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ABSTRACT Many problems of industrial and scientific interest require the solving of tridiagonal linear
systems. This paper presents several implementations for the parallel solving of large tridiagonal systems on
multi-core architectures, using the OmpSs programming model. The strategy used for the parallelization is
based on the combination of two different existing algorithms, PCR and Thomas. The Thomas algorithm,
which cannot be parallelized, requires the fewest number of floating point operations. The PCR algorithm
is the most popular parallel method, but it is more computationally expensive than Thomas. The method
proposed in this paper starts applying the PCR algorithm to break down one large tridiagonal system into a set
of smaller and independent ones. In a second step, these independent systems are concurrently solved using
Thomas. The paper also contains an analytical study of which is the best point to switch fromPCR to Thomas.
Also, the paper addresses the main performance issues of combining PCR and Thomas proposing a set of
alternative implementations, some of them even imply algorithmic changes. The performance evaluation
shows that the best implementation achieves a peak speedup of 4 with respect to the Intel MKL counterpart
routine and 2.5 with respect to a single-threaded Thomas.

INDEX TERMS Tridiagonal solve, multi-core, auto-tuning, OmpSs.

I. INTRODUCTION
The resolution of tridiagonal linear systems is required
in many problems of industrial and scientific interest.
Examples are: alternating direction implicit methods [1],
Poisson solvers [2], [3], cubic spline approximations [4],
numerical ocean models [5], preconditioners for iterative lin-
ear solvers [6] or the simulation of the human brain [7], [8].
Usually, the solving of tridiagonal systems takes most of the
computation time of these applications.

Most of the references of the related work (see Section VII)
are focused on solving multiple tridiagonal systems in
parallel. However, a major problem not addressed in previous

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

works is the efficient resolution of large tridiagonal systems
on multi-core architectures. This work focuses on this latter
problem for several reasons [9]: i) A set of independent sys-
tems can always be expressed as a single large system by
joining matrices into a large one. ii) A fast parallel solver
for a single system is the most generally applicable, being
even able to deal with irregularly sized systems with no
additional complexity. iii) A single system is the most diffi-
cult case to parallelize, because the problem has no inherent
independence to exploit from disjoint systems. iv) To min-
imize the memory transfer overhead, in those applications
which involve large enough systems and require partitioning.
The amount of communication and transfer overhead will
grow with the number of times each system is partitioned.
We should then prefer to send large integrated systems for
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minimal transfer overhead by facilitating parallel executions,
which does not need external communication.

Although the use of pivoting for the solving of linear
systems of equations is commonly accepted, we can find
multiples problems where the matrices to be solved are well-
conditioned, and so expensive computationally operations
like pivoting are not necessary. Due to this, it is possi-
ble to find multiples implementations in reference libraries,
which do not make use of such technique. Examples of
this are: MAGMA library,1 Intel MKL,2 NVIDIA cuSolver,3

NVIDIA cuSparse,4 just to mention a few. Regarding the
solving of tridiagonal systems, it is also easy to find mul-
tiples implementations, which do not make use of pivoting.
In the cuSparse library, the reference library for sparse oper-
ations on NVIDIA GPUs, we find five different routines,
which implement no-pivoting algorithms (gtsv_nopivot,
gtsv2_nopivot, gtsvStridedBatch, gtsv2StridedBatch, and
gtsvInterleavedBatch). Also, the BLKTRI routine of the
open-source FISHPACK package,5 makes use of no-pivoting
Thomas algorithm to compute tridiagonal systems [2], [3].
Other examples of implementations of no-pivoting solvers
for the computation of tridiagonal systems are introduced in
Section VII.

In this work, the authors propose a novel implementa-
tion based on the use of two no-pivoting existing methods,
Parallel Cyclic Reduction (PCR) and Thomas. The Thomas
algorithm is the optimal one in terms of number of floating
point operations, but it cannot be parallelized. The PCR one
requires many more floating point operations but it can be
aggressively parallelized. In fact, in many-core architectures,
the parallel execution can compensate the high computa-
tional cost. However, the differences found among both archi-
tectures, many-core (high-throughput oriented architectures)
and multi-core (low-latency oriented architectures), make
this last unsuitable to execute PCR. Still, in the context of
multi-core architectures, PCR can be used to break down a
large problem into a set of smaller independent ones. These
problems can then be solved using Thomas. As the systems
generated by PCR are independent, they can be solved in
parallel using different cores.

We make use of the open-source OmpSs programing
model [10] instead of others for the following reasons:
i) This model presents an efficient management of the
threads based on the use of queues, without the need of
dealing with the overhead found in others models, such
as the fork-join model used in OpenMP. ii) It allows
us to have a deeper control and analysis to evaluate the
threads scheduling and the potential benefits of the optimiza-
tions proposed. iii) OmpSs is specially well integrated with

1http://icl.cs.utk.edu/projectsfiles/magma/doxygen/group_group_gesv_
nopiv.html

2https://software.intel.com/en-us/mkl-developer-reference-c-mkl-
getrfnpi

3https://docs.nvidia.com/cuda/cusolver/index.html
4https://docs.nvidia.com/cuda/cusparse/
5https://www.netlib.org/fishpack/

the tools used for the performance evaluation Extrae and
Paraver.

