Due to the complexities in constraining approximation errors and synchronization of tool tip position and tool
orientation, it still remains a challenge to smooth five-axis linear tool path in real-time. To solve this problem,
this paper developed an analytical decoupled corner smoothing method by inserting an asymmetric cubic
B-spline and a pair of symmetric quartic spherical Bézier curves for tool tip position and tool orientation,
respectively. Themaximal approximation errors for tool tip position and tool orientation are fully constrained
in the blending procedures. Tool tip position and tool orientation are synchronized by adjusting the blending
lengths and angles, which guarantees the C2 continuity of the tool path. The blending and synchronous
scheme are analytical. Therefore, the proposed method can be employed in real-time. To verify the proposed
method, simulations and experiments on a five-axis machine tool are conducted, the results demonstrate the
feasibility and efficiency of the proposed method.

INDEX TERMS Corner smoothing, five-axis, spherical Bézier, CNC, B-spline.

I. INTRODUCTION
Five-axis CNC machining is widely used to machine work-
pieces with complex shapes, such as impellers, turbine blades
and aerospace structure parts. Nowadays, linear tool paths are
still the most common format of tool path in CNC machin-
ing. Due to the tangential and curvature discontinuities of
linear tool paths, fluctuation of feedrate and acceleration may
lead to vibration of machine tool and long machining time.
To improve the machining efficiency and quality, tool path
smoothing methods are usually adopted [1]–[4].

There are twomajor kinds of tool path smoothing methods,
i.e. global smoothing method and local smoothing method.
Global smoothing method utilizes splines to interpolate or
approximate the linear tool path. Langeron et al. [5] uti-
lized two B-Spline to synchronously interpolate the posi-
tions of tool tip and a point on the tool axis. Based
on this idea, Wang et al. [6] realized a double NURBS
curve based interpolator and integrated it to an open CNC
system. Zhang et al. [7] generated smooth tool path using
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rational Bézier motions for five-axis sculptured surface
machining. Bi et al. [8] extended this idea, and proposed
a dual quaternion based algorithm to generate compact
dual NURBS tool path with equal distance. After that,
Zhao et al. [9] proposed an approximation method using
dual quaternion with dominant point. In [5]–[9], tool tip
position and tool orientation are coupled. In contrast to
the coupled method, Fleisig and Spence [10] proposed a
triple-spline based interpolation method: a near arc-length
quintic polynomial position spline interpolates the tool tip
positions, a quintic spherical Bézier spline interpolates the
tool orientation vectors, and a quadratic spline is utilized
to reparametrize the two previous splines. Yuen et al. [11]
developed a jerk-continuous interpolation method, which fits
the tool tip positions and orientations to quintic splines inde-
pendently, then utilizes ninth order and seventh order feed
correction splines to approximate the nonlinear relationship
between spline parameters and displacements along the path
for tool tip positions and tool orientations respectively. Later,
Yang andAltintas [12] improved thismethod by transforming
tool orientation vectors into quaternion space to solve the
singular problem. However, for the global smoothingmethod,
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it is still challenging to control the approximation errors
between two adjacent input points, especially for five-axis
tool path.

Unlike the global smoothing method, the local smoothing
method blends corner with splines but remains part of linear
segments. Local smoothing method has been widely stud-
ied in tri-axis machining [13]–[16]. Yang and Sukkarieh [13]
smoothed corner with a pair of cubic Bézier curves sat-
isfying both curvature continuity and maximum curva-
ture requirements simultaneously. Zhao et al. [14] adopted a
curvature-continuous cubic B-spline to blend the linear seg-
ments. Fan et al. [15] proposed a real-time local smoothing
method, which generatesG3 interpolative tool path with quar-
tic Bézier curves. Duan and Okwudire [16] used an optimal
control method to generate the best free-form curve that min-
imizes machining time under the constraints of path tolerance
and kinematics.

For five-axis tool paths, local smoothing procedure can
be employed in machine tool coordinate system (MCS)
or part coordinate system (PCS). Beudaert et al. [17] pro-
posed an iterative method to increase the real feedrate by
smoothing the joint motions. Bi et al. [18] proposed an
analytical curvature-continuous dual-Bézier corner transition
method in MCS, which utilizes one cubic Bézier curve
to smooth the translational path, and another for the rota-
tional path. However, this kind of methods is related to
the configuration of machine tool. Beudaert et al. [19] uti-
lized two cubic B-splines to blend the corner of tool tip
position and a reference point on tool axis, meanwhile,
a third spline was constructed to optimize the orientation
connection with tool tip position. Jin et al. [20] proposed a
dual-Bézier based method, and Shi et al. [21] blended cor-
ner with a pair of PH curves. Different from the coupled
methods [19]–[21], Tulsyan et al. [22] proposed a decoupled
method, which uses a quintic B-spline to blend tool tip posi-
tion and a near-unit B-spline for tool orientation respectively.
The control points are optimized to achieve C3 continuity
at the junctions while respecting pre-given tolerance. How-
ever, due to the optimization in the calculation of control
points, this method is hard to be employed in real-time.
Yang and Yue [23] smoothed the tool tip position in PCS and
the tool orientation in MCS, respectively. The tool orienta-
tion smoothing error was indirectly constrained with forward
kinematics.

