
Received January 16, 2019, accepted February 6, 2019, date of publication February 19, 2019, date of current version March 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2900086

Iteratively Successive Projection: A Novel
Continuous Approach for the Task-Based
Control of Redundant Robots
PEI JIANG 1, SHUIHUA HUANG2, JI XIANG 3, (Senior Member, IEEE),
AND MICHAEL Z. Q. CHEN 4, (Senior Member, IEEE)
1College of Mechanical Engineering, University of Chongqing, Chongqing 400030, China
2Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310052, China
3Department of System Science and Engineering, Zhejiang University, Hangzhou 3100027, China
4School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

Corresponding authors: Pei Jiang (peijiang@cqu.edu.cn) and Michael Z. Q. Chen (mzqchen@outlook.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51705050 and Grant 51709023, and in
part by the Technology Innovation and Application Demonstration Project of Chongqing under Grant cstc2018jszx-cyzdx0147.

ABSTRACT The task-based control approach with an activation task mechanism endows a robot the
possibility to act complex behaviors in an unstructured environment. However, the task-based control
approach based on the classical inverse may suffer from discontinuities as tasks switch between inactive
and active states. In this paper, an iteratively successive projection method is proposed to construct a null
space projection operator by iteratively successive projecting the space between the null space of each task.
And the null space projection operator constructed by the iteratively successive projection method should
converge to the null space projection operator obtained by the classical inverse, as the iteration time increases
to infinity. By introducing activation factors, a continuous projection operator is obtained with a finite-time
iteration. Based on the continuous projection operator, a closed-loop control algorithm is presented, which
ensures both the continuity of the joint motion and the boundedness of the tracking error. The simulations on
a six-link planar manipulator for the trajectory tracking task in the presence of obstacles show the efficacy
of the proposed method in continuity, stability, and calculation-time consumption.

INDEX TERMS Robot kinematics, redundancy, motion control, null-space projection, discontinuity.

I. INTRODUCTION
The classical control of a robot is to preplan a desired
trajectory in the joint space to realized an objective
task, usually a target-tracking task of the end-effector [1].
This control framework is free of discontinuity in joint
motion by properly preplanning. However, the joint space
method is limited for the cases with subtasks in the task
space, such as obstacle avoidance and visual servoing.
Due to the limitation of the control methods in the joint
space, the control approaches in task space have been
proposed [2]–[5]. In the task-based approach, the gradi-
ent project method (GPM) was first adopted to achieve
joint-limit avoidance task in [6], and obstacle avoidance task
in [7]. The augmented Jacobian technique was proposed
in [8] and [9], which treats other tasks equally with the
tracking task by adding the gradient vectors of other tasks into
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the Jacobian matrix. The weighted least-norm based methods
were proposed to realize the tracking tasks under multiple
constraints [3], [10]–[13]. All these methods work directly
in the desired task space, which produces a more intuitive
control manner.

The task-based approaches extend the scope of application
of robots to the unstructured environments, which requires
the execution ofmultiple tasks simultaneously or sequentially
under the limited degree of freedom (DOF). To effectively
utilize the DOFs, the task set of the task-based approach
should not be constant, for example, when a robot is far
away from obstacles, the obstacle avoidance tasks do not need
to be taken into consideration. Some research has already
been conducted to handle the task-based control with a
varying task set. The task is removed from the task set as
sensor-visibility is lost which cannot provide the feature for
visual servoing [14]. Meanwhile, a task can also be removed
from the task set when it is sufficiently close to the target to
release more DOFs for other tasks [15].
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However, in those task-based approaches with activation
task mechanism, discontinuity happens as a task is removed
or added to the task set. In [16], a mathematical proof was
given to demonstrate that discontinuity generally exists under
the control methods based on the pseudo-inverse, as the activ-
ity of a task changes. The explanation based on the task pro-
jection onto other tasks was presented in [17]. How to solve
the discontinuous problem becomes the key problem in the
task-based control with activation task mechanism. Mansard
proposed a continuous inverse, which is a linear combination
of all the inverses of all the possible tasks [16]. And the
Mansard’s inverse has two characteristics: first, the inverse is
continuous during transition of the task state switch; second,
the inverse is equal to the pseudo-inverse when all the tasks
are inactive or fully active. This guarantees the stability of
the system, as all the tasks are in inactive or fully active state.
The Mansard’s inverse was applied to the multiple tasks with
different priorities [18], and the selective damping was intro-
duced to dealing singularities [19]. However, the calculation
of the Mansard’s inverse is computationally intensive. And
an intermediate desired value approach was also presented
to solve the discontinuity problem, which directly modifies
all the tasks to the intermediate desired values to ensure the
continuity in the transition period [17]. A smooth control
method based on successive null space projection operator is
proposed to solve the discontinuity as the task state switches
at a low-computation cost, but the method cannot guarantee
the stability of the system, even if all the tasks are in inactive
or fully active state [20].

Motivated by the continuous characteristic of successive
null space projection, this paper presents a method to con-
struct the null space by iteratively successive projection,
which iteratively projects the space between the null space
of each subtask in sequence. Based on the iteratively succes-
sive projection, a continuous projection operator is presented
by introducing the activation factors. A new continuous
algorithm based on the continuous projection operator is
proposed to solve the task-based control problem with a
task activation mechanism to ensure both continuity and
stability.

It is worth pointing out the main contributions of this paper
as follows.

1) This paper presents an iteratively successive projection
method to form the null space projection operator,
which has not yet been reported in the literature. And a
geometric interpretation for iteratively successive pro-
jection method is also given.

