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ABSTRACT Stability and robustness of feature selection techniques have great importance in the high
dimensional and small sample data. The neglected subject in the feature selection is solving the instability
problem. Therefore, an ensemble gene selection framework is used in order to provide stable and accurate
results of feature selection algorithms. Sequence modeling from high-dimensional data is an important
research area for the discovery of biomarkers. Identifying biomarkers requires robust gene selectionmethods,
which makes it possible to find important tumor-related genes with high accuracy. The main issue of this
paper is creating a model in order to learn long sequences with the artificial immune recognition system
(AIRS) for robust feature selection. Long short-term memory (LSTM) recurrent neural networks are trained
with the AIRS in order to obtain the long-lived unit cells for use in the feature selection process. LSTM was
used to be better understanding the mechanisms involving the ‘‘remember’’ feature of the immunological
behavior of the immune response. We tried to apply a theory suggested by immunologists in order to develop
stable associative memory, which capable of solving robustness and optimization tasks. We examined the
initial gene selection step based on the different types of group formation algorithm for analysis of the most
informative selected features. Microarray datasets are showing remarkable increases in their robustness and
classification accuracy. The suggested framework is evaluated on six commonly used microarray datasets.

INDEX TERMS Artificial intelligence, classification algorithms, computational intelligence, neural net-
works.

I. INTRODUCTION
The early diagnosis of tumors has great benefits in the
treatment of cancer, but current techniques for discovering
biomarkers that can diagnose cancer are inadequate. Select-
ing informative gene subsets and accurately classifying tumor
samples can help detect important cancer biomarkers. In biol-
ogy, the main goal of microarrays andmass spectrometry is to
detect marker genes or proteins from high output experiments
instead of creating models to predict disease susceptibility
or phenotypes from original specimens. Although many fea-
ture selection algorithms are suitable for selecting feature
subsets, they are inadequate in making reliable candidate
attribute definitions to validate expensive biological exper-
iments. Discovery of biomarkers requires a robust feature
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selection method for such datasets. Feature selection for gene
expression datasets is usually suboptimal due to the high-
dimensionality and small sample characteristics. A popular
option for defining attributes is verifying biological exper-
iments through the best classifier accuracy. Nevertheless,
different attribute subsets of the same data can be quite similar
or even the same in classifier accuracy results and only a
large number of distinct attribute subsets can reveal instability
in feature selection algorithms. The learning model should
not neglect feature selection stability in applications of char-
acteristic markers or biomarker identification. Given these
shortcomings, a viable alternative approach is the analysis of
microarray data. By using a qualified gene selection mech-
anism, stability improves and biomarkers can be identified
with greater confidence.

The natural immune system is a highly adaptive, dis-
tributed, and parallel system. Through learning, memory,
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and relational information acquisition it successfully solves
classification and pattern recognition problems. There is no
system that can model long-sequence learning in Artificial
Immune Recognition Systems (AIRS). The advantage of
sequence modeling in AIRS is that it can be converted into
an intelligent network system in which the learning process
can be performed.

Therefore, in this work LSTM is used with AIRS in order
to keep features which are preserved for a long time. It is
possible to define an LSTM block as an intelligent network
cell since it can remember a value for a time in random
length. The sequence learning was performed with an LSTM
recurrent neural network, which improves the stability of the
consensus gene sequences to find the potential long-term
dependency. Intuitively, if an LSTM unit detects an important
attribute in an early stage sequence, it will acquire a potential
long-term association since this information can be easily
transferred. LSTM mechanism trained based on AIRS in
order to detect long-lived unit cells for using in the feature
selection process. This study attempts to create an ideal
infrastructure for stable feature selection using the memory
cells involved in immunity acquisition. In AIRS, there is no
mechanism to ensure that relational immune memory devel-
ops in a way that allows for long-sequence learning. In the
long-term preservation of immunological memory, stable fea-
ture groups are obtained based on optimal biological gene
sequences.

The unique aspect of this work is the development of the
immune memory of the AIRS with the mechanism which is
created by LSTM memory blocks. LSTM will function as a
kind of internal stimulation mechanism in this paper. Sug-
gested associative memory mechanism was modeled based
on the LSTM in order to create a robust immune memory
and realize association of the learned pattern quickly and
effectively. The attributes that will be selected (cell survival
in the resting state) during the long-term preservation of the
immune memory will be referred to as long-lived unit cells
attribute groups.