This work contains several implementations of the
PCR+Thomas (P+T) algorithm that try to address several
problems. One of them is the poor data locality. The reasons
for this are that: the PCR algorithm generates strided memory
accesses, and the switch from PCR to Thomas (and viceversa)
requires data movements between strided memory positions
and consecutive ones. Another problem is that in multi-core
platforms, the parallel execution of PCR does not compensate
its higher computational cost. As a consequence, wemust pay
a special attention at the PCR part of the algorithm.

One of the key challenges in making the aforemen-
tioned strategy efficient consists in selecting the appropri-
ate switch point (SP) between both algorithms, PCR and
Thomas. The paper describes a general strategy that allows
to select automatically the best SP for a given platform
and input size. Unlike the time-consuming autotuning-based
approaches [11], [12], the proposed strategy is purely ana-
lytical and it requires just a few short calculations. This
analysis reveals that under certain conditions, the P+T algo-
rithm achieves the best performance when PCR generates
less independent systems than cores. This means that during
the Thomas part of the algorithm, the processor is underuti-
lized, but it also implies an important reduction of the power
consumption.

In summary, the contribution of this work is two-fold. First,
we develop different variants of a multi-stage and hybrid
tridiagonal solving which is able to efficiently compute
large tridiagonal systems on current multi-core architectures.
Our second contribution consists of a self-tuning implemen-
tation that attempts not only to reduce the execution time but
also to minimize the use of computational resources, achiev-
ing an energy-efficient implementation. The work described
in this paper is part of a novel open-source library for linear
algebra operations called LASs (Linear Algebra routines on
OmpSs).6

The rest of this paper is organized as follows. Section II
briefly introduces the problem at hand and the different
methodologies to deal with it. Section III explains the P+T
algorithm and describes the analytical method proposed to
select the best SP. Section IV explains in detail the alterna-
tive implementations of the P+T algorithm proposed in this
paper, as well as the optimizations explored and the memory
space occupied by each of the implementations involved
in this paper. A study about the stability of the proposed
methodology is performed in Section V. Section VI shows
the performance of these implementations and analyzes their
behavior using their respective traces. Section VII discusses
the related work and Section VIII concludes.

II. TRIDIAGONAL SYSTEMS
The best method to solve tridiagonal systems sequentially is
the Thomas algorithm [2], [3]. This method is a specialized

6https://pm.bsc.es/mathlibs/lass
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application of the Gaussian elimination that takes advantage
of the the tridiagonal structure of the system. It consists of
two stages, commonly denoted as forward elimination and
backward substitution.

The algorithm solves a linear Au = y system, where A is a
tridiagonal matrix:

A =


b1 c1 0
a2 b2 c2

. . .

. . .

an−1 bn−1 cn−1
an bn


Let us notice that the data structures required by this algo-

rithm are: three arrays (a, b and c) of size n representing the
three diagonals of the input matrix; and two additional vectors
of the same size, u and y, that store the unknowns of the
equation (to be calculated) and the right hand terms of the
equation, respectively. The implementation of this algorithm
do not really require the u array, as the result is overwritten
in array y, we have included u for the sake of clarity. The
algorithm starts with the forward stage that eliminates the
lower diagonal as follows:

c′1 =
c1
b1
, c′i =

ci
bi − c′i−1ai

for i = 2, 3, . . . , n− 1

y′1 =
y1
b1
, y′i =

yi − y′i−1ai
bi − c′i−1ai

for i = 2, 3, . . . , n− 1

and then the backward stage recursively solves each row in
reverse order:

un = y′n, ui = y′i − c
′
iui+1 for i = n− 1, n− 2, . . . , 1

Overall, the algorithm requires 8n operations in 2n − 1
steps, its main limitation being that it is not possible to
parallelize it.

Cyclic Reduction (CR) [2], [3], [13], [14] is a parallel
alternative to Thomas algorithm. It also consists of two phases
(reduction and substitution). In each intermediate step of the
reduction phase, all even-indexed (i) equations aixi−1+bixi+
cixi+1 = di are reduced. The values of ai, bi, ci and di are
updated in each step according to:

a′i = −ai−1k1, b′i = bi − ci−1k1 − ai+1k2
c′i = −ci+1k2, y′i = yi − yi−1k1 − yi+1k2

k1 =
ai
bi−1

, k2 =
ci
bi+1

After log2 n steps, the system is reduced to a single equation
that is solved directly. All odd-indexed unknowns xi are then
solved in the substitution phase by introducing the already
computed ui−1 and ui+1 values:

ui =
y′i − a

′
ixi−1 − c

′
ixi+1

b′i
Overall, the CR algorithm needs 17n operations and
2 log2 n − 1 steps. Figure 1-left graphically illustrates its
access pattern.