In this paper, an analytical decoupled local smoothing
method for five-axis linear tool paths is proposed. The tool
tip position is smoothed with an asymmetric cubic B-spline,
and the tool orientation is smoothed with a pair of symmetric
quartic spherical Bézier within the given tolerances, which
guarantees unit property of tool orientation vector. In this
method, the approximation error bounds for both tool tip
position and tool orientation are analytical.Meanwhile, a syn-
chronous scheme is used to synchronize tool tip position and
tool orientation and achieve C2 continuity simultaneously.
Because all the calculations are analytical, the proposed
method can be employed in real-time.

The remainder of this paper is organized as follows.
In Section 2, the asymmetric cubic B-spline based transition
scheme for tool tip position is introduced. In Section 3,
the principle of spherical Bézier curve is provided, and then,
the tool orientation transition scheme is introduced. The
details of the local smoothing procedure are described in
Section 4. In Section 5, simulation and experimental valida-
tions are presented. The conclusions are given in Section 6.

II. TOOL TIP POSITION SMOOTHING
A linear five-axis path is represented by tool tip positions
pi = [xi, yi, zi] and tool orientation vectors oi = [ii, ji, ki],
where i ∈ [0, n] is the index of the discrete points, and
oi are unit vectors, i.e. i2i + j2i + k2i = 1. In the proposed
method, sharp corner is blended with an asymmetric cubic
B-spline for tool tip position and a pair of symmetric quartic
spherical Bézier curves for tool orientation vector. In our
previous work [14], a cubic B-spline based transition scheme
for three-axis tool path is introduced, the blending lengths in
two neighboring linear segments are equal. However, in this
proposedmethod, the blending lengths are adjusted unequally
to synchronize tool tip position and tool orientation.

A. PRELIMINARY OF CUBIC B-SPLINE
The cubic B-spline is utilized to blend the linear segments of
tool tip position, which is defined as [24]

C (u) =
n∑
i=0

Ni,3 (u)Qi, u ∈ [0, 1] , (1)

where Qi are the control points, Ni,3 (u) is the i-th cubic
B-spline basis function, which is defined as

Ni,0(u) =

{
0, ui ≤ u ≤ ui+1
1, otherwise

,

Ni,k (u) =
u− ui

ui+k − ui
Ni,k−1(u)+

ui+k+1 − u
ui+k+1 − ui+1

Ni+i,k−1(u),

(2)

where U = [u0, u1, . . . , um] is the knot vector.

B. TRANSITION SCHEME FOR TOOL TIP POSITION
As shown in Fig.1, a cubic B-spline C (u) is constructed
to blend the tool tip position corner defined by two

FIGURE 1. The transition cubic B-spline of the neighboring tool tip
positions.
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linear segments p0p1 and p1p2. To achieve tangential
and acceleration continuities at the junctions Q0 (u = 0)
and Q4 (u = 1), the knot vector is constructed as U =

[0, 0, 0, 0, 0.5, 1, 1, 1, 1], the first two control points
Q0 and Q1 are located in the linear segment p0p1, the last
two points Q3 and Q4 are located in the linear segment p1p2
meanwhile, the third control point Q2 coincides with p1.
The second derivatives of the cubic B-spline with respect

to arc length s at two junctions are

d2C (u)
ds2

∣∣∣∣
u=0
=

d2C (u)
du2

(
du
ds

)2

+
dC (u)
du

d2u
ds2

∣∣∣∣∣
u=0

,

d2C (u)
ds2

∣∣∣∣
u=1
=

d2C (u)
du2

(
du
ds

)2

+
dC (u)
du

d2u
ds2

∣∣∣∣∣
u=1

, (3)

where

dC (u)
du

∣∣∣∣
u=0
= 6cl1u1,

d2C (u)
du2

∣∣∣∣
u=0
= 12 (1− 2c) l1u1,

dC (u)
du

∣∣∣∣
u=1
= 6cl2u2,

d2C (u)
du2

∣∣∣∣
u=1
= 12 (2c− 1) l2u2,

du
ds

∣∣∣∣
u=0
=

1
6cl1

,
d2u
ds2

∣∣∣∣
u=0
=

2c− 1

18c3l21
,

du
ds

∣∣∣∣
u=1
=

1
6cl2

,
d2u
ds2

∣∣∣∣
u=1
=

1− 2c

18c3l22
, (4)

where l1 and l2 are the blending lengths, u1 and u2 are the
unit vectors along p1p0 and p1p2 respectively, as shown
in Fig. 1. By setting c = 0.5, the second derivatives in Eq.(4)
equal zero, which guarantees the G2 continuity, meanwhile
simplifies the calculation of tool orientation transition.

The approximation error bound is

εb =
l
2
cos

θ

2
, (5)

where l = max (l1, l2), and θ is the angle between
u1 and u2.The proof is provided in Appendix A. To ensure
the approximation accuracy, the blending lengths must be
constrained.

As shown in Fig. 1, the blended lengths are |Q0Q2| =

3l1
/
2 and |Q2Q4| = 3l2

/
2 respectively. Because each

linear segment except the two end ones is blended by two
corners, the maximum blending length can be consequently
defined by

l ≤ min
{
2εtip sec

θ

2
,
L1
3
,
L2
3

}
, (6)

where εtip is the specified tolerance of the tool tip position,
L1 and L2 are the lengths of p1p0 and p1p2 respectively.