The dense group finder (DGF), correlation-based fea-
ture group (CFG), and information gain based feature
group (IGFG) algorithms are used to obtain associative
feature subsets groups. Each associative set of feature
groups were developed with the meta-dynamics of the
suggested LSTM-AIRS versions which are, long-short-
term memory based artificial immune recognition system
version-1 (LSTM-AIRS1), long-short-term memory based
parallel artificial immune recognition system version-1
(LSTM-PAIRS1), long-short-term memory based artificial
immune recognition system version-2 (LSTM-AIRS2), long-
short-term memory based parallel artificial immune recog-
nition system version-2 (LSTM-PAIRS2), Genetic algorithm
(GA), and Artificial neural network with Genetic algorithm
(ANN+GA) algorithms like a single cell in order to find
the optimal sequences. Then algorithms compared with fast
correlation-based feature selection (FCBF), consensus group
stable feature selection (CGS), sequential forward feature

selection (SFS), and sequential backward elimination (BES)
algorithms.

The other contents of this paper are as followed: the sec-
ond section includes the related work and the third section
includes the ensemble feature selection. The fourth section
includes the methods and the suggested method represented
in the fifth section. Experiment setup is explained in the
sixth section. The seventh section includes the results and
discussions and finally, the conclusions are given in the eighth
section.

II. RELEATED WORK
In this study [3], the proposed artificial immune systems
and local attribute selection approach were created within
the scope of the epitope and paratope regions formed by
amino acids residues generated during the binding of an
antigen and an antibody in artificial immune systems. The
local selection mechanism proposed within the scope of the
study is the original aspect of the study. It was observed that
the proposed local attribute selection mechanism eliminated
the multidimensionality complexity.

Standard artificial immune recognition systems devel-
oped by using the Opposite Sign Test (OST) approach [7]
were used in attribute selection. The classification accuracy
obtained as a result of the attribute selection was increased by
combining the local search technique, OST, with the efficient
aspects of artificial immune recognition systems.

This study [10] includes the selection of attribute groups
with a high correlation by the FAST (fast clustering-based
feature selection) algorithm. The most distinctive attribute
groups were defined by the Markov blanket approach. The
stable attribute groups were obtained by the Greedy Variable
neighborhood search approach.

Fast correlation-based filter (FCBF) used within the scope
of this study [1] as a preprocessing data and Artificial
Immune Recognition System (AIRS) algorithm used as a
model prediction. Experiment results show the classification
of the dataset Breast-Cancer-Wisconsin reaches correctness
100% based on k-NN.

The distance-based feature selection method is investi-
gated in this study [19] for a two-category classification
problem. The marker genes selected by implementing the
Bhattacharyya distance to measure the dissimilarity in gene
expression levels between groups. A novel method is pro-
posed for marker gene selection and cancer classification
based on SVM. The proposed algorithm is very promising
in gene selection and cancer classification.

In this study [13], the two-stage filter-wrapper model sug-
gested for feature selection in microarray datasets. An ensem-
ble of filter method developed based on the Relief-F,
chi-square and symmetrical uncertainty. The ensemble learn-
ing was applied by the union and intersection of the three
ranking. Multi-objective GA used in order to improve the
quality of the selected features. Experimental results show
the success of the suggested model in cancerous gene
identification.
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FIGURE 1. Modeling Immune Memory as Associative Memory [2].

The study [22] focuses on the analysis of the co-expressed
genes in the microarray data. Gene clustering performed with
developing the multi-objective clonal selection optimization
algorithm (MCSOA). Two conflicting objective function used
based on the clustering validity indexes in order to utilize a
robust MCSOA. The first objective function formed by the
combination of the IDE, homogeneity, DB, and XB. I index
and separation used together as a second objective function.
Results show the superiority of the used gene clustering
method.

III. PREMINILARIES
A. BIOLOGICAL INSPIRATION
The artificial immune system (AIS) is a computation sys-
tem and supervised learning algorithm inspired by biological
immune system metaphors. A major feature of the adaptive
immune system response is its ability to ‘‘remember’’ when
the same antigen encountered later time.We try to understand
the mechanisms involved in this behavior. The modeling
immune memory as an associative memory is illustrated
in Figure 1.

