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ABSTRACT Effective planning and optimized execution of the e-Science workflows in distributed systems,
such as the Grid, need predictions of execution times of the workflows. However, predicting the execution
times of e-Science workflows in heterogeneous distributed systems is a challenging job due to the complex
structure of workflows, variations due to input problem-sizes, and heterogeneous and dynamic nature of the
shared resources. To this end, we propose two novel workflow execution time-prediction methods based on
the machine learning ensemble models. In this paper, we showcase our approach for two different real Grid
environments. Our approach can effectively predict the execution time of the scientificworkflow applications
in the Grid for various problem sizes, Grid sites, and runtime environments. We characterized the workflow
performance in the Grid using the attributes that define structure of workflow as well as the execution
environment. Contrary to common ensembles, our ensemble systems employed three strong learners, which
balance the weaknesses of each other by their strengths to model the workflow execution times. The
proposed methods have been thoroughly evaluated for three real-world e-science workflow applications.
The experimental results demonstrated that our proposed multi-model ensemble models can significantly
decrease the prediction error (by 50%, on average) as compared with methods based on the radial basis
function neural network, local learning, and performance templates. The proposed methods can also be
applied with similar effectiveness and without any major modification for other heterogeneous distributed
environments, such as the Cloud.

INDEX TERMS Machine learning ensemble systems, performance modeling of e-science workflows,
distributed execution of e-science workflows, execution time prediction of e-science workflows.

I. INTRODUCTION
The Grid has emerged as a collection of heterogeneous
resources from multiple domains, where different policies
are observed for the availability of the resources and shared
access of the resources is granted to the users. Scientific
workflow applications comprise several different tasks to
be executed in a specific order, referred to as scientific
workflows. Scientific workflows are commonly executed in
the Grid in a distributed way and managed using a work-
flow management system, like Pegasus [1], Askalon [2], etc.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yonghong Tian.

Several services in high level middleware (e.g. resource pro-
visioning, workflow task scheduling [3], performance mon-
itoring and analysis [4], runtime performance tuning, etc.)
require predictions of workflow performance for planning,
monitoring, and optimizing workflow execution in the Grid.
Besides, the workflow user need this prediction to manage
his submissions and the resource owners need it for capacity
planning of their resources.

Predicting workflow execution time in the Grid for differ-
ent Grid-sites is a hard job mainly due to dynamic nature
of runtime environment, complex structures of the work-
flows, shared nature of Grid-resources, and several other
factors (see Section II for more details). In addition, varying
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input problem-sizes, different resource sharing policies, and
user rights on different Grid-sites make it even more diffi-
cult. To address this problem, we propose two multi-model
machine learning ensemble systems to predict execution time
of e-science workflows in the Grid. Ensemble modeling is a
powerful machine learning method that combines the power
of multiple learners to improve the prediction accuracy of
the overall model. To begin with an objective of fine grain
modeling of workflow performance in the Grid, we character-
ized workflow performance in term of attributes that cover all
major factors affecting workflow performance, e.g. workflow
structure, application attributes, submission and execution
environments, etc. The workflow execution traces (referred
to as datasets) comprising these attributes were collected
from two different Grid environments (see Section IV-B).
To model workflow execution time from workflow attributes,
we employed three different strong learners – the methods
which can be used as standalone prediction methods – as
ensemble members. We trained the ensemble members by
dividing the trace dataset in two subsets: training dataset and
test dataset. The ensemble members were joined using two
methods: mixture of experts and dynamic experts selection.
The mixture of experts combines the weighted predictions
of ensemble members (referred to as experts) to generate
the final prediction. The weights of ensembles are generated
through a gating network that is trained using expectation
maximization [5], [6] of accuracy of the final predictions. The
dynamic experts selection evaluates the experts based on their
accuracy in the vicinity of the given inputs for prediction.
It then chooses the expert with highest accuracy to generate
the final prediction. The vicinity is determined in terms of
k-nearest neighbors, where the distance is calculated by
adapting Heterogeneous Euclidean-Overlap Metric [7]. The
proposed methods were evaluated for three real world sci-
entific workflows in two different Grids. Our experiments
showed that the presented approach can decrease the predic-
tion error by 50% (on average) as compared with previous
approaches.