III. TOOL ORIENTATION SMOOTHING
A. PRELIMINARY OF SPHERICAL BÉZIER CURVE
The spherical Bézier curve constructed with the de Castljau
form lies on the unit sphere, which is suitable for describing

the tool orientation vector [9]. The spherical Bézier curve of
degree j is defined as

Bjk (v) =


Bk , j = 0

Bj−1k (v) sin[θ (1−v)]+ Bj−1k+1 sin(θv)

sin θ
, j > 0

(7)
where the three dimensional vectors Bk satisfying |Bk | = 1
are the control points, v ∈ [0, 1] is the parameter, and
θ = arccos

[
Bj−1k (v) · Bj−1k+1 (v)

]
is the angle between

Bj−1k (v) and Bj−1k+1 (v).
The first and second derivatives for the quartic spherical

Bézier curve at two end points are provided in Appendix B.
It can be found that, the curve passes through the first and
last control points, the first derivatives at two end points
of a segment depend only on the first and last two control
points, and the second derivatives depend only on the first and
last three control points. With these benefits, two symmetric
quartic spherical Bézier curves are utilized to blend the tool
orientation corner.

B. TRANSITION SCHEME FOR TOOL ORIENTATION
A corner of tool orientation is shown in Fig. 2, two sym-
metric quartic spherical Bézier curves B1 (v) and B2 (v) are
constructed to blend the corner. To simplify the calculation,
the control points B0, B1, and B2 lie on a great circle of the
unit sphere, B2, . . . ,B6 and B6, B7, B8 are similar. θi is the
angle between Bi and Bi+1 on the great circle. β1 and β2 are
the angles between o1 and B2, B6 respectively.

FIGURE 2. The transition scheme for tool orientation.

Furthermore, B1 (v) and B2 (v) are constructed symmet-
rically, i.e. θ0 = θ7, θ1 = θ6, θ2 = θ5, θ3 = θ4 and
β1 = β2 = β. Because tool tip position is blended by one
B-spline, while tool orientation is blended by two curves,
the mapping between the parameter v of B1 (v), B2 (v) and
the parameter u of the tool tip position blended curve C (u)
must be defined. To simplified the calculation, the mappings
are defined as v = 2u, (u ∈ [0, 0.5]) for B1 (v), v =
2 (u− 0.5) , (u ∈ [0.5, 1]) for B2 (v).
The linear segments ô0o1 and ô1o2 are represented with

linear spherical curves [25]

o1 (u) =
o0 sin [φ (1− u)]+ o1 sin (uφ)

sinφ

o2 (u) =
o1 sin [ψ (1− u)]+ o2 sin (uψ)

sinψ
(8)
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where u ∈ [0, 1] is the parameter, φ = arccos o0o1 and ψ =
arccos o1o2 are the angles for ô0o1 and ô1o2 respectively.
Note that, the tool tip position linear segment p0p1 is

p(u) = (1−u)p0+up1, u ∈ [0, 1]. To synchronize the tool tip
position and tool orientation, the the tool tip position junction
point Q0 and tool orientation junction point B0 should have
the same parameter u, which means the ratio of the blended
angle 6 B0oo1

/
6 o1oB8 to the total angle φ

/
ψ should equal

to the ratio of the blended length |Q0p1|
/
|p1Q4| to the total

path length L1
/
L2, i.e. the following relationship should be

satisfied:
θ0 + θ1 + β

φ
=
(1+ c) l1

L1
=

3l1
2L1

,

θ6 + θ7 + β

ψ
=
(1+ c) l2

L2
=

3l2
2L2

. (9)

As mentioned in [19], in order to achieve feedrate and
acceleration continuities at the junction points B0, B4 and B8,
the following relationships must be satisfied:

do1 (u)
ds

∣∣∣∣
B0

=
dB1 (v)

ds

∣∣∣∣
u=0
,

d2o1 (u)
ds2

∣∣∣∣
B0

=
d2B1 (v)

ds2

∣∣∣∣
u=0
,

do2 (u)
ds

∣∣∣∣
B8

=
dB2 (v)

ds

∣∣∣∣
u=1
,

d2o2 (u)
ds2

∣∣∣∣
B8

=
d2B2 (v)

ds2

∣∣∣∣
u=1
,

dB1 (v)
ds

∣∣∣∣
v=1
=

dB2 (v)
ds

∣∣∣∣
v=0
,

d2B1 (v)
ds2

∣∣∣∣
v=1
=

d2B2 (v)
ds2

∣∣∣∣
v=0
. (10)

These relationships can be ensured with Theorem 1 and
Theorem 2.
Theorem 1: As shown in Fig. 2, if θ0 = θ1 = 3l1φ

/
8L1

holds, then o1 (u) and B1 (v) is C2 continuous with respect to
tool tip position length parameter s at B0.

Proof: The first and second derivatives of o1 (u) with
respect to tool tip position length s at the junction point B0
are
do1 (u)
ds

∣∣∣∣
B0

=
φ

L1 sinφ
[o1 cos (φ − β − θ0 − θ1)

− o0 cos (β + θ0 + θ1)] ,
d2o1 (u)
ds2

∣∣∣∣
B0

= −
φ2

L12 sinφ
[o1 sin (φ − β − θ0 − θ1)

+ o0 sin (β + θ0 + θ1)] . (11)

With Eqs.(4), (27) and (28), the first and second derivatives
of B1 (v) at the junction point B0 are

dB1 (v)
ds

∣∣∣∣
u=0
=

dB1 (v)
dv

dv
du

du
ds

∣∣∣∣
u=0

=
8θ0

3l1 sinφ
[−o0 cos (β + θ0 + θ1)

+ o1 cos (β + θ0 + θ1 − φ)] ,

d2B1 (v)
ds2

∣∣∣∣
u=0
=

(
d2B1 (v)

dv2
dv
du

du
ds
+

dB1 (v)
dv

dv
du

d2 u
ds2

)∣∣∣∣
u=0

= −
o0

9l21 sinφ

[
−48 (θ0−θ1) cos (β+θ0+θ1)

+ 64θ02 sin (β+θ0+θ1)
]

+
o1

9l21 sinφ

[
64θ02 sin (β+θ0+θ1−φ)

− 48 (θ0−θ1) cos (β+θ0+θ1−φ)
]
. (12)

It can be found that, if the following relation holds, Eq. (10)
is satisfied, i.e. o1 (u) and B1 (v) is C2 continuous at B0.