The formation of the immune memory is visualized with
the density leveling of the various memory cells during the
primary and secondary responses. When the immune system
first encounters an antigen, a primary response is induced:
a number of lymphocytes are produced. Some of these lym-
phocytes are kept as memory cells. The next time the same
antigen is detected, memory cells generate a faster and more
intense response (the secondary response). In this way, mem-
ory cells work like associative memories.

Various strategies are suggested for understanding the
immune system’s learning and memory. According to one
hypothesis, when the ARB cells are activated by an antigen,
they have a time period in which they expect to encounter
the same antigen. ARB cells stay in memory for weeks or
even months. The lymphocytes are able to maintain a simple

FIGURE 2. Ensemble feature selection framework [21].

dormant state for many years in this time interval. The antigen
itself or a partially deformed state of it (a small variation)
accumulates in the lymph nodes or organs, and the memory
of the immune system which is exposed to the antigen is fed
at a periodic interval. However, survivors are not known in
case ARB cells have not been activated by antigen for years.
A basic theory [2] behind this idea depends on the immuno-
logical theory. According to this theory, some immunologists
suggest that some kind of internal restimulation mechanism
protects the immune memory for a long time.

The immune memory of the AIS was developed in order
to investigate a system for obtaining associative immune
memory with an intelligent network system for sequences
could be effectively memorized as robust patterns. Asso-
ciative memory remembers the patterns being learned and
enables effective recall of learned patterns.

B. ENSEMBLE FEATURE SELECTION
In this paper, the ensemble feature selection framework
is used with the random subsampling of the dataset.
Figure 2 shows the ensemble feature selection framework.
The relevance and redundancy are the main concepts in
feature selection. Therefore, in this work, ensemble gene
selection framework is used in order to provide stable and
accurate results of the feature selection algorithm. In this
framework, the different types of associative feature groups
which are created based on the principles of group-based
learning method are used. The stability is achieved by the
resistance of the associative feature groups to the variations of
the training sample. Each type of associative feature groups
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is created based on the subsampling of the training samples.
Creating associative feature groups based on group relevance
less prone to overfitting on small samples and reduce the com-
plexity of multidimensionality [16]. Learning was performed
at the group level. The purpose of using this idea is to handle
selection instability with sample selection and approximate
intrinsic properties of the original dataset.

High-dimensional data have many features and few sam-
ples, which poses a classification problem. Therefore, it is
very important to obtain feature groups from high dimen-
sional data. In this study, feature groups were obtained
based on density, correlation, and knowledge acquisition.
By clustering feature groups based on high-dimensional data,
group-level learning is achieved, as opposed to simply bring-
ing together the members of each feature group though ran-
dom relationship variation. Thus, there is more potential to
converge on the intrinsic feature groups of the dataset.

Data-driven feature group formation used to pre-select
the different type associated gene subset groups. The DGF
(Dense Group Finder), CFG (Correlation Based Feature
Group) and IGFG (Information Gain Based Feature Group)
algorithms are used to obtain an associative set of feature
groups. The formation algorithms of the feature groups were
used by the ensemble gene selection framework in the initial
stage of feature selection tasks. The improvement of each
attribute group and achieving group-level learning is more
effective than in bringing each attribute group based on the
random relationship variations of group members.

In (1), the kernel density function is used in order to obtain
the density based feature groups. The sequence of consecutive
locations of the kernel function determined the calculation of
Cj+1 equation. The parameter h used for kernel bandwidth
refers to the nearest neighbor number, the parameter p used
for the total number of attributes in the datasets, any attribute
represented by fi parameter, K represents the kernel function.

cj+1 =

∑p
i=1 fiK ( cj−f ih )∑p
i=1 K ( cj−f ih )

, j = 1, 2, · · · (1)

In (2), the usefulness of a subset of attributes determined
based on the correlation based feature group function. Eval-
uation of the attributes determined based on the value of
the heuristic evaluation function. The intuitive usability of a
subset of S with k attributes is represented bymerits equation.
The parameter rcf represents the mean attribute-class correla-
tion and rff parameter represents the correlation between the
mean attributes.

meritS =
k ∗ rcf

√
k+ (k− 1) ∗ rff

(2)

The importance of a given attribute of the original feature
set obtained based on information gain function. The knowl-
edge in the feature is evaluated using the entropy criteria. The
entropy presented by of the ft attribute with M data can be
found by the (3).