The major contributions of current study include the
followings.
• two novel multi-model machine learning ensembles
methods to predict execution times of complete work-
flows in the Grid for varying input problem-sizes and
different Grid-sites, which to the best of our knowledge
have not been used before for execution time predictions
of entire workflows;

• a flexible (in terms of attributes defining workflow per-
formance in all phases during its execution) and scalable
(number of strong learners can be increased to further
improve the prediction accuracy) prediction approach
that can be easily adjusted for the available information;

• an experimental evaluation of the proposed methods for
three real-world e-science workflows in two different
real Grid environments (not simulations);

• a higher accuracy of workflow execution times predic-
tions in the Grid than any other approach in related

work that incorporates all our supported static as well
as dynamic workflow attributes; and

• notably, our methods can effectively be applied for other
distributed environments like the Cloud, provided that
suitable parameters defining workflow performance in
the target environment are identified and the correspond-
ing trace data is available.

The remaining of this paper is arranged as following.
Section II describes parameterizing performance of scien-
tific workflows in the Grid. Section III presents our multi-
model ensemble systems for predicting workflow execution
time. Section IV describes our experiments, the scientific
workflows for our experiments and the tested environment
for evaluation of the proposed methods. Related work is
described in Section V. Finally, we conclude the current study
and describe future work in Section VI.

II. PARAMETERIZING PERFORMANCE OF SCIENTIFIC
WORKFLOW APPLICATIONS IN THE GRID
Workflow execution time can be effectively modeled
using different attributes reflecting workflow structure and
execution environment. Nadeem and Fahringer [8] and
Nadeem et al. [9] presented a comprehensive framework
defining attributes that can effectively model workflow exe-
cution time in the Grid. We used their framework to parame-
terize workflow performance in terms of workflow attributes.
These attributes cover workflow static as well as runtime
information. The static information primarily includes struc-
tural attributes, e.g. tasks in workflow, task dependencies, etc.
The runtime information includes the attributes defining Grid
runtime environment, e.g. selected scheduling algorithm [4],
selected Grid-sites [10] and their states, etc. For the sake of
better understanding the proposed approach, we are reproduc-
ing the detailed attributes from [8] and [9] as below.
� Workflow structure attributes

* Workflow name: it is the name of the scientific
workflow.

* Workflow tasks: these are executables or data trans-
fers in the workflow.

* Dataflow dependencies: show that data taken as an
input of a task is an output of another.

* Control flow dependencies: represent the sequence
of carrying out tasks in workflow.

� Workflow attributes
* Executables: these are names of the softwares cor-

responding to the tasks in the workflow.
* Versions: describe the type of the executables (e.g.

serial/parallel version etc.).
* Problem-size: it describes the problem given as an

input for execution of the workflow.
* File sizes: describe the size of files taken as input.

� Submission environment attributes
* Names of Grid-sites: the Grid-sites chosen for exe-

cution of the workflow.
* Scheduling strategy: it is the strategy employed to

assign individual tasks to chosen Grid-sites.
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* Time of submission: clock time when workflow is
submitted for execution.

� Grid-site state attributes
* Pre-queued jobs: describes jobs pre-submitted in

the queue when the workflow task is submitted to
the queue.

* Pre-queued CPUs: represents number of CPUs
requested by pre-queued jobs.

* Pre-executing jobs: describes the jobs executing at
the time of submission of workflow task.

* Pre-allocated CPUs: represents number of CPUs
being used by the pre-running jobs.

* Parallel jobs: describes jobs executing in parallel
with the workflow task.

* parallel occupied CPUs: represents CPUs being
used by the parallel jobs.

� Policies for sharing resources
* User name: user name of the person execut-

ing workflow. Grid-sites usually observe different
resource sharing policies for different users.

* Virtual organization or Group: it is the name of the
virtual organization or group the user belongs to.

� Network attributes
* Bandwidth: represents network bandwidth avail-

able for transferring (any) workflow data.
* Latency: describes network latency at the time of

the data transfers.
* Parallel transfers: describes number of parallel data

transfers for optimized data flow.