θ0 = θ1 =
3l1φ
8L1

. (13)

Similarly, we can also prove that, if θ6 = θ7 = 3l2ψ
/
8L2

holds, o2 (u) andB2 (v) areC2 continuous with respect to tool
tip position length s at B8.
Except two end junctions, B1 (v) and B2 (v) should be C2

continuous atB4 too, which can be guaranteed byTheorem2.
Theorem 2: If θ2 = θ3 = θ4 = θ5 holds, B1 (v) and B2 (v)

are C2 continuous at B4.
Proof: Note that, the first and second derivatives dv

/
ds

and d2v
/
ds

2
for B1 (v) and B2 (v) at B4 are equal. Therefore,

the fifth and sixth equations in Eq. (10) can be rewritten as

dB1 (v)
dv

∣∣∣∣
v=1
=

dB2 (v)
dv

∣∣∣∣
v=0
,

d2B1 (v)
dv2

∣∣∣∣
v=1
=

d2B2 (v)
dv2

∣∣∣∣
v=0
. (14)

With Eq. (28), Eq. (14) can be rewritten as

5θ3
sin θ3

(B4 cos θ3 − B3)

=
5θ4
sin θ4

(B5 − B4 cos θ4) ,

12θ3
sin θ3

[
θ3cos2θ3
sin θ3

B4−

(
θ3 cos θ3
sin θ3

+
θ2 cos θ2
sin θ2

)
B3+

θ2

sin θ2
B2

]
+ 12

(θ3 − θ2)

sin2θ3
[B4 (cos θ3 sin θ3 − θ3)

−B3 (sin θ3 − θ3 cos θ3)]− 4θ23B4 = −4θ24B4

+
12θ4
sin θ4

[
θ4cos2θ4
sin θ4

B4 −

(
θ4 cos θ4
sin θ4

+
θ5 cos θ5
sin θ5

)
B5

+
θ5

sin θ5
B6

]
−

12 (θ4 − θ5)

sin2θ4

× [B4 (θ4 − sin θ4 cos θ4)+ B5 (sin θ4 − θ4 cos θ4)] .

(15)
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Obviously, if θ2 = θ3 = θ4 = θ5 holds, then Eq. (15) is
satisfied, in other words, B1 (v) and B2 (v) are C2 continuous
at B4. �
BecauseB1 (v) andB2 (v) are symmetrical, similarly to the

tool tip spline, the maximum orientation approximation error
occurs at B4, which is evaluated as

εo = arccos (o1 · B4)

= arccos(
cosβ

√
2 sinφ sinψ

2 sinφ sinψ−sin2 β [cos (φ−ψ)−o0 · o2]

)
(16)

It can be seen that, the maximum orientation approxima-
tion error only depends on β. For a given orientation error
tolerance limit εori, β is constrained by

β ≤ arccos

√
[2 sinφ sinψ−cos (φ−ψ)−o0 · o2] cos2εori
2 sinφ sinψ−[cos (φ−ψ)−o0 · o2] cos2εori

.

(17)

With Eqs. (9) and (13) the blended angles in Fig. 2 are
6 B0oo1 = 6 o1oB8 = 2β. Similarly to the tool tip position,
a linear segment of tool orientation is blended by two corners,
thus the blending angle of tool orientation must satisfy the
following relation

β ≤ min

φ4 , ψ4 ,
arccos

√
[2 sinφ sinψ − cos(φ − ψ)− o0 · o2] cos2 εori
2 sinφ sinψ − [cos (φ − ψ)− o0 · o2] cos2εori


(18)

Once β is obtained, the angles θi (i = 0, . . . , 7) can all
be calculated, and the control points can be constructed
with Fig.2.

IV. REAL-TIME C2 CONTINUOUS LOCAL
SMOOTHING PROCEDURE
In this section, the main steps of the proposed real-time
C2 continuous local smoothing method are summarized
in detail.

The local smoothing method for five-axis linear tool path
must consider the constraints of approximation errors, syn-
chronization and continuity. The approximation error bounds
for the tool tip positions and tool orientations are eval-
uated with Eqs. (5) and (16), and the blending lengths
and angle are constrained by Eqs. (6) and (18). The con-
straints of synchronization are defined by Eq. (9). Theo-
rem 1 and Theorem 2 show the conditions for the constraint
of C2 continuity. As we can see, if the suitable blending
lengths and angles are determined, all the constraints will be
satisfied.