The most popular parallelizable method to solve
tridiagonal system is the Parallel Cyclic Reduction
(PCR) [2], [3], [13], [14] algorithm, which only has a sub-
stitution phase. For convenience, we consider cases where
n = 2s, that involve s = log2 n steps. This assumption is
common tomost implementations, and it can easily overcome
using padding and other well-known techniques. The coeffi-
cients a, b, c and y are updated as follows, for j = 1, 2, . . . , s
and k = 2j−1:

αi = −ai/bi−k , βi = −ci/bi+k
a′i = αiai−k , b′i = bi + αici−k + βiai+k
c′i = βici+k , y′i = yi + αiyi−k + βiyi+k

finally the solution is achieved as:

ui =
y′i
b′i

Essentially, at each reduction stage, the current system is
transformed into two smaller systems and after log2 n steps
the original system is reduced to n independent equations
of 1 element, which can be solved trivially. Overall, the oper-
ation count of PCR is 12n log2 n, which is much larger that the
operation count of Thomas. The main advantage of PCR over
Thomas is that it can be parallelized. Actually, its massively
parallel execution in many-core platforms compensate its
greater operation count. A very important problem of this
algorithm is the poor locality of its access pattern, which is
sketched in Figure 1-right. The first step of the algorithm uses
stride one, but in each step the stride is multiplied by 2, which
affects negatively to the cache performance. This is one of the
issues that we have to address in this work, as PCR is one of
the building blocks of our proposal.

There are more algorithms apart from the ones mentioned
above to solve tridiagonal systems, such as those based on
Recursive Doubling [13], among others. Although, we also
explore the use of CR, since it is one of the state-of-the-art
methodologies for the parallel solving of tridiagonal systems,
we mainly focus on PCR and Thomas, as a partial execution
of PCR allows to break down one big problem into smaller
ones, which can be solved concurrently in different cores, and
Thomas is the most efficient algorithm to be used within a
core.

In fact, hybrid combinations that try to exploit the best
of each algorithm have been explored [2], [3], [13]–[16] by
combining PCR + CR. However, as it is shown in this paper
and unlike the Thomas algorithm, the CR algorithm is in need
of many more arithmetic and memory operations, being not
as efficient within a single core as the Thomas method.

III. THE PCR + THOMAS METHOD
The method proposed in this paper, exemplified in Figure 2,
consists of combining the PCR and the Thomas algorithms.
We first process a prefixed number of PCR steps (or levels).
We will call this number the switch point (SP) from PCR
to Thomas. PCR is using here as a mean to break down a
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FIGURE 1. Access pattern of the CR (left) and the PCR (right) algorithm.

large problem into smaller ones. Formally, at the end of each
PCR step i, the algorithm generates 2i systems of n

2i equations
each. Each system s is defined by the elements of the a, b, c
and y arrays starting at position s and with a stride of 2i, that
is, [s + j × 2i], ∀j = 0 . . . n2i . In the example of Figure 2,
the size of the diagonal n = 8, the SP is 2, and after that step
of PCR, the algorithm has generated 4 systems (represented in
black, grey,green and red colors, respectively) of 2 elements
separated by a stride of 4.

The systems generated by PCR are fully independent and
although the Thomas algorithm is not parallel, it can be
applied concurrently, without any synchronization, to solve
each one of these systems. But before the independent

FIGURE 2. Example of the PCR+Thomas algorithm with n = 8 and SP = 2.

systems are concurrently solved using Thomas, the positions
of all the elements of a system has to be placed in consecutive
positions of 4 extra buffers, one per array. Once each system
is solved using Thomas, the results are copied back (overwrit-
ten) to its corresponding positions in the y array. Let us recall,
that the result is really overwritten in this array.

In summary, our PCR+Thomas method for multi-core
CPUs is composed of the following stages (shown in the
example of Figure 2):

1) PCR: SP steps of PCR are done
2) Thomas-Copy: The information of each system,which

is in strided positions, is placed in consecutive memory
positions of buffers, as a preparation to be processed by
the Thomas algorithm.

3) Thomas-Compute: Each system is solved using
Thomas. All the systems can be solved concurrently.

4) Thomas-Copy-Back: The results of each system,
which are in consecutive positions of the buffers, are
copied back to the appropriate strided positions of the
y array, which is overwritten with the result.

A. SWITCH POINT
The idea of combining PCR and Thomas has been already
explored in [16] for GPU-based architectures without any
benefits with respect to the sequential CPU code when
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solving one large tridiagonal system. The implementation
introduced in [16] is divided into four stages. In the first
three ones the problem is increasingly subdivided using PCR,
until the sub-systems created by PCR fit in the GPU shared
memory. In the fourth stage, each thread solves sequentially
a system using Thomas. The authors of this implementation
prove that the selection of the switch points between the
different stages of this method is key for its performance,
and they propose several auto-tuning strategies to do it appro-
priately. These strategies first split systems until there is
enough parallel work to do and the it keeps subdividing the
problem in a subsequent phase until each sub-system can fit
the shared memory of the GPU. It is important to note that
although the pure PCR algorithm is specially suitable for
GPU-based architectures, where a massive parallel execution
can compensate its larger operation count with respect to the
Thomas algorithm, the differences among both architectures,
many-core GPUs and multi-core CPUs, implies that the PCR
computing must be much shorter in CPUs.

As a consequence, one of the key challenges in the imple-
mentation of our hybrid algorithm is to select the appropriate
switch point. A preliminary idea would be to use PCR to
break down the input problem until we have generated at least
one system per core. But, a deeper study of the particular
characteristics of our problem reveals that it is not the best
strategy.