2) A continuous inverse based on the iteratively succes-
sive projection is proposed, and the iteration times
balance the continuity and the degree of approximation
to the Moore-Penrose.

3) A continuous closed-loop control algorithm is pro-
posed to solve the task-based control problem of the
redundant robot with the activation task mechanism,
which can ensure both continuity and stability at the
same time.

The paper is organized as follows. Section II reviews classi-
cal task-based control methods for robots, and a brief analysis
for discontinuity caused by task state switch is also presented
in this section. The method of iteratively successive projec-
tion is presented in the Section III. Section IV presents the
continuous closed-loop control algorithm for the task-based
control. The performances of the proposed method and two
other method in case of obstacle avoidance are compared in
the Section V. Finally, Section VI concludes the paper.

II. BACKGROUND
A. KINEMATIC CONTROL
Let q ∈ Rn is the vector of joint position and xe ∈ Rme be the
vector in the task space. A task can be formulated as:

xe = f (q), (1)

where f (q) : Rn
7→ Rme is the task function, and me ∈ R is

the number of the dimension of the task vector, i.e. if xe is the
position vector of the end-effector, equation (1) is the forward
kinematic equation of the robot. Differentiating (1) yields the
task formulation at the velocity level as:

ẋe =
∂f (q)
∂q

q̇ = Jeq̇, (2)

where Je is the Jacobian of the tasks. Besides the tracking
task, a redundant robot may have to realize several other tasks
in the motion process, such as obstacle avoidance, joint-limit
avoidance, visual servoing, etc. Assume there are k tasks, all
the tasks can be combined to form a kinematic equation of
the robot as

ẋ = J q̇, (3)

where ẋ = [ẋT1 , ẋ
T
2 , · · · , ẋ

T
k ]

T is the velocity of all tasks, ẋi is
the velocity of the ith task. And J is the augmented Jacobian
of all tasks, which is defined as:

J =
[
JT1 JT2 · · · JTk

]T
, (4)

where Ji ∈ Rmi×n is the Jacobian of the ith task, mi is the
dimension of the ith task. In this paper, only serial redundant
robotic systems are studied, the number of joints is larger than
the dimension of the tasks.

The inverse technique is adopted to obtain the least-norm
solution of (3) as follows:

q̇ = J†ẋ, (5)

where J† = JT (JJT )−1 is the pseudo-inverse of Jacobian J .
J†ẋ is the least-norm solution to obtain the minimum-norm
joint velocities, which satisfies

q̇ = argmin{zT z} subject to: ẋ = Jz. (6)

For the redundant robot, m =
k∑
i=1

mi < n holds, there

exists nonzero homogenous solutions of (3). Combining the
homogenous solution and the right-hand side of (5) yields the
general solution as follows:

q̇ = J†ẋ + Pz, (7)
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where z ∈ Rn is a free vector, P is the classical null space
projection operator of J , which is defined in the following
form:

P = In − J†J . (8)

The singular value decomposition (SVD) of the task
Jacobian can be formulated in the form:

J = U6V T
=

m∑
i=1

σiuivTi , (9)

where U ∈ Rm×m is the orthonormal matrix of the output
singular vectors ui ∈ Rm, V ∈ Rn×n is the orthonormal
matrix of the input singular vectors vi ∈ Rn, and6 = [S O] ∈
Rm×n with S = diag(σ1, σ2, . . . , σm). Assume rank(J ) = r ,
there is
• σ1 ≥ σ2 · · · ≥ σr > σr+1 = · · · = 0.
• R(JT ) = span{v1, · · · , vr }.
• N (J ) = span{vr+1, · · · , vn}.

where N (A) is the null space of matrix A (or the kernel of
matrix A), and R(A) is the range of matrix A [1]. With the
SVD, P can be written as

P = In − J†J =
n∑

i=r+1

vivTi , (10)

which can project a vector onto the null space of Jacobian.
This ensures Pz in (7) is always in the null space of Jacobian,
regardless what z is chosen, and the task velocity ẋ will not
be effected.

B. ACTIVATION OF TASKS AND DISCONTINUITY
PHENOMENON
In dynamic environment, some tasks are not always in the
active state during the whole motion of the robot. For exam-
ple, the obstacle avoidance task is active, only when the robot
is close to the obstacle. When the robot is a long distance
away from the obstacle, the task does not need to be taken into
consideration, namely, the corresponding Jacobian should be
removed from (4).

An activation matrix is introduced to represent the activa-
tion of the each task, which is defined as:

H =


h1Im1 O · · · O
O h2Im2 · · · O

O O
. . .

...

O O · · · hk Imk

 , (11)

where hi ∈ [0, 1] is the activation factor of the ith task,
which represents the activation of the ith task. If hi ∈ (0, 1),
the task is active, if hi = 1, the task is fully active, if hi = 0,
the corresponding task is totally inactive. The kinematic equa-
tion under the activation matrix H is

HJq̇ = Hẋ. (12)

The activation matrix is used for removing the Jacobian
of inactive task from the augmented Jacobian J smoothly.

The pseudo-inverse can be adopted to solve (12), and the
solutions can be formulated as:

q̇ = (HJ )†Hẋ or (13)

q̇ = (H̃J )†H̃ ẋ, (14)

where H̃ is a diagonal matrix, and is defined as:

H̃ =


h̃1Im1 O · · · O
O h̃2Im2 · · · O

O O
. . .

...

O O · · · h̃k Imk

 , (15)

where the diagonal element h̃i is defined as:

h̃i =

{
1 if hi ∈ (0, 1]
0 if hi = 0.