The main steps of the proposed local smoothing procedure
are summarized in detail as follows.
Step I: Calculate the tool tip position blending lε and

the tool orientation blending angle βε with the given error
tolerances εtip and εori using Eqs. (6) and (18).
Step II:Adjust the blending lengths and angle with Eq. (19)

to achieve C2 continuity:

β = min
{
βε,

3lεφ
4L1

,
3lεψ
4L2

}
,

l1 =
4L1β
3φ

, l2 =
4L2β
3ψ

. (19)

Step III: Calculate θi (i = 0, . . . , 7) with

θ2 = θ3 = θ4 = θ5

=
1
2
arcsin

(
sinβ

√
cos (φ − ψ)− o0 · o2

2 sinφ sinψ

)
,

θ0 = θ1 = θ6 = θ7 =
β

2
. (20)

Step IV: Construct the control points of tool tip posi-
tion with Fig. 1, and the control points of tool orientation
with Fig. 2.

V. SIMULATION AND EXPERIMENTAL VALIDATION
To validate the feasibility of the proposed local path
smoothing method, simulations and experiments are con-
ducted on a TRT five-axis CNC machine tool with open

FIGURE 3. The experimental platform. (a) The layout of the experimental
platform. (b) The kinematic configuration of the five-axis machine tool.
(c) The experimental tool path.
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FIGURE 4. The simulation and experimental results. (a) Original and final blending lengths for tool tip position. (b) Original and final blending angles
for tool orientation. (c) Tool tip position approximation errors. (d) Tool orientation approximation errors. (e) Feedrate comparison for the original linear
tool path and the smoothed tool path. (f) Actual and original scheduled feedrate. (g) Actual and scheduled velocities of the rotary axes. (h) Actual and
scheduled velocities of the translational axes. (i) Actual and original tool tip positions. (j) Actual and original tool orientations.

development environment. The layout of the system architec-
ture for experiments is illustrated in Fig. 3 (a). The kinematic
configuration of the CNC machine is shown in Fig. 3 (b).

Given tool position p = [x, y, z] and tool orientation vector
o = [i, j, k], the inverse kinematics transformation from
part coordinate system to the machine coordinate system is
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expressed as

ma = arccos(k)
mc = arctan i

j

mx = x cosmc + (Ly − y) sinmc
my = Ly + x cosma sinmc
+
(
y− Ly

)
cosma cosmc + (Lz − z) sinma,

mz = Lz + x sinma sinmc
+
(
y− Ly

)
sinma cosmc + (z− Lz) cosma,

(21)

where ma, mc, mx , my and mz are the positions of the drive
axes. The offsets of the rotary table are Ly = 0 mm and
Lz = 41 mm, respectively. The machine tool is controlled
by real-time controller dSPACE DS1006, and driven by
YASKAWA SGDV series servo drivers and SGMJV motors.
The standard PID controller is employed for each drive axis.

First, a five-axis linear tool path with 23 corners as shown
in Fig. 3 (c) is smoothed with the proposed method. The
simulation is conducted with MATLAB 2014b on a PC with
Intel(R) Core(TM) i7-4770K 3.50 GHz CPU and 8GBRAM.
The tolerances for tool tip position εtip and tool orientation
εori are 0.1 mm and 0.1◦ respectively. The original blending
lengths defined by the tolerances εtip and the final blending
lengths l = max (l1, l2) are shown in Fig. 4 (a), the original
blending angles defined by the tool orientation tolerance εori
and the final blending angles β are shown in Fig. 4 (b).
We can find that, after the synchronization, the blending
lengths and angles are adjusted. In this example, because
the tolerance of tool tip position is stricter than that of tool
orientation, the final blending angles are smaller than the
original ones. The actual approximation errors are also pro-
vided in Fig. 4 (c) (d). As we can see, the actual errors of
tool tip position and tool orientation are within the given
tolerances. Unlike [22], the computations are all analytical.
In this experiment, the total computational time for the path
is 11 ms, and the average computational time for one corner
is 0.48 ms. Therefore, the proposed method can be applied in
real-time.

Second, the smoothed tool path is interpolated with the
look-ahead method [14]. As a comparison, the original linear
path is also interpolated. The resulting feedrate is shown
in Fig. 4 (e). We can find that, the time elapsed is reduced
from 14 s to 6.4 s, the efficiency is improved by 54.3%.

At last, the generated trajectory is send to the controller,
and air-cutting experiments are conducted with the smoothed
path on the five-axis CNC machine. The aim of this experi-
ment is to test the tracking performance of the smoothed path
by comparing the actual feedrate, velocities of each axis with
the scheduled ones. The actual feedrate is shown in Fig. 4 (f),
and the velocities of each axis are shown in Fig. 4 (g) (h),
where the actual velocities are identified by subscript a, and
the scheduled ones are identified by subscript s. We can find
that, the actual velocities and feedrate have good agreement
with the scheduled ones, which implies the smoothed path is
easy to track for the controller. The actual tool tip positions

and tool orientations are shown in Fig. 4 (i) (j), we can find
the actual path nearly coincides with the smoothed path.

VI. CONCLUSION
In this paper, an analytical decoupled tool path local smooth-
ing method for five-axis machining is proposed.

Compared with the existing works, the proposed method
has the following advantages: (1) Tool orientation vector is
smoothed with a pair of symmetric quartic spherical Bézier
curves, which guarantees the unit property of tool orienta-
tion vector. (2) The C2 continuity can be achieved with the
synchronous path smoothing scheme. (3) The synchronous
scheme and the approximation error bounds for both tool
tip position and tool orientation are analytical; therefore,
the proposed method can be employed in real-time.

Simulations and experiments are conducted on a TRT
five-axis machine tool. The results demonstrate the efficiency
and effectiveness of the proposed tool path local smoothing
methodology.