The PCR algorithm requires 12 × n operations in each
level, n being the size of the problem to be computed. The
Thomas algorithm requires 8×n operations to solve thewhole
system. Thus, we need less operations to solve the system
using Thomas than to process just one PCR level. This means
that PCR is only worth when it is executed in parallel, because
its complexity is going to be divided by the number of cores
available (for instance, 48 in our target platform). Each PCR
level doubles the number of independent tridiagonal systems
generated, which is initially 1, and the size of each system
is divided by 2. This means that we have 2i independent
tridiagonal systems of size n/2i after computing the ith PCR
level. To compute the number of operations of our hybrid
method depending on the switch point, we follow the next
equation:

((12× n)/#cores)× SP+ (8× (n/2SP))

where SP is the switch point, i.e., the number of PCR levels
computed. ((12× n)/#cores)× SP being the cost of the PCR
part, and (8× (n/2SP)) the cost of the Thomas one.

Figure 3 graphically illustrates the total number of oper-
ations depending on the size of the tridiagonal system and
the switch point for our test platforms (48 cores). As shown,
the total number of operations decreases until the 4th PCR
level independently of the system size. From this switch point
(PCR level) the number of operations is the same (in the
5th level) or bigger (from the 6th PCR level). Notice that in
order to compute the number of operations for the case of
computing 6 PCR levels, it is necessary to multiply the right
side of the equation (Thomas operations) by 2. The reason is

FIGURE 3. PCR + Thomas algorithm.

that some cores have to process two systems using Thomas.
Specifically, 64 independent tridiagonal systems are created
after computing 6 PCR levels and our test platform has only
48 cores. Given this analysis, the peak performance should
be achieved by computing 3 or 4 PCR levels, using all the
cores available for computing the PCR step, and 8 (23) or
16 (24) cores (switch point) for computing the Thomas step.
This analysis can be used to select the appropriate switch
point in a self-tuning implementation. Its effectiveness will
be evaluated in Section VI.

For the sake of clarity and help to understand our work,
we include in Algorithm 1 a simple pseudocode of the imple-
mentation above described.

IV. IMPLEMENTATION OF THE PCR+THOMAS METHOD
In PCR, every equation is independent with respect to the
rest, and so each of them can be totally computed in par-
allel. However, the computation must be synchronized in
every level, as there is a data-dependency between consec-
utive PCR levels. The baseline parallel implementation of
the PCR+Thomas algorithm uses an OmpSs loop pragma
directive in the inner loop of PCR. This OmpSs compiler
directive is similar to the OpenMP parallel loop pragma,
and it is used to distribute the iterations of a loop among
several threads. In the Thomas stages, a loop is needed to
iterate on the systems generated in the PCR stage. This
loop goes through the three last stages: Copy, Compute
and Copy-Back. The baseline implementation uses also a
loop pragma to parallelize this loop. We call this variant
the PCR+Thomas (P+T) implementation. In the following
sections, Sections IV-A and IV-B, we describe the strategies
proposed to improve performance on the mayor stages.

A. IMPROVING THOMAS
The main hotspot among the Thomas stages is the Thomas-
Copy stage, where the elements of the input arrays corre-
sponding to each generated system are copied to consecutive
memory positions of several buffers, one per system, in order
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Algorithm 1 PCR-Thomas pseudocode.
1: //PCR
2: //SWITCH_POINT has been previously computed as

described in Section III
3: for i = 0→ SWITCH_POINT do
4: //N is the size of the tridiagonal system
5: #pragma oss loop
6: for j = 0→ N do
7: ComputePCR_Level(i)
8: end for
9: #pragma oss taskwait
10: end for
11: //Thomas-Copy
12: #pragma oss loop
13: for j = 0→ N do
14: PCR_Outputs→ Thomas_Inputs
15: end for
16: #pragma oss taskwait
17: //Thomas-Compute & Thomas-Copy-Back
18: //#Thomas is the independent number of tridiagonal

systems uncoupled in the PCR-step
19: #pragma oss loop
20: for j = 0→ #Thomas do
21: ComputeThomas(j)
22: Thomas_Output→ RHS
23: end for
24: #pragma oss taskwait

to be computed using Thomas. This involves the copy of all
the elements of the 4 arrays of size n from strided positions to
consecutive ones. Besides, the later the method switches from
Thomas to PCR, the more strided the access pattern is. This
has a negative impact on the cache performance. An alter-
native, would be to implement Thomas on strided position,
but we found this approach to be more efficient because it
improves the locality within each core. In summary, the main
reasons for the poor performance of the Thomas-Copy stage
are that: i) it involves the full copy of the four arrays of size n
and that ii) these copy operations present poor locality.

We evaluated several strategies to improve the perfor-
mance, but none of them was so successful as merging this
copy with the last step of PCR. This means that in the last
iteration of PCR the data is copied in the appropriate positions
of the Thomas buffers instead of in the strided positions
of the original arrays. In the next section (Section VI) we
show the performance gains associated to this optimization.
In the rest of the paper, we call this variant the PCR+Thomas
Overlapped (P+TO) version.

a: USING TASK GRAPH PARALLELISM
The OmpSs programming model allows us to generate finer
grain tasks specifying the in and out dependences between
the tasks. This feature allows us to generate a different paral-
lelization strategy for the Thomas part of the method. On top

FIGURE 4. Example of the Shuffled PCR+Thomas implementation with
n = 8 and SP = 2.

of the P+T implementation, the code uses now one task
pragma for each one of the three stages (Copy, Compute and
Copy-back). The dependences of these tasks are specified
carefully in order to allow as much overlapping as possible
between the tasks. We call this variant the PCR+Thomas
tasked (P+TT) implementation.