(16)

Provided J is full rank, for the redundant robot, the rank ofHJ
(or H̃J ) is not larger than n. The solution (13) and (14) are the
least-norm solutions of HJq̇ = Hẋ and H̃J q̇ = H̃ ẋ, respec-
tively. From perspective of the system of linear equations,
H̃J q̇ = H̃ ẋ is equivalent to (12), the solution (14) should
also be the solution of (12), and vice versa. The solution (13)
is equivalent to (14) for the redundant robot, according to the
uniqueness property of the least-norm solution [21].

However, solution (13) and (14) are adopted to solve the
task-based control problem with an activation task mecha-
nism, and discontinuities arise, even though (13) ensures the
continuity ofHJ andHẋ, as the activities of the tasks change.
The reason is that pseudo-inverse operator is continuous
when the rank of the matrix is constant, which is a sufficient
condition to ensure the continuity of the solution [16]. For
example, assume the task ẋ = [ẋT1 , ẋ

T
2 ]

T , as the task ẋ2
evolves from inactive state to active state in the k th control
period, and the solution (14) is adopted, the activation matrix
switches from

H̃ (k) =
[
Im1 O
O O

]
to H̃ (k + 1) = Im,

and the corresponding solutions are:

q̇k = J†ẋ1 and q̇k+1 =
[
J1
J2

]† [ ẋ1
ẋ2

]
.

Thereby, a discontinuity arises, as the activation matrix
switches from H̃ (k) to H̃ (k+1). If the activationmatrix acts in
a continuous manner, the discontinuity still exists, since (13)
is equivalent to (14) for the redundant robot.

Hence the fundamental issue for the task-based control
with activation task mechanism is how to construct a con-
tinuous inverse operator. When m < n, the construction of
a continuous inverse can be converted to the construction
of a continuous null space projection operator based on the
equation J† = (In − P)J†.
In [20], continuous projection operator of the ith task is

given asPsi = In−hiJ
†
i Ji. For k tasks activated byHk , the null
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space projection operator of J is formulated as:

Ps =
i=k∏
i=1

Psi . (17)

The projection operator of J is obtained by using successive
projection onto null space of each task, which is endowed
with the merits of simple formulation and low computational
complexity. However, (17) is an approximate formulation of
In − J†J , and the error of approximation increases as the
number of the tasks increases. The algorithm is limited to the
case of two tasks. In view of the merits of continuous pro-
jection operator obtained by successive projecting, we intend
to construct a new continuous projection operator based on
the successive projection in order to achieve a continuous
behavior with a better performance.

III. ITERATIVELY SUCCESSIVE PROJECTION
A. ITERATIVELY SUCCESSIVE PROJECTION
In order to build a continuous null space projection operator,
we first analyze the relation between the null space projection
operator of augmented Jacobian and the null space of each
subtask. And the activation mechanism of the tasks is ignored
first. The null space projection operator P of J defined in (8)
has the following properties [1], which will be used in the
analysis.
Property 1: The following equalities hold

• (In − J†J )T = In − J†J .
• (In − J†J )(In − J†J ) = In − J†J .
• ‖In − J†J‖ = 1.

In this paper ‖ ·‖ represents the Euclidean norm. The relation
between the null space of the augmented Jacobian and the
null space of a single task Jacobian is discussed first, and the
following lemmas are presented first:
Lemma 1: (I−J†i Ji)(I−J

†J ) = I−J†J , and (I−J†J )(I−
J†i Ji) = I − J†J , i = 1, 2, · · · , k.

Proof: Since the null space of augmented Jacobian
N (J ) ⊆ N (Ji). For any vector z ∈ Rn, there is Ji(I−J†J )z =
O, namely, Ji(I − J†J ) = O holds. Thus, J†i Ji(I − J

†J ) = O,
and (I − J†i Ji)(I − J

†J ) = I − J†J can be obtained by adding
I − J†J on both sides of the equation.

Based on the symmetrical property of I−J†J , there is In−
J†J = (In−J†J )T = ((I −J†i Ji)(I −J

†J ))T = (I −J†J )(I −
J†i Ji). �
Remark 1: Based on Lemma 1, by reformulating (I −

J†i Ji)(I − J†J ) = (I − J†J )(I − J†i Ji). J
†
i JiJ

†J = J†JJ†i Ji
is obtained. Substracting J†J from the both sides yields the
following equation:

(I − J†i Ji)J
†J = J†J (I − J†i Ji). (18)

Lemma 2:
∥∥∥ k∏
i=1

(I − J†i Ji)J
†J
∥∥∥ < 1.

Proof: If J = O or any of I−J†i Ji equals toO, the result
holds.

Otherwise, according to the Euclidean norm, it follows:∥∥∥∥ k∏
i=1

(I − J†i Ji)J
†J

∥∥∥∥ ≤ k∏
i=1

∥∥∥I − J†i Ji∥∥∥∥∥∥J†J∥∥∥ = 1. (19)

To prove
∥∥∥ k∏
i=1

(I − J†i Ji)J
†J
∥∥∥ 6= 1, the method of contra-

diction is adopted. Assume
∥∥∥ k∏
i=1

(I − J†i Ji)J
†J
∥∥∥ = 1 holds,

there exist a nonzero vector z ∈ Rn, satisfying ‖
k∏
i=1

(I −

J†i Ji)J
†Jz ‖=‖z‖.