APPENDIX A
PROOF OF EQ. (5)
Assuming Ce (u) is the transition B-spline with equal blend-
ing length l1, and Cn (u) is the transition B-spline with
unequal blending length, as shown in Fig. 5. By insert-
ing knot u = 0.5 twice, Ce (u) can be transformed
into two Bézier curves Be1 (u) and Be2 (u), which are
defined by control points Qe0, Qe1, Qe2, Qe3 and
Qe3, Qe4, Qe5, Qe6 respectively [22]. Similarly, Cn (u) can
be transformed into two Bézier curves Bn1 (u) and Bn2 (u),
which are defined by control points Qn0, Qn1, Qn2, Qn3
and Qn3, Qe4, Qe5, Qe6 respectively.

FIGURE 5. Analysis of the tool tip position approximation error.

The upper approximation error bound in Eq. (5) can be
proved with the following two theorems:
Theorem 3: The approximation error of Cn (u) is smaller

than the error of Ce (u).
Theorem 4: The maximum approximation error of Ce (u)

is l1 cos(θ/2)/2.

A. PROOF OF THEOREM 3
Because three control points of Be1 (u) and Be2 (u) are
collinear, with the variation diminishing property [22], it can
be found that the Bézier curves do not wiggle, which implies
that the transition B-spline Ce (u) is in the left side of its
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tangent vector. Therefore, to prove Theorem 3, we only
need to prove Cn (u) is in the right side of the tangent
vector of Ce (u).

The control points of Be1 (u), Be2 (u), Bn1 (u) and Bn2 (u)
are

Qe0 = p1 +
3
2
l1u1, Qe1 = p1 + l1u1,

Qe2 = p1 +
1
2
l1u1,Qe3 = p1 +

u1 + u2
4

l1,

Qe4 = p1 +
1
2
l1u2, Qe5 = p1 + l1u1,

Qe6 = p1 +
3
2
l1u1,Qn0 = p1 +

3
2
l2u1, Qn1 = p1 + l2u1,

Qn2 = p1 +
1
2
l2u1, Qn3 = p1 +

l2u1 + l1u2
4

. (22)

Then, the Bézier curves, the tangent vector T1 (u) of
Be1 (u) and the tangent vector T2 (u) of Be2 (u) are expressed
as

Be1 (u) = p1 +
3
2
(1− u)3l1u1 + 3u(1− u)2l1u1

+
3
2
u2 (1− u) l1u1 + u3l1

u1 + u2
4

,

Bn1 (u) = p1 +
3
2
(1− u)3l2u1 + 3u(1− u)3l2u1

+
3
2
u2 (1− u) l2u1 + u3

l2u1 + l1u2
4

,

Be2 (u) = p1 + (1− u)3l1
u1 + u2

4
+

3
2
u(1− u)2l1u2

+ 3u2 (1− u) l1u2 +
3
2
u3l1u2,

Bn2 (u) = p1 + (1− u)3
l2u1 + l1u2

4
+

3
2
u(1− u)2l1u2

+ 3u2 (1− u) l1u2 +
3
2
u3l1u2,

T1 (u) = −
3
2
(1− u)2l1u1 − 3u (1− u) l1u1

+ 3u2l1
u2 − u1

4
,

T2 (u) = (1− u)2l1
u2 − u1

4
+ 3u (1− u) l1u2 +

3
2
u2l1u2.

(23)

The Bézier curves Bn1 (u) and Bn2 (u) is in the right side
of T1 (u) and T2 (u) for u ∈ [0, 1] can be proved by

[Bn1 (u)− Be1 (u)]× T1 (u)

=

[
−
3
2
(1− u)3 − 3u(1− u)3 −

3
2
u2 (1− u)−

1
4
u3
]
1lu1

×

[
15
2
(1− u)2l1u1 − 3u (1− u) l1u1 + 3u2l1

u2 − u1
4

]
=

[
3
2
(1− u)3 + 3u(1− u)3 +

3
2
u2 (1− u)+

1
4
u3
]

×
3u2l11l

4
sin θ ≥ 0,

[Bn2 (u)− Be2 (u)]× T2 (u) = −(1− u)31lu1

×

[
(1− u)2l1

u2 − u1
4
+ 3u (1− u) l1u2 +

3
2
u2l1u2

]
= (1− u)3

[
(1−u)2

1
4
+3u (1− u)+

3
2
u2
]
l11l sin θ ≥ 0.

(24)

where 1l = l1 − l2 > 0. �

B. PROOF OF THEOREM 4
SinceCe (u) can be transformed into two symmetrical Bézier
curves Be1 (u) and Be2 (u), the approximation error is also
symmetrical. The approximation error of Be1 (u) is analyzed
here.

Because the linear segment Qe0p1 can be expressed
as Bézier curve L (u) defined by the control points
Qe0, Qe1, Qe2, p1. The deviation L (u) and Be1 (u) can
be evaluated as

εt (u) = ‖L (u)− Be1 (u)‖ = u3 ‖p1 −Qe3‖ (25)

Therefore, the maximum approximation error occurs at
u = 1, and the maximum approximation error is

εt max =
l1
2
cos

θ

2
. (26)

where θ is the angle of 6 p0p1p2. �

APPENDIX B
DERIVATIVES OF THE QUARTIC SPHERICAL
BÉZIER CURVE AT TWO ENDS
For the quartic spherical Bézier curve of degree j, the first
derivatives at v = 0 and v = 1 are

dB (v)
dv

∣∣∣∣
v=0
=

4θ0
sin θ0

(B1 − B0 cos θ0) ,

θ0 = arccos (B0 · B1) ,

dB (v)
dv

∣∣∣∣
v=1
=

4θ3
sin θ3

(B4 − B3 cos θ3) ,

θ3 = arccos (B3 · B4) . (27)