B. IMPROVING PCR
PCR consumes a big percentage of the total execution time of
the P+T method. In low-latency oriented architectures (big
caches memories) it is not efficient to solve one large tridi-
agonal system just using PCR. The role of PCR in the P+T
method is just to break down one large system into a certain
amount of independent smaller systems. However, this stage
still consumes a significant percentage of the execution time,
and thus it is worth to optimize it as much as we can.

One of the main problems of PCR is its poor data locality
because the computation is done using strided positions. The
stride is initially one and it is multiplied by 2 in each sub-
sequent PCR level (see Figure 1). In order to alleviate this
problem, we propose a variant of the PCR method, called the
Shuffled PCR algorithm. Figure 4 shows an example of this
algorithm for n = 8 and SP = 2. It is actually the same
example used in Figure 2, which can eases the comparison of
both implementations. The system has initially one system of
n equations, n being the size of the diagonal. After computing
the first PCR level, two systems are generated, one with
the values of the odd positions and other one with the even
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positions. Shuffling the results of this level, the odd positions
are consecutively placed in the first half of the array and the
even ones in the second half. In the next PCR levels, the same
procedure is applied recursively on each system created.

The advantages of this approach are twofold. First, the cal-
culations are always done with stride one, which should
have a positive impact on the cache performance. Second,
the Thomas-Copy stage is not required, as, after each PCR
level, the information of each system is already placed in con-
secutive positions (see example in Figure 4). Nevertheless,
the Copy-Back stage finds the result shuffled and it needs to
move the information back to the appropriate positions in the
y resulting array.

C. LOW LEVEL OPTIMIZATIONS
The implementations described so far have been improved
using a set of low-level optimizations. Some of them have
been successful, being able to improve the performance. For
instance, the PCR phase uses a double buffer for all the data
structures involved in the computation, as in each step of the
algorithm the output of the previous step is used as an input.
Also, PCR has to calculate long mathematical expressions,
and the code has been written trying to maximize the usage
of processor registers to store intermediate and replicated
results. Finally, the compiler reported the automatic vector-
ization of some blocks of the code.

Other optimizations were tried but they had a negative
impact or not impact at all on the performance. For instance,
in order to improve the vectorization, we made two sepa-
rate attempts. On one side, the PCR phase of the P+TO
implementation was reimplemented to remove all the condi-
tional statements inside the loops and to avoid the usage of
intermediate registers in the calculations. Both things were
apparently preventing the compiler to automatically vector-
ize the PCR phase. With these modifications, the automatic
vectorization worked on one of the loop copies of this phase,
but it was not good enough to improve the performance
of the P+TO original version. The second attempt was to
hand-vectorize using intrinsics in the inner PCR loop of
the P+TO version, but this vectorization did not improve
significatively the original P+TO, and it was outperformed in
some cases by the SP+T version. It is also worth to mention
that the PCR phase of SP+T is not a good candidate to be
hand-vectorized because, the shuffled approach followed in
this phase generates different access patterns in loads and
stores, which makes hand-vectorization extremely difficult
(if not impossible) and probably highly inefficient. Also,
the tiling technique was applied in several points of the
code to improve the cache performance but with no success.
Finally, different policies and chunk sizes were tried in the
scheduling of the loop pragmas.

D. MEMORY REQUIREMENTS
In Table 1 we can see the memory occupancy of each of
the implementations evaluated and proposed in this paper.
In all the implementations, we do not modify the input matrix

TABLE 1. Memory space consumed by each of the gtsv implementations.

(a, b and c vector in section II). However, on exit, the right-
hand side (y vector in section II) is overwritten by the vector
solution u. This is in the line of the vendors libraries as the
gtsv routine of the MKL Intel library. As shown, and to avoid
overwriting the input matrix, we are in need of extra memory.
CR is in need of less extra memory than the other imple-
mentations, using one extra buffer per vector. PCR, due to its
higher parallelism and memory access pattern (see Figure 1),
is in need of two extra buffers per vector to avoid race
conditions. In the P+T, P+TO and P+TT implementations
is required more memory because of the switch between PCR
and Thomas. After computing PCR, we need extra memory
to store the output of PCR in other vectors using the corre-
sponding data-layout (stride 1) to compute the Thomas phase.
Unlike the previous implementations, the SP+T does not
require the extra memory to compute Thomas by shuffling
the output in every PCR level, adapting the data-layout on
the fly.

V. ERROR ANALYSIS
In this section, we perform the error analysis of the method-
ology proposed in this paper, that is PCR+Thomas, and
the pure-PCR algorithm, w.r.t. two reference codes. One is
the sequential implementation of the state-of-the-art Thomas
method, and one is the MKL gtsv routine. We assume that the
matrices are well-conditioned (diagonal dominant). We ini-
tialize the matrices randomly. Unlike the other methods,
theMKL routine computes pivoting.We graphically illustrate
the maximum error, the maximum difference found between
PCR+Thomas and pure-PCR w.r.t the sequential Thomas
implementation and the MKL routine, in Figure 6-left. In a
similar way, Figure 6-right illustrates the average error
(
∑n

i=0 |RHSref [i] − RHS[i]|/n). As shown, although the
pure-PCR implementation presents a worse accuracy than
PCR+Thomas, this is in the line with the results shown
in [17], both implementations present a good enough numer-
ical precision compared to the reference implementations. In
fact, the error is less when comparing with the MKL routine.
The error for the PCR+Thomas algorithm depends on the
switch point. In the cases shown in the graphs (Figure 6) we
have used a switch point equal to 3. The smaller the switch
point, the error is more similar to the pure-PCR’s error, or in
other words, the bigger the switch point, the error is closer to
the sequential Thomas’s error.