Considering one task, for any nonzero vector z, there is
‖z‖2=‖(I−J†i Ji)z‖

2
+‖J†i Jiz‖

2, such that ‖(I−J†i Ji)z‖ = ‖z‖
holds, only when z ∈ N (Ji). Similarly, we obtain the result
‖J†Jz‖ = ‖z‖, only when z ∈ R(JT ). Since ‖In − J†i Ji‖ =

1 and ‖J†J‖ = 1, ‖
k∏
i=1

(I − J†i Ji)J
†Jz‖=‖z‖, only when

z ∈ N (J1) ∩ · · · ∩ N (Ji) ∩ · · · ∩ N (Jk ) ∩ R(JT ). Hence
N (J1)∩· · ·∩N (Ji)∩· · ·∩N (Jk ) = N (J ),N (J )∩R(JT ) = ∅.
Namely, there does not exist a nonzero vector z satisfying

‖

k∏
i=1

(I−J†i Ji)J
†Jz‖=‖z‖, which contradicts with the assump-

tion. Therefore, ‖
k∏
i=1

(I − J†i Ji)J
†J‖ < 1 is proved. �

And the iteratively successive projection operator can be
defined as follows:

PN =

(
k∏
i=1

(I − J†i Ji)

)N
, (20)

where N ∈ N∗ is the iteration times.
The iteratively successive projection operator can be

obtained in two steps: first, multiply the classical null space
projection operator of each subtask in sequence to obtain the
successive projection operator; then the successive projection
operator must be multiplied by itself N times to form the
iteratively successive projection operator. And the successive
projection operator Ps defined in (17) can be considered as
a special case using iteratively successive projection princi-
ple, where the time N of successive projection is merely 1.
According to Lemma 1 the following theorem holds.
Theorem 1: lim

N→∞
PN = I − J†J .

Proof: According to (18),
k∏
i=1

(I − J†i Ji) can be reformu-

lated as:
k∏
i=1

(I − J†i Ji)

= J†J
k∏
i=1

(I − J†i Ji)+ (I − J†J )
k∏
i=1

(I − J†i Ji)

=

k∏
i=1

(I − J†i Ji)J
†J + (I − J†J )

k∏
i=1

(I − J†i Ji). (21)
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Since J†J (I − J†J ) = O, it implies
k∏
i=1

(I − J†i Ji)J
†J (I −

J†J )
k∏
i=1

(I − J†i Ji) = O. Based on (21), we obtain:

lim
N→∞

(
k∏
i=1

(I − J†i Ji)

)N

= lim
N→∞

(
k∏
i=1

(I − J†i Ji)J
†J + (I − J†J )

k∏
i=1

(I − J†i Ji)

)N

= lim
N→∞

(
k∏
i=1

(I − J†i Ji)J
†J

)N

+ lim
N→∞

(
(I − J†J )

k∏
i=1

(I − J†i Ji)

)N
. (22)

According to Lemma 2, ρ(
k∏
i=1

(I − J†i Ji)J
†J ) ≤‖

k∏
i=1

(I −

J†i Ji)J
†J ‖< 1, where ρ(·) denotes the spectral radius. Thus

lim
N→∞

(
k∏
i=1

(I − J†i Ji)J
†J )N = O. Based on Lemma 1, (I −

J†J )
k∏
i=1

(I − J†i Ji) = I − J†J can be obtained. Therefore,

lim
N→∞

(
k∏
i=1

(I − J†i Ji))
N
= I − J†J holds. �

Theorem 1 demonstrates the relation between the null
space of the augmented Jacobian and the successive projec-
tion between null space of each subtask. Iteratively successive
projection operator consists of two parts: one part equals to
the classical null space projection operator defined in (10),
the other part is the exponentiation of a matrix with spectral
radius less than 1. As the iteration times increase to infinity,
the second part converges to a zero matrix, where the itera-
tively successive projection operator equals to the classical
null space projection operator.
There is a geometric interpretation for iteratively succes-

sive projection method: on the condition that the spectral
radius of In − J†i Ji is less than 1, if a vector is successively
projected onto the null space of each task’s Jacobian, the vec-
tor component out of the intersection of each task’s null
space will be diminished gradually. By repeating successive
projection iteratively, the component of the vector out of the
intersection of each task’s null space will be totally removed
finally. Fig. 1 illustrates the iteratively successive projection
between two tasks. Vector v ∈ R3, subtask Jacobian J1 ∈
R1×3 and J2 ∈ R1×3, plane A and B are perpendicular to
J1 and J2, respectively. v1 is the projection of v onto the
plane B, which equals (In − J†2 J2)v. Similarly, projecting v1
onto the plane A yields (In− J

†
1 J1)(In− J

†
2 J2)v. By repeating

the successive projection infinite times, the vector converges
to vp finally, which equals the classical null space projection
(In − J†J )v.

FIGURE 1. A geometric interpretation for iteratively successive projection
with two subtasks.

B. CONTINUOUS PROJECTION OPERATOR
The case without activation mechanism is discussed in the
previous section, in this section activation factors are intro-
duced into (20) to obtain the continuous projection operator,
which can be formulated in the following form:

PNH =

(
k∏
i=1

(In − hiJ
†
i Ji)

)N
, (23)

where hi is the diagonal element of matrix H defined in (11),
which represents activation of the ith task Jacobian Ji.
For the projection operator In − hiJ

†
i Ji, hi determines

whether the projection onto the row space of Ji is totally or
partially removed. Therefore, the values of hi directly affect
the continuity of PNH , however, the value of the iteration
times N can affect the continuity of PNH either, and the
following two properties hold.
Property 2: Assume N is finite, PNH is continuous with

respect to the activation factors.
Proof: PNH can be reformulated as a polynomial form

of hi. However, a polynomial is always continuous on the
condition thatN is finite, which ensures the continuity ofPNH
with respect to the activation factors. �
Property 3: Assume N is infinite, PNH is discontinu-

ous with respect to the activation factors. And there is
lim
N→∞

PNH = In − (H̃J )†H̃J .