III. MULTI-MODEL ENSEMBLE SYSTEMS FOR
WORKFLOW EXECUTION TIME PREDICTIONS
In this section, we describe our novel method based on multi-
model machine learning ensemble systems for prediction of
workflow execution time in the Grid. The main objective of
our ensemble systems is to reduce the variance in predic-
tion – and thus improve the overall prediction accuracy –
of individual prediction methods by using a combination of
prediction methods. There were three main phases to build
our ensemble system, each of which required selection of an
effective strategy for overall effectiveness of the ensemble
system. These phases are shown in the Figure 1 and are
described below.

1) Ensuring diversity in output of ensemble members
2) Selection and training of ensemble members
3) Combining ensemble members

A. ENSURING DIVERSITY IN OUTPUT OF ENSEMBLE
MEMBERS
In phase-1, a strategy is required to ensure diversity in the
output of ensemble members (EMs) (see Section III-B). This
can be done in one of the two ways: by using heterogeneous
EMs or by using different data samples to train one EM.
In this work, we used a set of heterogeneous EMs. The
selected EMs used the predictionmethods that are completely
different in nature as well as in algorithms, and thus result in

FIGURE 1. Different phases of building and ensemble system.

different prediction accuracies. Since our EMs are different
from each other, we selected a large part of our trace dataset
(90%) as one data sample for training of EMs (the remaining
10% was later used in evaluation of ensemble system).

B. SELECTION AND TRAINING OF ENSEMBLE MEMBERS
In current study, we chose workflow execution time pre-
diction methods based on local learning [11], performance
templates generated through evolutionary programming [8]
and radial basis function neural network [9] as our ensem-
ble members. The reasons behind choosing these methods
include heterogeneous nature of prediction algorithms of
these methods and easy availability of their implementation.
Above all, these methods appeared to be more effective than
several other methods in related work [9]. The selected pre-
diction methods were implemented and trained as described
in their sources [8], [9], and [11], respectively. For the sake
of consistency, and due to space limitation, we are not repro-
ducing details of these methods in this paper and refer the
reader to the mentioned sources for their details. In this
paper, we focus on details of our ensembles for workflow
execution predictions. The trace dataset used for training
and evaluation of ensembles consisted of sets of workflow
attribute values X = {x1, x2, . . . , xn} and corresponding real
execution time ti, i.e. {(Xi, ti)}. For description of trace dataset
see Section IV-B. We divided trace dataset into two subsets: a
large set (90% of trace dataset), referred to as training dataset,
for model building of ensembles and a small set (10% of trace
dataset), referred to as test dataset, for testing and evaluating
the ensemble system.

C. COMBINING ENSEMBLE MEMBERS
Our choice of ensemble members in Section III-B led us to
employee local approach [12] to join the ensemble members.
We employed Mixture of Experts (MoE) [13] and Dynamic
Selection of Expert (DSE) [14] as local methods to join
the ensemble members. The main motivation behind using
these methods is our observation that the selected ensemble
members are strong learners [12] and their performance
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varies for different input data. The details of MoE and DSE
are given in the following sections.

1) MIXTURE OF EXPERTS
Mixture of Experts is a supervised learning algorithm that
harnesses the power of multiple strong learners (that perform
the role of experts) weighted through a gating network [13] to
generate an overall model with improved accuracy than any
of the individual experts. It is a popular method due to its
capability of balancing the weakness of some experts with the
strengths of others by combining the best approximation parts
of the models generated by individual experts to generate the
final output.

Using MoE method for execution time predictions of
workflows, we aimed at combining execution time predic-
tions of multiple experts to generate the final execution
time prediction. Our three tier model of MoE is illustrated
in Figure 2. Tier-1 represents input data, which consists of
set of workflow attribute values X = {x1, x2, . . . , xn} for
which execution time prediction is required. In tier-2, trained
experts Ej take input data X and generate their local predic-
tions pj = Ej(X , φj), where φj represents set of parameters
(learned during training phase) of jth expert Ej.