E = −
∑M

i=1
(ft (i) log (ft(i)) (3)

FIGURE 3. Standard AIRS schema [5], [6].

IV. METHODS
A. ARTIFICIAL IMMUNE RECOGNITION SYSTEM (AIRS)
Artificial Immune Recognition System (AIRS) is a super-
vised learning algorithm which depends on the metaphors of
the biological immune system.

Figure 3 presents the standard AIRS schema. At the ini-
tialization stage, the data set is normalized to the range of
[0, 1]. After normalization, the affinity threshold is calculated
by (4). At the next stage, antigens are presented to the storage
pool with antigen training. At the memory cell recognition
stage, a stimulation value is assigned to these cells by stimu-
lating the recognition cells in the memory cell pool. Affinity
is calculated by (5), the stimulation value is calculated by
(6). Best match memory cell (Mcmatch) is calculated by (7).
A number of clones calculated based on the (8). Affinity
describes the degree of similarity between a recognition cell
and an antigen. Stimulation is an inverted affinity. Numclones
is the clone number, which utilizes local searching during
training. A clonal rate is the rate of the cloned cell for the
best matching memory cell. Within AIRS, agi and agj are the
sequential antigens in the input training data set (antigens).
Where n is the number of antigens in the input training data
set and mc is the memory cell.

Affinity threshold =
∑n

i=1

∑n

j=i+1

×

Affinity
(
agi, agj

)
n(n+1)

2

 (4)

Affinity
(
agi, agj

)
= 1− Eucliden distance

(
agi, agj

)
(5)

Stimulation =


Affinity (mc, ag) if mc.class

= ag.class
1− affinity otherwise

(6)

Mcmatch = argmax (Stimulation (mc, ag)) (7)

NumClones = Stimulaion ∗ clonalRate (8)

Figure 4 shows the standard AIRS resource competition
schema. The crucial point of artificial immune systems is the
evolutionary process that memory cells spend in the Artificial
Recognition Ball (ARB) population. The process of evolu-
tion involves certain concepts. First, the ARB population
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FIGURE 4. Standard AIRS resource competition schema [5], [6].

is evolved by the competition created by memory cells for
large resources of the evolutionary constraint system required
for the development of memory cells. In this way, which
memory cell survivor is determined, they are transformed into
qualified classifier cells. The goal of resource competition
is to develop the most appropriate individuals, as in genetic
algorithms.Within the artificial immune recognition systems,
the suitability of the cells is measured by their strong activa-
tion of the ARB cells by antigen (antigen-antibody binding).
Firstly, the value of activation between a memory cell and
antigen is calculated and is processed by taking into account
the memory cell and antigen class values. Finally, the reward
system allocates large system resources to the cells. Mem-
ory cells (close to anti-cells), which have a high activation
value (antigen-antibody binding strength) and have the same
class label, and cells with low activation value and the same
class label as the antigen (far from the antigen) are the most
rewarded. Cells with low activation values and memory cells
with different class labels with antigen, cells with high activa-
tion value and different class labels with antigen are not only
seen as weak for classification but also are least rewarded
as potentially harmful cells. Since these ARB cells have
insufficient ability to obtain the rewards, they are removed
from the system and the system is purified. Within the search
space, there is a serious challenge that evolves each ARB
cell with the most award acquisition. After the evolutionary
process of this ARB population is completed, the original
memory cell may have the potential to displace with the best
memory cell evolved. This potential for displacement is only
possible when the presented antigen is closer to the original
memory cell previously located in thememory pool and when
both the original memory cell evolves and the subsequent
memory cells are in proximity to each other.