Proof: The residual item between PNH and In −
(H̃J )†H̃J is

R = PNH − (In − (H̃J )†H̃J )

= (In − (H̃J )†H̃J )PNH + (H̃J )†H̃JPNH
− (In − (H̃J )†H̃J ). (24)

Based on Lemma 1, it implies

(In − (H̃J )†H̃J )(In − hiJ
†
i Ji) = In − (H̃J )†H̃J . (25)

According to the definition of PNH , substituting (25) into (24)
yields

R = (H̃J )†H̃JPNH . (26)
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Equation (H̃J )†H̃J (In − hiJ
†
i Ji) = (In − hiJ

†
i Ji)(H̃J )

†H̃J
can be obtained in the sameway as (18). According to the def-
inition of pseudo-inverse, there is (H̃J )†H̃J (H̃J )† = (H̃J )†.
Based on those equations, (26) can be rewritten as:

R = (H̃J )†H̃J

(
k∏
i=1

(In − hiJ
†
i Ji)

)N

=

(
(H̃J )†H̃J

)N ( k∏
i=1

(In − hiJ
†
i Ji)

)N

=

(
k∏
i=1

(In − hiJ
†
i Ji)(H̃J )

†H̃J

)N
. (27)

Since ‖In − hiJ
†
i Ji‖ ≤ 1 and ‖(H̃J )†H̃J‖ ≤ 1, ‖

k∏
i=1

(In −

hiJ
†
i Ji)(H̃J )

†H̃J‖ ≤ 1. ‖
k∏
i=1

(In − hiJ
†
i Ji)(H̃J )

†H̃J‖ < 1 can

be proved in the same way as Lemma 2. Hence lim
N→∞

R = O,

there is lim
N→∞

PNH = In − (H̃J )†H̃J .

According to [16], In − (H̃J )†H̃J is discontinuous
with respect to the activation factors, which proves the
property. �
Property 3 also demonstrates the relation between PNH and
In − (H̃J )†H̃J . PNH consists of two parts: one part equals to
In − (H̃J )†H̃J ; the other part is the residual item R defined
in (24), which ensures the continuity of PNH as hi switch
between the zero value and the nonzero value. However,
R converges to zero matrix, as N increases to infinity, and
discontinuity happens. Hence, the value of N determines the
continuity of PNH .

IV. CONTINUOUS ALGORITHM FOR TASK-BASED
CONTROL USING THE ITERATIVELY
SUCCESSIVE PROJECTION
A. CONSTRUCTION OF A CONTINUOUS
INVERSE OPERATOR
In view of that J† = (In − P)J† holds for the redundant
robot, a continuous inverse operator of J activated by H can
be defined on the basis of the definition of the continuous
projection operator as follows:

J#H = (In − PNH )J†, (28)

where H is defined in (11), and PNH is defined in (23). Since
J† is continuous, J#H is continuous according to Property 2,
on the condition that the iteration times N of PNH is finite.

Note that the solution based on the classical inverse for the
kinematic equation (12) is (HJ )†H , which is featured with
the property HJ (HJ )†H = H (this holds for (H̃J )†H̃ either).
This endows the corresponding solution the ability to ensure
all the active tasks, if the total dimension of all active tasks is
not larger than the DoF of the robot. However, the continuous
inverse operator J#H is the approximation of (H̃J )†H̃ , which
is equivalent to (HJ )†H . To evaluate the approximate degree

between J#H and (H̃J )†H̃ , the difference between H̃JJ#H and
H̃J (H̃J )†H̃ is calculated as follows:

H̃JJ#H − H̃J (H̃J )†H̃

= H̃J (In − PNH )J† − H̃

= H̃J
(
(H̃J )†H̃J − R

)
J† − H̃

= H̃J (H̃J )†H̃JJ† − H̃JRJ† − H̃

= −H̃JRJ†, (29)

where R is defined in (26). The proof of Property 3 demon-
strates that R converges to a zero matrix as the value of N
increases to infinity. On the condition that J is nonsingu-
lar, ‖J‖ and ‖J†‖ are both bounded, H̃JJ#H will gradually
converge to H̃ as the value of N increases. This implies
the value of N balances the continuity and the approximate
degree, a small value of N leads to a smooth behavior but a
poor approximation to H̃JJ#H ; a high value of N leads to a
discontinuous behavior but a good approximation to H̃JJ#H .

B. CONTINUOUS CONTROL LAW FOR THE
TASK-BASED CONTROL
Assume the total dimension of all active tasks is not larger
than the DoF of the robot, a continuous solution to the kine-
matic equation (12) is proposed based on the definition of the
continuous inverse (28) as follows:

q̇ = J#H ẋ. (30)

Because J#H is an approximation to (H̃J )†H̃ , and the
open-loop control (30) based on J#H cannot guarantee the
active task. Given a desired end-effector trajectory in terms
of position, velocity, a closed-loop control law is presented
to improve the accuracy as follows:

q̇ = J#H (ẋd − Kee) = (In − PNH )J†(ẋd − Kee), (31)

where e = x − xd is defined as the tracking error, xd and ẋd
are the position and velocity of the desired trajectory, respec-
tively. And the diagonal matrix Ke is the error-feedback gain
matrix, whose diagonal elements are positive.