Tier-3 represents gating network, which decides how the
experts will contribute in generating the final prediction.
During ensemble training, the gating network was trained
using expectation maximization [5], [6] for overall accuracy
of the ensemble [14] using training dataset. The derivation of
expectation maximization is beyond the scope of this work
and for its further details, we refer the reader to [5] and [6].
In summary, it is trained to generate higher weights for the
experts with higher accuracy and vice versa. At the time of
prediction, the gating network takes X as an input and gener-
ates corresponding set of weights λj(X , θ) of each Ej(X , φj),
where θ represents set of parameters (learned during training
phase) of gating network. It is noteworthy that gating network
dynamically generates weights for each given input. These
dynamically generated weights indicate which expert effec-
tively models the given part of attribute space.

To make the sum of all weights equal to 1, the generated
weights are normalized using softmax function [15] as:

wj(X , θ) =
exp(λj(X , θ))∑m
j=1 exp(λj(X , θ))

(1)

which brings all weights wj(X , θ) in the range of [0, 1].
In tier-4, the weights are combined with experts’

local predictions to generate the final execution time
prediction P(X ) as:

P(X ) =
m∑
j=1

wj(X , θ) ∗ Ej(X , φj) (2)

where m represents total number of experts.

2) DYNAMIC SELECTION OF EXPERT
The dynamic selection of expert (DSE) is similar to MoE
that employs multiple experts. However, in place of gating

FIGURE 2. Mixture of Experts Model.

network there is a system that estimates the accuracy of each
expert in the vicinity of the given input. It then selects the
most accurate expert to generate the final prediction. The
algorithm of DSE is shown in Algorithm 1. First, we find �
as k-nearest neighbors [16] of the given input X (line 1).
The nearest neighbors are found using equation 3, where

the distance between two sets of workflow attribute values
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} is calculated
as

D(X ,Y ) =
n∑
i=1

ωi × d(xi, yi) (3)

Here ωi represent weight of ith attribute determined by
dynamic weighing scheme, as described in [11]. d(xi, yi) rep-
resents distance between values of ith attribute of X andY, and

Algorithm 1 Workflow Execution Time Prediction Using
Dynamic Selection Of Expert.
Require: Set of trained Experts E = {E1,E2, . . . ,En}

Dt : Training dataset
Set of workflow attribute values X = {x1, x2, . . . , xn}
k : Number of nearest neighbours

Ensure: P(X ) : Workflow execution time prediction on X
1: find � as k nearest neighbors of X in Dt
2: for all Ej ∈ E do
3: Asum = 0
4: for all Xi ∈ � do
5: pj = getPredTime(Ej,Xi)
6: Asum = Asum + calcuPredAccu(Xi,Dt , pj)
7: end for
8: Aj = Asum/ | � |
9: end for
10: Amax = arg maxj{Aj}
11: Emax = getCorrespondExpert(Amax ,A)
12: P(X ) = Emax(X )
13: return P(X )
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was calculated by adapting the definitions of ‘‘heterogeneous
Euclidean-overlap metric’’ [7].

In next step, we calculate average accuracy of each expert
for � (line 2 - line 9). Next, the expert with the maximum
accuracy Emax is selected (line 11). The final prediction P(X )
is given as an output of Emax for X , (line 12 - 13).

IV. EXPERIMENTS AND EVALUATION
Our testbed for experiments, the workflows and the results of
experiments are described in the following sections.

A. SCIENTIFIC WORKFLOWS
The proposed methods were evaluated for three real world
scientific workflows: WaveWatch III [17], Invmod [18], and
MeteoAG [19]. The selected workflows vary largely with
respect to their execution times, number of parallel and
sequential tasks, structures, etc.

WaveWatch III (WW3) workflow produces wave sim-
ulations in oceans using discrete spectral action balance
equation. National Oceanic and Atmospheric Administra-
tion (NOAA) of USA uses WaveWatch III wave model to
make operational ocean wave predictions. The WaveWatch
III workflow is depicted in Figure 3(a). Invmod workflow
aims at analyzing the impact of climate variation on water
balance by simulating the water flow and balance model. This
workflow also accurately predicts the possibility of extreme
floods. Figure 3(b) depicts Invmod workflow. The MeteoAG
workflow simulates atmospheric fields of heavy precipitation
using regional atmospheric modeling system (RAMS) [20].
These simulations are used to predict thunderstorms and
watersheds in an area. Figure 3(c) show MeteoAG workflow
and its tasks.