The second derivatives at v = 0 and v = 1 are

d2B (v)
dv2

∣∣∣∣
v=0

= −4B0θ0
2
+

12θ0
sin2θ0 sin θ1

× [θ1 sin θ0 (B2 − B1 cos θ1)− θ0 cos θ0 sin θ1
× (B1 − B0 cos θ0)]

−
12

sin θ1sin3θ0
[θ0 sin θ0 sin θ1 + θ1

× (B0 · B2 − cos θ0 cos θ1)]

× [B1 (sin θ0 − θ0 cos θ0)+ B0 (θ0 − sin θ0 cos θ0)]

(28)
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d2B (v)
dv2

∣∣∣∣
v=1

= −4B4θ
2
3 +

12θ3
sin θ3

×

[
θ3 cos θ3
sin θ3

(B4 cos θ3 − B3)−
θ2

sin θ2
× (B3 cos θ2 − B2)]

−
12

sin θ2sin3θ3
[θ3 sin θ2 sin θ3 + θ2

× (B2 · B4 − cos θ2 cos θ3)
]

× [B3 (sin θ3 − θ3 cos θ3)+ B4 (θ3 − cos θ3 sin θ3)] .

(29)

REFERENCES
[1] Manual 5-axis machining, Siemens, 2009.
[2] User’s Manual HEIDENHAIN Conversational Programming, Heidenhain,

2014.
[3] T. Otsuki and H. Shiobara, ‘‘5-axis machining features FANUC series 30i-

model A/31i-model A5,’’ Fanuc Tech. Rev., vol. 19, pp. 1–6, Jan. 2006.
[4] S. S. Makhanov, ‘‘Adaptable geometric patterns for five-axis machining:

A survey,’’ Int. J. Adv. Manuf. Technol., vol. 47, nos. 9–12, pp. 1167–1208,
2010.

[5] J. M. Langeron, E. Duc, C. Lartigue, and P. Bourdet, ‘‘A new format for
5-axis tool path computation, using Bspline curves,’’ Comput.-Aided Des.,
vol. 36, pp. 1219–1229, Oct. 2004.

[6] Y. Wang, X. Ma, L. Chen, and Z. Han, ‘‘Realization methodology of a
5-axis spline interpolator in an open CNC system,’’ Chin. J. Aeronaut.,
vol. 20, no. 4, pp. 362–369, 2007.

[7] W. Zhang, Y. F. Zhang, and Q. J. Ge, ‘‘Interference-free tool path genera-
tion for 5-axis sculptured surface machining using rational Bézier motions
of a flat-end cutter,’’ Int. J. Prod. Res., vol. 43, no. 19, pp. 4103–4124,
2005.

[8] Q. Bi, Y. Wang, L. Zhu, and H. Ding, ‘‘An algorithm to generate compact
dual NURBS tool path with equal distance for 5-axis NC machining,’’ in
Proc. Int. Conf. Intell. Robot. Appl. Berlin, Germany: Springer, 2010, pp
553–564.

[9] X. Zhao, H. Zhao, X. Li, and H. Ding, ‘‘Path smoothing for five-axis
machine tools using dual quaternion approximationwith dominant points,’’
Int. J. Precis. Eng. Manuf., vol. 18, no. 5, pp. 711–720, 2017.

[10] R. V. Fleisig and A. D. Spence, ‘‘A constant feed and reduced angular
acceleration interpolation algorithm for multi-axis machining,’’ Comput.-
Aided Des., vol. 33, pp. 1–15, Jan. 2001.

[11] A. Yuen, K. Zhang, and Y. Altintas, ‘‘Smooth trajectory generation for
five-axis machine tools,’’ Int. J. Mach. Tools Manuf., vol. 71, pp. 11–19,
Aug. 2013.

[12] J. Yang and Y. Altintas, ‘‘Generalized kinematics of five-axis serial
machines with non-singular tool path generation,’’ Int. J. Mach. Tools
Manuf., vol. 75, pp. 119–132, Dec. 2013.

[13] K. Yang and S. Sukkarieh, ‘‘An analytical continuous-curvature path-
smoothing algorithm,’’ IEEE Trans. Robot., vol. 26, no. 3, pp. 561–568,
Jun. 2010.

[14] H. Zhao, L. Zhu, and H. Ding, ‘‘A real-time look-ahead interpolation
methodology with curvature-continuous B-spline transition scheme for
CNC machining of short line segments,’’ Int. J. Mach. Tools Manuf.,
vol. 65, pp. 88–98, Feb. 2013.

[15] W. Fan, C.-H. Lee, and J.-H. Chen, ‘‘A realtime curvature-smooth inter-
polation scheme and motion planning for CNC machining of short line
segments,’’ Int. J. Mach. Tools Manuf., vol. 96, pp. 27–46, Sep. 2015.

[16] M. Duan and C. Okwudire, ‘‘Minimum-time cornering for CNC machines
using an optimal control method with NURBS parameterization,’’ Int.
J. Adv. Manuf. Technol., vol. 85, pp. 1405–1418, Jul. 2015.

[17] X. Beudaert, P.-Y. Pechard, and C. Tournier, ‘‘5-Axis tool path smooth-
ing based on drive constraints,’’ Int. J. Mach. Tools Manuf., vol. 51,
pp. 958–965, Dec. 2011.