According to the task-based control with the activation
mechanism, some tasks are not active, only the active tasks
are considered in stability analysis. Hence, considering the
interval when H̃ is constant, the stability of the active task
tracking error ẽ = H̃e is discussed, and the following theorem
holds.
Theorem 2: Assume J is full rank, the active task tracking

error is bounded under the control law (31).
Proof: At the beginning, let the Lyapunov function be

V =
1
2
ẽTPẽ, (32)

where the constant diagonal matrix P is positive definite.
First, the boundedness of the tracking error in the period

without task activity changing is analyzed. Without loss of
generality, assume the activities of all tasks keep steady in the
interval [t0, t1]. Since the activities of the tasks do not change,
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H̃ is constant within the period, the time derivative of V can
be written as

V̇ = ẽTPH̃
(
JJ#H (ẋd − Kee)− ẋd

)
= ẽTP

((
H̃J (H̃J )†H̃JJ† − H̃JRJ†

)
(ẋd − Kee)− H̃ ẋd

)
= −ẽTPKeẽ− ẽTPH̃JRJ†(ẋd − Kee). (33)

Since H̃J (H̃J )†H̃J = H̃J , according to (18) and (26),
the following equation holds

R = R(H̃J )†H̃J . (34)

Substituting (34) into (33) yields

V̇ = −ẽTPKeẽ− ẽTPH̃JR(H̃J )†H̃JJ†(ẋd − Kee)

= −ẽTPKeẽ− ẽTPH̃JR(H̃J )†(H̃ ẋd − Keẽ). (35)

On the condition that J is full rank, J is bounded. According
to Weyl’s theorem [21], σm ≤ ‖H̃J‖ ≤ σM holds, where
σM and σm denote the maximum singular value and the mini-
mum singular value of J , respectively. Therefore, Eq. (35) can
be simplified as:

V̇ ≤ −αmkem‖ẽ‖2 + αMkeM‖H̃J‖‖R‖‖(H̃J )†‖‖ẽ‖2

+αM‖H̃J‖‖R‖‖(H̃J )†‖‖H̃ ẋd‖‖ẽ‖

= −(αmkem − αMkeM
σM

σm
r)‖ẽ‖2 + αM

σM

σm
rvd‖ẽ‖, (36)

where αm (αM ) and kem (keM ) denote the minimum (maxi-
mum) element of the diagonal matrix P and Ke, respectively.
vd is the upper bound of ‖H̃ ẋd‖, r is the upper bound of ‖R‖.

According to the proof of Property 3, ‖R‖ converges to
0 as the value of N increases. Thus, by properly selecting
N and Ke, the following equation holds

r <
σmαmkem
σMαMkeM

. (37)

And (36) can be rewritten as

V̇ ≤ −γ1(‖ẽ‖ − γ2)‖ẽ‖, (38)

where

γ1 =
σmαmkem − σMαMkeM r

σm
, (39)

γ2 =
σMαM rvd

σmαmkem − σMαMkeM r
. (40)

This implies the boundedness of the norm of ‖ẽ‖. If ‖ẽ‖ >
γ2, V̇ < 0, ‖ẽ‖ decreases until γ2. Once ‖ẽ(t0)‖ ≤ γ2,
then ‖ẽ(t)‖ ≤ γ2, t ∈ [t0, t1]. It demonstrates ‖ẽ(t)‖ ≤
max{‖ẽ(t0)‖, γ2},, t ∈ [t0, t1].
Then, the case of task activity switching is considered.

Assume the activity of the ith task switches at the moment
t = t1, the active task tracking error before and after the task
switching are denoted as ẽ(t)|t1− and ẽ(t)|t1+, respectively.
If the ith task switches from active state to inactive state at
the moment t = t1, the corresponding element is removed
from the active task tracking error ẽ, therefore, ‖ẽ(t)|t1+‖ ≤
‖ẽ(t)|t1−‖. If the i

th task switches from inactive state to active
state, the corresponding element in the active task tracking

error equals 0 at the moment t = t1, because the initial track-
ing task error should be zero as it is activated, consequently,
‖ẽ(t)|t1+‖ = ‖ẽ(t)|t1−‖. Thus, the activity switching of a
single task would not increase the value of ‖ẽ‖. And the same
conclusion can be drawn when several tasks switch at the
same moment. Since the initial value of ‖ẽ‖ = 0, the upper
bound of ‖ẽ‖ is γ2, which proves the theorem. �

Compared with the control law (31), the the control law
proposed in [16] can only guarantee the convergence of the
active task tracking error in the activity steady period (all
tasks are inactive or fully active) while the proposed control
law can ensure the boundedness of the active task tracking
error in the whole tracking process.
Remark 2: The proof of Theorem 2 implies that the bound

of ‖ẽ‖ is influenced by the value ‖R‖: the larger the value
of ‖R‖ is, the smaller the bound of ‖ẽ‖ is. According to the
analysis in Sec. III-B, the value of ‖R‖ converges to 0, as N
increases. Hence selecting N is also a compromise between
continuity and stability. A large N leads to a small bound
of ‖ẽ‖ at the price of poor continuity as task switches from
inactivity to activity, or vice versa, while a small N makes
joint velocity act in a continuous manner with a large active
task tracking error. The following method can be adopted to
determine the lower bound of N . Assume the desired bound

of ‖ẽ‖ is be, the upper bound of ‖
k∏
i=1

(In − hiJ
†
i Ji)(H̃J )

†H̃J‖

is denoted as br . According to (27) and (40), ‖ẽ‖ ≤ be holds,
if the following inequality holds

be ≥
σMαMbNr vd

σmαmkem − σMαMkeMbNr
. (41)