These workflows were run in FCIT Grid environments and
Austrian Grid and traces were collected. For the details of the
Grid environments, see the following section.

B. TESTBED ENVIRONMENT
We thoroughly evaluated the proposed methods through a
series of workflow execution and prediction experiments for
two real Grid environments: FCIT Grid and Austrian Grid.

FCIT Grid environment [21] is a dedicated job-based
Grid developed for researchers, students and faculty mem-
bers of King Abdulaziz University to run their scientific
experiments. FCIT Grid-sites are custom designed to facil-
itate needs of local users when they share these Grid-sites.
Different resource sharing policies are also implemented.
Table 1 briefly describes FCIT Grid-sites and workflow exe-
cution experiments on these Grid-sites.

Austrian Grid [22] is Austria’s National Grid compris-
ing several heterogeneous Grid-sites located in different
cities. These Grid-sites are maintained by different owners
who enforce different policies for sharing their resources
among Grid users. Some of these Grid-sites are dedicated
for Austrian Grid while others are opportunistically available.
Table 2 shows a summary of Grid-sites in Austrian Grid and
the number of workflow tasks run on these Grid-sites.

FIGURE 3. Scientific workflows considered for experimental evaluation.
(a) WaveWatch III Workflow. (b) Invmod workflow. (c) MeteoAG workflow.

The selected workflows (see Section IV-A) were run at
different times (days/hours) on different Grid-sites and for
various workflow problem-sizes. At the time of experiments,
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TABLE 1. Grid-sites from FCIT Grid used in current study and workflow tasks run on these Grid-sites.

TABLE 2. Grid-sites from austrian grid used in current study and workflow tasks run on these grid-sites.

the queues of local resource managers (LRMs) at the Grid-
sites were in different states. In a nutshell, the experiments
trace dataset comprised many different workflow execution
cases.

C. EMPIRICAL EVALUATION
Broadly, our experiments aimed at thorough evaluation of the
proposed methods for a variety of real workflows in real Grid
environments. Specifically, we designed our experiments to
find answers of the following questions.
• How effective is the multi-model approach to predict
execution time of workflows as compared with individ-
ual models in related work?

• How does dynamic selection of expert perform as com-
pared with mixture of experts for workflow execution
time predictions?

• To what extent we can refine accuracy of workflow
execution time predictions usingmulti-model approach?

• How does the proposed approach perform for different
scientific workflows in different Grids?

Our findings of the experiments are described in the fol-
lowing sections.

In all our experiments, we divided the trace dataset into
distinct training dataset and the test dataset. The execution
time of workflow was measured in seconds. The accuracy of
proposed methods was evaluated in terms of mean absolute
error of m experiments, calculated as:

mean absolute error =

∑m
j=1 |t

j
r − t

j
p|

m
(4)

where t jr and t
j
p represent real and predicted execution times

of jth experiment, respectively. For the sake of comparative
evaluations of different sets of experiments mean absolute

error was normalizedwith average real time to calculatemean
normalized error (MNE). A secondmetric of absolute relative
error calculated as |tr − tp|/(tr + tp) was also used to evaluate
the proposed methods. It is noteworthy that our evaluation
metrics are in accordancewith themetrics in [8], [9], and [11].

The proposed methods were evaluated for the selected
workflows (see Section IV-A) by varying Grid-sites and
workflow problem-sizes in two different Grid environments.
These experiments were conducted at different hours of the
day and they covered various values of dynamic attributes
(it is very hard to choose their values because those are
determined by runtime environment). In all our evalua-
tions, we repeated each experiment 10 times (to remove
any possible anomalies) and their mean values are shown
here.

We found MoE method outperforming DSE method in all
experiments (the comparative results are discussed later in
this section). Therefore, we are describing here the detailed
results of experiments with MoE method only.