VI. PERFORMANCE EVALUATION
In this section we evaluate the following Tridiagonal resolu-
tion versions:
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FIGURE 5. Execution times of MKL, pure PCR, CR, and the optimized P+TO, P+TT and SP+T using different problems sizes and switch points.

FIGURE 6. Maximum error (left) and average error (right) of the methodology proposed in this paper (PCR+Thomas), with a switch point
equal to 3, and pure-PCR algorithm w.r.t the sequential Thomas and the gtsv routine of MKL.

• Thomas: It is a sequential implementation of the
Thomas algorithm. Let us recall that this algorithm can-
not be parallelized.

• MKL: It uses the MKL implementation of the
dgtsv routine. This routine uses pivoting and is not
parallelized.

• CR: It is an implementation of the pure CR algorithm.
The parallelization is made using OmpSs loop pragmas.

• PCR: It is an implementation of the pure PCR algorithm.
The parallelization is made using OmpSs loop pragmas.

• PCR+Thomas (P+T): It is the baseline implemen-
tation of the idea of combining PCR and Thomas.
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FIGURE 7. Speedup (using the best switch point) of the optimized variant with respect to MKL (left) and Thomas (right) using different
problem sizes.

The parallelization is made using OmpSs loop pragmas.
The switch point (SP) is configuredmanually. This num-
ber indicates how many systems are created using PCR
before computing Thomas.

• P+T Overlapped (P+TO): This version joins the com-
putation of the last PCR level with the Thomas-Copy
stage. It is parallelized using OmpSs loop pragmas.

• P+T Tasked (P+TT): In this variant, we make use of
the OmpSs tasks to parallelize the Thomas stages of the
algorithm.

• Shuffled P+T (SP+T): It improves the data locality
of PCR using the shuffled variation of that algorithm
introduced in this paper. It is parallelized using OmpSs
loop pragmas.

The experiments have been performed on one node of the
Mare Nostrum supercomputer with 2x Intel Xeon Platinum
8160 with 24 cores each running at 2.1 GHz. The RAM
memory is composed of 12 DDR4-2667 modules of 32GB.
The version of MKL is 2018.1 and the one of GCC, 7.2.0.
We have used the latest version of the OmpSs programing
model (mercurium compiler + nanos 6 runtime), OmpSs-2.
In the following we will call this platform M48. All the
computations were carried out using double precision. Note
that throughout all of our experiments we ensure the cache
of each processor is flushed before every invocation of
each of the implementations to be tested in order to avoid
obtaining misleading performance results. By neglecting this
step we can obtain performance results up to 4 times faster
than those reported here in the cases where the data fits
in the cache memory. This is consistent with observations
described in [18]. The problem sizes used in this evaluation
are: Small (n = 8388608),Medium (n = 16777216), Large
(n = 33554432) and Huge (n = 67108864). Also, for each
variant, different switch points are explored (2, 3, 4, 5 and 6).

Figure 5 shows the execution times of the 6 optimized
variants using 4 problem sizes and 5 switch points. As shown,
the P+TO and SP+T are the best variants. All the variants
are faster than MKL, single-threaded Thomas and pure-PCR,
except P+TO with a switch point (SP) equal to 6. As shown
in Fig. 5, the best switch point depends on the variant used.

For instance, for the P+TO and SP+T, the best switch point
is 3, creating 23 sub-systems to be computed by Thomas.
However, for the remaining variants, P+T and P+TT, the best
switch point is 5, creating 25 sub-systems to be computed by
the Thomas stages. This means that the first approaches, not
only need a lower switch point, but also a lower number of
cores. In fact, P+TO and SP+T are able to outperform the
other variants using a smaller number of cores.

It is important to note that the SP+T approach, unlike
the P+TO, presents a more stable behavior. We do not find
important variations in time using a different switch point,
probably because these variations are usually due to the PCR
stage, and this stage is specially optimized in SP+T.
The speedup with respect to MKL and to Thomas is graph-

ically illustrated in Figure 7. We see that, for any problem
size, the speedup of the SP+T version is always greater than
2.7 w.r.t. MKL and greater than 1.5 w.r.t. single-threaded
Thomas, being the fastest approach for the small and medium
systems. Although the speedup of the P+TO variant is worse
for these sizes, it turns out to be the best for large and huge
systems. Unlike the previous implementations, the other two
approaches, P+T and P+TT, present a similar performance.
This proves that the optimization carried out in the P+TT
approach is not as effective as expected. It is important to note
that the bigger the system, the higher speedup, achieving a
peak speedup about 4 and 2.5 w.r.t. MKL and single-threaded
Thomas respectively, using the P+TO version.