Since ‖br‖ < 1, N can ensure ‖ẽ‖ ≤ be on the condition that
the following inequality holds:

N ≥ logbr
beαmσmkem

σMαM (bekeM + vd )
. (42)

C. COMPUTATION OF THE CONTROL LAW
Since the definition of J#H is based on the pseudo-inverse
of J , the closed-loop control law (31) might suffer from the
singularity problem, as the rank of J loses. The damping
factor is introduced to obtain a feasible solution at the cost
of a lower precision, as proposed in [22]. The solution with a
damping factor can be formulated as:

q̇ = (In − PNH )JT (JJT + λ2I )−1(ẋd − Kee). (43)

where the damping factor λ > 0 is set as follows:

λ2 =

0 σmin ≥ ε(
1−

(σmin

ε

)2)
λ2max otherwise,

(44)

where σmin denotes the minimal non-zero singular value
of HJ , ε is the length of the singular interval to avoid,
λmax denotes the maximum damping parameter, which are
selected in the sameway as [23]. Note that the pseudo-inverse
is also used in (23) to obtain the null-space projection opera-
tor of each task. Nevertheless, the calculation of the null space
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FIGURE 2. Simulation of the redundant manipulator under the control algorithm based on the classical inverse. (a) Motion of the manipulator.
(b) Joint position trajectory. (c) Joint velocity trajectory. (d) Distance to the obstacle. (e) Activation Factor. (f) Tracking error.

projection operator of each task will not be effected by the
singularity, which can be illustrated according to (10).

It takes N times successive projecting to obtain the PNH ,
according to (23). Since the control law (43) is defined
based on PNH , it is computationally intensive to obtain
J#H using (23) and (28). For simplicity, N is set 2n,
and algorithm 1 details the computation of the continuous
inverse J#H .

Algorithm 1 Calculate q̇
1: Calculate the activation factor hi and Jacobian matrix Ji

of each task.
2: Set G = In
3: for i = 1; i ≤ k; i++ do
4: G = G× (In − hiJ

†
i Ji);

5: end for
6: for i = 1; i ≤ n; i++ do
7:

PNH =
{
G i = 1
PNH × PNH i > 1.

8: end for
9: Calculate λ by (44).
10: Calculate q̇ = (In − PNH )JT (JJT + λ2I )−1(ẋd − Kee).

V. SIMULATION RESULTS
To validate the control algorithm proposed in the previous
section, simulations are conducted on 6-DoF planar manip-
ulator to perform the trajectory tracking task with obsta-
cle. In trajectory-tracking process, the obstacle avoiding task
is activated, only when the link is close to the obstacle.
The comparison with the classical inverse method and the
Mansard’s methods are presented to demonstrate the advan-
tage of the proposed control algorithm.

All link lengths are 1, and the initial configuration is set as
qi = [0.0 20.0 30.0 30.0 30.0 30.0]T . The coordinate of the
terminal point in the Cartesian space is xf = [0.18 0.12]T ,
and the center of column obstacle is point O at (0.95 0.95)
with the radius ro = 0.66. The desired trajectory of the
end-effector is preplanned with a high-order polynomial
function. As the end-effector tracks the trajectory, all the links
have the risk of colliding to the obstacle. And the distance
from the ith link to the obstacle can be obtained as follows:

di =
√
(Cix − Ox)2 + (Ciy − Oy)2 − ro, (45)

where Cix and Ciy are coordinate of the point Ci(t) on the
ith link, which is the closet to the obstacle, shown in Fig. 2(a).
AndOx , Oy is the center of the obstacle, ro is the radius of the
obstacle. di > 0 should hold to guarantee the ith link not to
collide the obstacle. In order to avoid collision, the obstacle
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FIGURE 3. Simulation of the redundant manipulator under the control algorithm based on the iteratively successive projection. (a) Motion of the
manipulator. (b) Joint position trajectory. (c) Joint velocity trajectory. (d) Distance to the obstacle. (e) Activation Factor. (f) Tracking error.

avoidance task of the ith link can be formulated as:

J ioq̇ =
−→
OCi

T

‖
−→
OCi‖

· Jciq̇ = v i = 1, · · · , 6 (46)

where Jci is the Jacobian of the point Ci(t) on the ith link,
−→
OCi is the vector from the pointO to pointCi(t). And v > 0 is
obstacle avoiding velocity. Since only four degrees of redun-
dancy are available for the obstacle avoidance of six links,
the activation mechanism is adopted for the obstacle avoiding
tasks, the activation factor hi is introduced as follows:

hi =


0 if di > d̃

fa

(
di
d̃

)
if 0 ≤ di ≤ d̃

1 else,

(47)

where d̃ denotes the region where the task of avoiding colli-
sion becomes active, and the function fa(x) is defined as:

fa(x) = 3x2 − 2x3, ∀x ∈ [0, 1]. (48)

The obstacle avoidance tasks of the links and tracking task are
combined together, the augmented Jacobian and the velocity

vector of the tasks are set as follows:

J =


Je
J1o
...

J6o

 , ẋ =


ẋ
v
...

v

 (49)

where Je is the Jacobian of the end-effector. And the activa-
tion matrix is set as H = diag{I2, h1, · · · , h6}. Therefore,
the trajectory tracking problem with an obstacle avoiding
task can be formulated as (12). In the simulation, the control
period is set T = 5 ms, the error-feedback gain matrix
Ke = 20In, and the avoiding collision region
length d̃ = 0.15.