Figure 4 shows MNE in predicted execution times through
the MoE method for WW3, Invmod, and MeteoAG work-
flows in FCIT Grid for different numbers of Grid-sites (1−8)
and three different problem-sizes. For WW3 workflow,
the maximum (minimum) MNE was 11% (5%) with
an overall average of 8%. The maximum (minimum)
MNE was found when problem-size:1 and Grid-sites = 1
(problem-size:2 and Grid-sites = 5). For Invmod workflow,
the maximum (minimum) MNE was 12% (6%) with an
overall average of 9%. The maximum (minimum) MNE was
found when problem-size:2 and Grid-sites = 2 (problem-
size:3 and Grid-sites = 7). For MeteoAG workflow, the
maximum (minimum) MNE was 10% (4%) with an over-
all average of 7%. The maximum (minimum) MNE was
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FIGURE 4. Mean normalized error (absolute) for WW3 (top), Invmod
(middle), and MeteoAG (bottom) workflows for different number of
Grid-sites and problem-sizes in FCIT Grid using MoE method.

observed when problem-size:2 and Grid-sites = 7 (problem-
size:2 and Grid-sites = 5). Figure 5 shows distribution of
MNE for the three workflows in both Grids. We did not
observe any specific pattern in MNE as we varied problem-
size and number of Grid-sites.

Figure 6 shows MNE in predictions through the
MoE method for Invmod and MeteoAG workflows in
Austrian Grid for three different problem-sizes and different
numbers of Grid-sites (1−8). For Invmodworkflow, themax-
imum (minimum) MNE was 10% (5%) with an overall aver-
age of 7%. The maximum (minimum) MNE was found when
problem-size:3 and Grid-sites= 1 (problem-size:2 and Grid-
sites= 7). ForMeteoAGworkflow, themaximum (minimum)
MNE was 11% (4%) with an overall average of 8%. The
maximum (minimum) MNE was observed when problem-
size:3 and Grid-sites= 6(problem-size:2 and Grid-sites= 5).
Once again, no patterns were observed in MNE as we varied
number of Grid-sites and problem-size.

FIGURE 5. Collective distribution of mean normalized error (absolute) for
Invmod (top), MeteoAG (middle), and WW3 (bottom) workflows in two
Grid environments.

The results using absolute relative error were found to be
very similar to mean absolute error. Therefore, for the sake of
simplicity, we have excluded those results.

We also compared the proposed methods (mixture of
experts and dynamic selection of expert) with three methods
from related work that use radial basis function neural net-
work (RBF-NN) [9], local learning framework (LLF) [11],
and performance templates generated through evolutionary
programming (PT-EP) [8] to predict workflow execution
time. The motivation behind choosing these methods for our
comparison is to select only those methods that support all
our selected workflow performance attributes.

Figure 7 depicts a comparison of five prediction methods
for WW3, Invmod, and MeteoAG workflows in FCIT Grid.
We found MoE outperforming other methods – showing
minimum MNE – for all three workflows. For WW3 work-
flow, MNE was reduced by DSE by 21%, 37%, and 50%
as compared with RBF-NN, LLF, and PT-EP, respectively.
MoE reduced MNE for WW3 by 33%, 48%, 58%, and 66%,
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FIGURE 6. Mean normalized error for Invmod (top), and MeteoAG
(bottom) workflows for different number of Grid-sites and
problem-sizes in Austrian Grid using MoE method.

as compared with that of DSE, RBF-NN, LLF, and PT-EP,
respectively. For Invmod workflow, DSE reduced MNE by
32%, 49%, and 57% as compared with RBF-NN, LLF,
and PT-EP, respectively. MoE reduced MNE for Invmod by
18%, 44%, 58%, and 65%, as compared with that of DSE,
RBF-NN, LLF, and PT-EP, respectively. For MeteoAG work-
flow, DSE reduced MNE by 25%, 33%, and 47% as com-
pared with RBF-NN, LLF, and PT-EP, respectively. MoE
reduced MNE for MeteoAG by 32%, 49%, 54%, and 64%,
as compared with that of DSE, RBF-NN, LLF, and PT-EP,
respectively.