[18] Q. Bi, J. Shi, Y. Wang, L. Zhu, and H. Ding, ‘‘Analytical curvature-
continuous dual-Bézier corner transition for five-axis linear tool path,’’ Int.
J. Mach. Tools Manuf., vol. 91, pp. 96–108, Apr. 2015.

[19] X. Beudaert, S. Lavernhe, and C. Tournier, ‘‘5-axis local corner rounding
of linear tool path discontinuities,’’ Int. J. Mach. Tools Manuf., vol. 73,
pp. 9–16, Oct. 2013.

[20] Y. Jin, Q. Bi, and Y.Wang, ‘‘Dual-Bézier path smoothing and interpolation
for five-axis linear tool path in workpiece coordinate system,’’ Adv. Mech.
Eng., vol. 7, pp. 1–7, Jul. 2015.

[21] J. Shi, Q. Bi, L. Zhu, and Y. Wang, ‘‘Corner rounding of linear five-axis
tool path by dual PH curves blending,’’ Int. J. Mach. Tools Manuf., vol. 88,
pp. 223–236, Jan. 2015.

[22] S. Tulsyan and Y. Altintas, ‘‘Local toolpath smoothing for five-axis
machine tools,’’ Int. J. Mach. Tools Manuf., vol. 96, pp. 15–26, Sep. 2015.

[23] J. Yang and A. Yuen, ‘‘An analytical local corner smoothing algorithm for
five-axis CNCmachining,’’ Int. J. Mach. ToolsManuf., vol. 123, pp. 22–35,
Dec. 2017.

[24] L. A. Piegl, W. Tiller, The NURBS Book, 2nd. New York, NY, USA:
Springer, 1997.

[25] T. A. Foley, D. A. Lane, G. M. Nielson, and R. Ramaraj, ‘‘Visualizing
functions over a sphere,’’ IEEE Comput. Graph. Appl., vol. 10, no. 1,
pp. 32–40, Jan. 1990.

XIN ZHAO received the B.E. degree from the
School of Mechanical Science and Engineering,
Huazhong University of Science and Technology,
Wuhan, China, in 2013, where he is currently
pursuing the Ph.D. degree. His research interests
include CNC interpolation, motion planning, and
robotic assembly.

HUAN ZHAO received the B.E. degree from the
School of Mechanical Science and Engineering,
Jilin University, Changchun, China, in 2006, and
the Ph.D. degree from the School of Mechan-
ical Engineering, Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2013. From 2013 to
2015, he was a Postdoctoral Researcher with the
Huazhong University of Science and Technology,
where he has been an Associate Professor, since
2015. His research interests include force con-

trol, visual servoing, and machine learning with applications to robotic
machining.

SHAOHUA WAN received the joint Ph.D. degree
from the School of Computer, Wuhan University,
and from the Department of Electrical Engineering
and Computer Science, Northwestern University,
USA, in 2010. Since 2015, he held a Postdoctoral
position with the State Key Laboratory of Dig-
ital Manufacturing Equipment and Technology,
Huazhong University of Science and Technology.
From 2016 to 2017, he was a Visiting Scholar
with the Department of Electrical and Computer

Engineering, Technical University of Munich, Germany. He is currently an
Associate Professor and the Master Advisor with the School of Information
and Safety Engineering, Zhongnan University of Economics and Law. His
main research interests include massive data computing for the Internet of
Things and edge computing.

VOLUME 7, 2019 22771



X. Zhao et al.: Analytical Decoupled Corner Smoothing Method for Five-Axis Linear Tool Paths

XIANGFEI LI received the B.E. degree from
the School of Mechanical Science and Engineer-
ing, Jilin University, Changchun, China, in 2012.
He is currently pursuing the Ph.D. degree with
the Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests include
motion control and visual servoing.

HAN DING received the Ph.D. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 1989, where he has been a
Professor, since 1997, and also the Director of
the State Key Laboratory of Digital Manufactur-
ing Equipment and Technology. Supported by the
Alexander von Humboldt Foundation, he was with
the University of Stuttgart, Germany, from 1993 to
1994. He was a Cheung Kong Chair Professor with
Shanghai Jiao TongUniversity, from 2001 to 2006.

His research interests include robotics, multi-axis machining, and control
engineering. He was elected as the member of the Chinese Academy of Sci-
ences, in 2013. He served as an Associate Editor for the IEEE TRANSACTIONS

ON AUTOMATION SCIENCE AND ENGINEERING (TASE), from 2004 to 2007. He is
currently an Editor of the IEEE TASE and a Senior Editor of the IEEE
ROBOTICS AND AUTOMATION LETTERS.

22772 VOLUME 7, 2019


	INTRODUCTION
	TOOL TIP POSITION SMOOTHING
	PRELIMINARY OF CUBIC B-SPLINE
	TRANSITION SCHEME FOR TOOL TIP POSITION

	TOOL ORIENTATION SMOOTHING
	PRELIMINARY OF SPHERICAL BÉZIER CURVE
	TRANSITION SCHEME FOR TOOL ORIENTATION

	REAL-TIME C2 CONTINUOUS LOCAL SMOOTHING PROCEDURE
	SIMULATION AND EXPERIMENTAL VALIDATION
	CONCLUSION
	PROOF OF THEOREM 3
	PROOF OF THEOREM 4

	REFERENCES
	Biographies
	XIN ZHAO
	HUAN ZHAO
	SHAOHUA WAN
	XIANGFEI LI
	HAN DING