A. THE CLASSICAL INVERSE
First, the control algorithm based on the classical inverse is
adopted to solve the problem. In view of the singular case,
the damping factor is introduced to (13), and the control law
is formulated as:

q̇ = JTH (HJJTH + λ2I )−1Hẋ. (50)

where is a damping factor λ is defined the same as (44), ε is
the length of the singular interval to avoid, which is set to
0.005 in the simulation.
The results are shown in Fig. 2. The end-effector tracked

the preplanned trajectory in the Cartesian space with a
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FIGURE 4. Simulation of the redundant manipulator under the control algorithm based on Mansard’s inverse (a) Motion of the manipulator.
(b) Joint position trajectory. (c) Joint velocity trajectory. (d) Distance to the obstacle. (e) Activation Factor. (f) Track error.

smooth path. At the interval t ∈ [0, 3.1) s, all the links
were far away from the obstacle. Correspondingly, only the
trajectory tracking task was fully activated, the rank of HJ
was 2, and the joint velocity was smooth. At t = 3.1 s,
the sixth link of the manipulator came into the avoiding
collision region, shown in Fig. 2(d), the obstacle avoiding
task became active, which suppressed the further motion
of the six link to the obstacle. Consequently, the rank of
the matrix HJ increased to 3 abruptly, and the rank dis-
continuity of HJ caused the drastic switch in joint velocity.
Similar discontinuous situations happened at the moment
t = 3.3 s, 3.5 s, 3.7 s, 3.9 s, when an obstacle avoiding
task switched from inactivity to activity or vice versa, shown
in Fig. 2(c). This demonstrates the discontinuity of the clas-
sical inverse. Although there were several obstacle avoiding
tasks happened during the trajectory tracking process, how-
ever, there were not more than four obstacle avoiding tasks
were activated simultaneously, the rank ofHJ was always less
than 6, there was not any singularity happened, and the track-
ing error converged as the end-effector reached the terminal
point.

B. THE ITERATIVELY SUCCESSIVE PROJECTION
In this section, the proposed control algorithm is adopted to
solve the manipulator control problem. PNH is obtained by
Algorithm 1, the iteration parameter n in Algorithm 1 is set
10 based on (42).

The result is shown in Fig. 3. At the beginning, the tasks
of obstacle avoidance were not active, all joints were only
driven for the trajectory tracking task. At the moment t =
2.8 s, the sixth link came close to the obstacle, the corre-
sponding task of obstacle avoidance started to come active,
and the activation factor increased gradually, which did not
affect the continuity of the joint velocity. Compared with
the classical inverse, the activation factor of the proposed
method is much larger. The reason for this phenomena is
that the proposed method did not fully activate the obstacle
avoiding subtask to guarantee the continuity, as the link came
near the obstacle. However, the classical inverse method fully
activated the avoiding subtasks to push the corresponding
links out of the avoiding collision regions immediately. This
is the reason why the classical inverse method took a shorter
time to push the link away from the obstacle than proposed
method.

It is worth noting that the track error was about 1.1× 10−5,
as the end-effector came to the terminal point, shown
in Fig. 3(f). However, this is not caused by the singularity,
but instead it is due to the iteratively successive projection,
which does not converge of the tracking error. Meanwhile
iteratively successive projection guarantees the boundedness
of the track error, which can keep the track error in an accept-
able region, and according to (40), the bounded of the tracking
error can be further reduced by increasing the error-feedback
gain.

25356 VOLUME 7, 2019



P. Jiang et al.: Iteratively Successive Projection: Novel Continuous Approach

C. THE MANSARD’S INVERSE
For comparison, the Mansard’s inverse proposed in [16]
is adopted in the simulation. The control law can be
written as:

J⊕Hco =
∑
β∈φ

∏
i∈β

hi

∏
i/∈β

(1− hi)JTβ (JβJ
T
β + λ

2I )−1, (51)

where φ are the set of all task combinations without repeti-
tions. And the Jacobian matrix Jβ of all the tasks included in
the task set β, damping factor λ is set in the same way as in
Sec. IV-C. The result is shown in Fig. 4, which demonstrates
the approach based on the Mansard’s inverse can success-
fully realize the trajectory tracking task, while guarantees the
obstacle avoidance tasks.

TABLE 1. Simulation time of the methods based on different inverse.

Table 1 reveals that the calculation time of the Mansard’s
approach (51) is 25 times more than that of the control
law based on iteratively successive projection and classi-
cal inverse. Mansard’s inverse is the linear weighted sum
of pseudo-inverse of all task combinations. Suppose there
are l active tasks, the Mansard’s inverse based method
needs 2l − 1 times pseudo-inverse operation to calculate
Mansard’s inverse. While the proposed method needs l + 1
pseudo-inverse operation and n times matrix multiplications
to calculate the inverse based iteratively successive projec-
tion. Compared with the continuous algorithm based on iter-
atively successive projection, the Mansard’s inverse based
approach is shown to be more computationally intensive,
as the number of active tasks increase.

VI. CONCLUSION
This paper proposes an iteratively successive projection
method, where the space is projected onto the null space
of each task’s null space in sequence iteratively to obtain
the null space projection operator. This guarantees the con-
tinuity of the null space projection operator as the tasks
switch over between inactive and active states by taking
the finite-times iteration. Based on the iteratively successive
projection method, a continuous inverse operator is built.
A continuous closed-loop control algorithm is presented by
means of the continuous inverse operator, which can ensure
the continuity of the joint motion and the boundedness of
the tracking errors of the active task. Compared with the
classical task-based control algorithm and Mansard’s uni-
fied approach, simulation results demonstrate the advan-
tages of the proposed approach in continuity, stability and
calculation-time consumption.
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