Figure 8 shows comparison of five prediction methods for
Invmod and MeteoAG workflows in Austrian Grid. Again,
we found mixture of experts as the best method (with the
minimum MNE) for both workflows. For Invmod workflow,
the MNE using DSE was reduced by 33%, 51%, and 58%
as compared with that of RBF-NN, LLF, and PT-EP, respec-
tively. The MNE using MoE for Invmod was reduced by
29%, 53%, 65%, and 70%, as compared with that of DSE,
RBF-NN, LLF, and PT-EP, respectively. For MeteoAG work-
flow, the MNE using DSE was reduced by 23%, 30%, and
37% as compared with that of RBF-NN, LLF, and PT-EP,
respectively. TheMNE usingMoE forMeteoAGwas reduced
by 39%, 53%, 57%, and 62%, as compared with that of DSE,
RBF-NN, LLF, and PT-EP, respectively.

We also evaluated the proposed methods by varying size
of datasets and found that accuracy improved with more
data.

FIGURE 7. A comparison of mean normalized error (absolute) of the two
proposed methods with three other methods from related work for
Invmod (top), MeteoAG (middle) and WaveWatch III (bottom) workflows
for different Grid-sites in FCIT Grid.

We conducted our experiments using Weka toolkit with
additional programming for some features. On MacBook
Pro 2.3 GHz, quad core, Intel core i7 with 16 GB memory,
it took less than 40 seconds to build MoE for each workflow
and a few milli seconds (19 ms on average) for each predic-
tion. For DSE it took about 30 seconds in learning phase and
a few milli seconds (17 ms on average) for each prediction,
which is reasonable and affordable for major clients of pre-
diction service, e.g. workflow scheduling services [23], [24].
It is noteworthy that the training of ensemble is done offline
and required only once at the start of the prediction service.

V. RELATED WORK
Execution time of applications comprising single tasks has
been predicted using different types of approaches, e.g. based
on historical data [25]–[28], statistical modeling [29]–[31],
analytical modeling [32]–[34], hybrid modeling using analyt-
ical and statistical models together [35], application bench-
marking [36]–[38], data mining [27], [39]–[41], time series
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FIGURE 8. A comparison of mean normalized error (absolute) of the two
proposed methods with three other methods from related work for
Invmod (top), MeteoAG (bottom) workflows for different Grid-sites in
Austrian Grid.

analysis [42], [43], partial execution [44], simulation [45],
coupling machine profiles with application information [29],
[46]–[50], etc. However, these approaches can predict exe-
cution time of applications consisting of single task on single
Grid-site and cannot model variations in application problem-
size. In contrast to these studies, our focus is to predict
execution time of e-science workflows considering variations
in Grid-sites and problem-sizes.

There have been some studies to forecast execution time of
individual tasks in workflows.Miu andMissier [51] predicted
execution time of individual tasks in workflows based on
historical data and task input features. Liu et al. [52] exploited
statistical time-series patterns to predict bounds of run time
of workflow tasks. da Silva et al. [53] employed workflow
profiling to model resource consumption and execution time
of individual tasks in workflows. Pham et al. [54] forecasted
run time of workflow tasks in the Cloud using machine learn-
ing approach. Their approach is based on parameters defining
runtime environment. An incremental learning approach has
been adopted by Hilman et al. [55] to forecast execution time
of individual tasks in e-science workflow applications.

Random variablemodels were also employed for workflow
execution time modeling and prediction. Mussi and Nain [56]
and Gelenbe [57] targeted at modeling execution time of
task graphs using random variable models. The authors also
modeled the distribution of execution time based on graph
parameters. Chirken et al. [58] used workflow structural
information and execution time of individual tasks as param-