Figure 8 graphically illustrates the execution time con-
sumed by all P+T variants using different switch points
for the huge problem size. The best switch point for the
two fastest versions, P+TO and SP+T, is 3, thus creat-
ing 8 tridiagonal systems to be computed in the Thomas
stage. Unlike the previous variants, the approaches based on
P+T and P+TT present a very similar trend. In both cases,
the best switch point is 5, creating 32 triangular systems.
The techniques that improve the integration and swapping
between both methods, PCR and Thomas, have important
consequences on the performance, as shown by the perfor-
mance achieved by the P+TO and SP+T approaches. Given
these results, P+TO and SP+T are proven to be, not only the

VOLUME 7, 2019 23373



P. Valero-Lara et al.: Fast Solver for Large Tridiagonal Systems on Multi-Core Processors (Lass Library)

FIGURE 8. Execution time of the optimized variants using different switch
points.

fastest approaches, but also the more energy efficient imple-
mentations, as these, unlike the other variants, require fewer
cores in the Thomas stage to achieve the peak performance.

Comparing the analysis carried out in Section II (see Fig. 3)
and the results obtained and graphically illustrated in Fig. 8,
we can confirm the effectiveness of this analysis. In fact, for
the best approaches, P+TO and SP+T, this analysis is able to
predict the best switch point selection, using a simple com-
putation, which only requires the number of cores available
and the size of the system to be solved.

In order to carry out a deeper analysis on the strate-
gies presented, we have used the packages Extrae +
Paraver [19]. Extrae is a dynamic instrumentation package
to trace programs compiled and run using one of the next
programing models, OpenMP, OmpSs, pthreads, the mes-
sage passing (MPI) programming model or a combination of
the previous programming models (different MPI processes
using OpenSs threads within each MPI process). Extrae gen-
erates trace files that can be later visualized with Paraver.

Figure 9 illustrates the traces of the four optimized ver-
sions, using the best switch point for each version observed
in Figure 5. In all of them, the first part (red) corresponds to
the PCR phase. As commented before, it is necessary to syn-
chronize all the threads at the end of each PCR level. This is
clearly observed in the traces. Also, we can see the number of
PCR levels computed, 5 in P+T, 3 in P+TO, 5 in P+TT and
3 in SP+T. In P+TO the last PCR level (dark-red) computes
not only the last PCR level but also the Thomas-Copy step
(see Figure 2). Also, in the SP+T implementation, the PCR
computation is different w.r.t. the other implementations due
to the shuffling performed in this phase. The number of
threads in the Thomas phase (violet) depends on the number
of steps performed during the PCR phase. In this sense,
in P+T and P+TT we see 32 threads (25, 5 PCR levels), and
8 threads in P+TO and SP+T. In P+TT wemake use of tasks
to compute the Thomas-Copy (violet), Thomas-Compute
(dartk-red) and Thomas-Copy-Back (red). In this implemen-
tation, although there is synchronization between these steps,
we make use of data-dependences between them to guarantee
the correct execution.

The P+T version consumes about half of the time in
computing PCR and the other half in computing Thomas.
As expected, P+TO is in need of a larger last PCR level
(dark red), where the result of the last PCR level computed
is already copied to the appropriate positions of the buffers to
be computed by Thomas. This extends the PCR stage but it
reduces the overall execution time. The time consumed using
a switch point of 3 and 4 are quite similar. This is in agreement
with the analysis shown in Fig. 3.

P+TT makes use of data-dependent tasks for Thomas-
Copy (violet), Thomas-Compute (dark red) and Thomas-
Copy-back (green). The performance of this approach is not
very competitive. The Thomas part of the method requires
more time than in the other approaches, despite using finer
grain tasks. The reason is that the data dependences of
the tasks serialize the Thomas-Copy, Thomas-Compute and
Thomas-Copy-back stages, which should result into a task
footprint similar to that of the P+T version. Nevertheless,
it is slightly different due to the scheduler, which some-
times migrates the resolution of one system from one core
to another one.

Finally, SP+T reduces the time consumed by PCR (red),
which it is the main motivation behind this optimization.
The reason of this is twofold: i) A better data locality, and
ii) A smaller switch point. Also the Thomas-Copy stage is
not required, as the information is already placed in consec-
utive position before it is processed using Thomas. Finally,
the Thomas-Compute and the Thomas-Copy-back stages are
combined into one single tasked loop (violet). These two last
stages are larger than in P+TO due to the need to unshuffle
the result at the end.

In order to visualize the benefit achieved using the pro-
posed strategies against the use of CR, and pure-PCR,
Figure 10 compares the traces of these two last versions
with the best optimized one for the biggest size evaluated,
which is the P+TO approach, using a switch point of 3.
As commented, the CR algorithm is composed by two phases,
the reduction phase, where the parallelism (number of inde-
pendent elements) is reduced step by step, and the substitu-
tion, with the opposite behave, the parallelism is bigger step
by step. It is necessary to synchronize the execution at the
end of each of the steps to avoid race conditions. This can
be seen in the Figure 10. The pure PCR approach performs
PCR until the end, where the characteristics of the multi-core
architectures are not able to compensate the large number
of extra operations required by PCR with respect to other
implementations. On the other hand, our best optimization is
much faster, as it switches from PCR to Thomas.

We examined the (instruction per cycles) IPC statistics in
order to find out howmuch our best implementation improves
the efficiency of the algorithm. While pure PCR, achieves
an average IPC of 0.59 with peaks of 0.94, the SP+T ver-
sion achieves an average value of 0.87 with peaks of 1.95.
These values of the IPC confirm that this is a memory bound
problem, and that the SP+T version makes a very good job
alleviating this problem.
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FIGURE 9. Traces of the three optimized versions (from top to bottom: P+T, P+TO, P+TT, SP+T) using the best switch point selection, 5, 3, 5 and 3,
respectively.

A. SCALABILITY
Finally, the ability of the proposed implementation to take
advantage of additional computational resources has to be
evaluated. Figure 11 shows a comparison of the execution
time of our two best implementations (P+TO and SP+T) for
different switch points (2, 3, 4, 5 and 6) using two different
machines: the machine used so far in the experiments (M48)

and one with less computational resources (M16). This latter
machine is equipped with 2x Intel Xeon E5 2670 with 8 cores
each running at 2.6 GHz, and 128GB of RAM memory.
The figure shows that both implementations performs clearly
better in the M48 machine than in the M16 one, which
proves that both implementations can take advantage of the
additional computational resources available in M48. Let us
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FIGURE 10. Trace of the CR (top), pure PCR (middle) and the best version with the best switch point selection (bottom). The best version is P+TO with
SP=3. All the traces have the same time-scale.

recall that one of the bottlenecks of our implementations is
the PCR phase, where we can benefit of the availability of
an increasing number of cores. That is the reason why in
the M16 machine the best switch point is smaller than in
the M48 machine for the P+TO algorithm, as in this latter
machine the PCR phase bottleneck is in part alleviated by
the availability of 32 additional cores. This tendency is less
clear in the SP+T version where we have used an improved
implementation of the PCR phase, and we can run PCR
longer, which allows to generate more independent systems.

VII. RELATED WORK
We can find multiple works that attempt to parallelize the
tridiagonal solve on parallel computers. Probably, the most
important reference of the present work is the work of [16].
In this work, the authors combine both no-pivoting meth-
ods, PCR and Thomas, but on GPUs, using a completely
different set of optimizations adapted to the GPU-based

architectures. Although the optimizations presented are effec-
tive when computing more than one tridiagonal systems
in parallel, the implementation turns out to be inefficient
when computing one single large tridiagonal system, being
about a 30% slower than the CPU sequential counterpart
(MKL). Other works are focused on solving multiple and
small tridiagonal systems by using no-pivoting solvers on
NVIDIA GPUs, as the works presented by [13] and by [20].
Recently, cuSparse library, the reference library for sparse
computation on NVIDIA GPUs, included a new routine
(gtsvInterleavedBatch) based on no-pivoting Thomas [21].
Other interesting reference is the work of [9], in this case
the authors implement a stable numerical solver on GPUs for
large tridiagonal systems (from 4 Millions to 128 Millions of
equations) based on Spike (tridiagonal solve with pivoting),
which is able to achieve good numerical results even on
ill-conditioned matrices, paying an extra computational cost
due to the overhead of pivoting. Reference [2], [3] proposed
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FIGURE 11. Execution times of the P+TO and the SP+T versions in the
M16 machine and the M48 machine, using switch points of 2,3,4,5 and
6 respectively.

an heterogeneous (CPU +GPU) implementation to accelerate
the solving of Block-Tridiagonal systems, where multiple
tridiagonal systems are solved on GPU, making use of the
PCR-CR algorithm, while other tridiagonal systems are com-
puted simultaneously on CPU, using the Thomas algorithm.

VIII. CONCLUSION
The parallel implementations presented in this paper focus on
the solving of large tridiagonal systems on multi-core archi-
tectures. Our implementations are based on combining the
parallel PCR and the Thomas algorithms. Several variants of
this idea have been proposed, trying to squeeze the maximum
performance of modernmulti-core CPUs addressing themain
problems of this approach. On one side, the PCR+Thomas
algorithm requires memory accesses and data movements
with poor locality. The SP+T version is actually our best
attempt to address this problem, although the P+TO ver-
sion also tries to alleviate this problem overlapping the
Thomas-Copy stage with the last PCR iteration. On the other
side, the selection of the switch point between PCR and
Thomas is essential to achieve a high performance. In this
line, the paper proposes an effective analysis to select the
switch point for a given platform (number of cores) and
problem size.

The comparison of the execution time of our versions
of PCR+Thomas and the MKL library shows that our
best implementations can be up to 4 times faster than
the MKL implementation and up to 2.5 times faster than
the single-threaded Thomas. A study of the influence of
the switch point in the performance shows that the perfor-
mance analysis proposed in this paper is really effective
to select the switch point between PCR and Thomas. An
insightful analysis of the traces of the different versions of the
algorithm reveals that the P+TO and SP+T versions of the
code accomplish their objectives. This way, P+TO removes

the Thomas-Copy stage, which is overlapped with the last
PCR iteration. This has a positive effect on the performance.
The SP+T version shortens the PCR part of the algorithm,
although it increases slightly the Thomas part due to the
need to unshuffle the result in the Thomas-Copy-Back stage.
Finally, the trace of the P+TT version reveals that its attempt
to extract finer-grain parallelism does not have a positive
effect on the performance, due to the serialization of the three
Thomas tasks for each processed system.

As future work, we plan to extend this work to make
use of the Spike algorithm for more numerically stable
results. We also plan to compute large systems with multiple
right-hand sides. Furthermore, we want to implement the
same idea using different features and programming models,
such as OpenMP or StarPU, among others.
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