eters to model execution time of the whole workflow using
random variable modeling. The authors also developed distri-
bution function of workflow execution time using the model
parameters. Glatard et al. [59] exploited probabilistic model-
ing to investigate run time of complete workflows in the Grid.
Their approach takes task run times, and data transfer times
as input and model the rest part of the entire execution time as
a random variable. These methods do not handle variations in
execution time due to input problem-size. In addition, these
methods consider simple workflow structures and cannot
handle complex task dependencies. These methods assume a
pre-defined mapping and also assume that the task execution
times on the selected Grid-sites are available. Contrary to
these methods, our proposed approach does not require exe-
cution times of individual workflow tasks and can be affec-
tively used for complex workflow structures as well as vari-
ations in input problem-size. Our methods model workflow
execution time as a whole considering dynamic assignment of
workflow tasks on the Grid-sites. Our predictions are definite
quantities (time in seconds), contrary to probabilistic models.

Singh et al. [60], [61] used machine learning agents to
predict workflow execution time. The agents captured pre-
defined performance metrics during execution of a workflow
task on a Grid-site. The performance metrics of agents are
later combined to develop overall workflow performance
metrics.

So far, only Nadeem et al. have predicted complete work-
flow execution time considering all our supported attributes
using RBF neural network [9], local learning framework [11],
and similarity templates [8], [62]. The authors consid-
ered detailed attributes defining workflow execution time
at different levels including its structure [63] and execution
environment. However, present study proposes two multi-
model ensemble systems that combined three models by
Nadeem et al. to overcome the deficiencies of each individual
model and thus improved the overall prediction accuracy.
Our proposed methods reduced the prediction error by 50%
(on average) as compared with individual models by
Nadeem et al. Multi-model ensemble systems have been
successfully used in several other fields, e.g. numerical
weather prediction [64], decadal predictions [65], flood
forecasting [66], image classification [67], industrial process
monitoring [68] etc.

Some other studies have also addressed workflow execu-
tion time prediction in the Clouds. Pietri et al. [69] employed
number of Cloud resources and workflow structure informa-
tion to model workflow execution time. Hiden et al. [70] used
performance models developed from partial execution of the
workflow to forecast execution time of the entire workflows
in the Cloud. The accuracy of their models is improved
as more performance data of the application is available.
In another effort, Hiden et al. [71] used provenance data to
generate multiple models to forecast run times of medical
data processing workflows in the Cloud. Pham et al. [54] used
a two-phase machine learning method to predict run time of
workflows in the Cloud.
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VI. CONCLUSION AND FUTURE WORK
Workflow execution time predictions are crucial for work-
flow user, workflow management middleware, as well as the
resource owners to take different decisions about workflow
execution and optimization. Predicting execution time of
complete workflows in the Grid is a hard task due to various
static and dynamic factors affecting workflow performance
during its life cycle. In this paper, we proposed two novel
multi-model machine learning ensemble systems (our first
major contribution) mixture of experts and dynamic selection
of expert to predict execution time of e-science workflows in
distributed environments like Grids. Our employed experts
are strong learners by themselves. The mixture of experts
method combines local predictions of the experts weighted
dynamically through a gating network to generate final exe-
cution time prediction. The gating network is trained using
expectationmaximization for accuracy of the final prediction.
The dynamic selection of expert method selects the most
accurate expert in the vicinity of the given input to generate
the final workflow execution time prediction. The vicinity of
the given input is determined in terms of k-nearest neigh-
bors found using heterogeneous Euclidean-overlap metric.
We evaluated the proposedmethods through a series of exper-
iments for three real scientific workflows in two different
Grid environments. The experiments were made for different
setups of Grid environments (our second contribution), num-
ber of Grid-sites and workflow problem-sizes. The evaluation
results were compared with three approaches from the related
work. We observed that the proposed approach significantly
(50%, on average) reduces the prediction errors when com-
pared with the previous approaches (our third contribution).
The mixture of experts was also observed to be more accurate
than dynamic selection of expert in our experiments. The
proposed approach can be also be effectively used for other
heterogeneous distributed environments like the Cloud, if the
trace data for the parameters defining workflow performance
in the target environment is available.

In future, we plan to evaluate the proposed approach for
other scientific workflows in the Cloud. Finding effects of
variations in different workflow attributes’ values on predic-
tion error is also part of our future plans. We also plan to
model workflow performance through probabilistic variable.
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