The main difference between AIRS1version and
AIRS2 version are that the ARB pool used as a perma-
nent resource in the AIRS1 algorithm, vice versa tempo-
rary resource in the AIRS2 algorithm. In AIRS1, the ARBs
remaining from previous steps cause the algorithm to spend

more time competing for limited resources. This makes
AIRS1 a complex algorithm. While AIRS1 uses the mutation
parameter that can be defined by the user, AIRS2 uses
the somatic hypermutation where the mutation ratio of a
clone is proportional to the affinity [10]. While the classes
of clones may change after the mutation process in the
AIRS1 algorithm, classes are not allowed to change in the
AIRS2 algorithm. Parallel-AIRS1 and Parallel-AIRS2 ver-
sions demonstrate the distributed nature of the immune sys-
tems and their parallel processing qualities. In these versions,
initially, each part of the training data set is assigned to np
number of processes. Thus, it ensured that np number of the
memory pool is created by running the AIRS algorithm on
each process. As a result, the memory pools obtained are
merged [18].

B. GENETIC ALGORITHM (GA)
Genetic Algorithm (GA) is a class of the evolutionary algo-
rithms uses Darwin’s principle of the ‘‘survival of the fittest’’
and techniques inspired by evolutionary biology. In the
genetic algorithm, each possible candidate solution is repre-
sented in the initial population. The evaluation of each can-
didate solution is performed by genetic operators which are
crossover and mutation. Each candidate solution has a fitness
value in order to show goodness which computed based on the
fitness function determined for the problem. Evolving each
candidate solution is performed by the fitness function. Based
on the ‘‘survival of the fittest’’ principle, the individuals can
propagate throughout the population and yield more ‘‘fitter’’
individuals.

C. ARTIICIAL NEURAL NETWORK WITH GENETIC
ALGORITHM (ANN+GA)
Artificial Neural Network (ANN) is a biological inspired
computational intelligence technique which inspired from
human brain. In this paper, we try to implement the genetic
algorithm for optimization of the artificial neural network
algorithm for the learning behavior [23]. Designing of the
ANN and setting the number of hidden node (HN) and
connection weights parameters is difficult. Optimization of
the HN parameter is performed by GA. Fewer numbers of
HN causes the under-fitting problem and big numbers of the
HN causes the over-fitting problem. DGF, CFG and IGFG
associative set of feature groups used as the feature subsets
for ANN.

In this paper, we try to construct a hybrid system in order
to observe the generalization ability of the ANN based on the
associative feature groups. The fitness function is calculated
based on validation mean square error (MSE). Small MSE
has a better chance to be selected as a parent for mating and
propagate throughout the population [4].

D. STANDARD FEATURE SELECTION ALGORITHMS
The Fast Correlation-based Feature Selection (FCBF) algo-
rithm is finding a set of predominant features. FCBF algo-
rithm consists of two parts. In the first part, for each feature,
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FIGURE 5. Structure of the LSTM block [21].

the symmetrical uncertainty (SU) value computed and then
based on the predefined threshold δ relevant features selected
in the feature list. The feature list is ordered in descending
order according to their SU values. In the second part, remove
redundant features from the ordered list and among all the
selected relevant features keep the only predominant ones [8].

The Consensus Group Stable Feature Selection (CGS)
algorithm identifies consensus feature groups by sub- sam-
pling training samples. The major aim of the algorithm is
to converge to the intrinsic feature groups by an aggregating
set of consensus feature groups from ensemble learning with
generating the DGF groups on each sample.

The Sequential forward feature selection (SFS) and back-
ward elimination feature selection techniques (BES) are sim-
ple and effective methods for selecting attributes. While these
methods create a set of attributes, they perform extraction or
addition of an attribute from the attribute subset according to
the method selected at each step. The selection criterion here
is the performance ratio of the classifier algorithm. According
to the performance status of the specified classifier algorithm,
the discriminative attributes are determined at each step.

V. THE SUGGESTED METHOD
The underlying principle of the suggested method is the mod-
eling of the potential long-lived unit cells based on the LSTM.
The LSTM is a recurrent neural network (RNN) architecture
that is a kind of artificial neural network (ANN). An LSTM
network is a fairly reasonable approach to predicting the time
period of the process when learning from the experience for a
classifier is not known when long delays between significant
events are unknown. The overall effect is that the network
makes it possible to store and retrieve information over a long
period. Figure 5 illustrates the structure of the LSTM block.
Each of the LSTM units has an input gate that decides which
new information should be stored for the cell state, a forget
gate that remembers which information should be discarded
and an output gate that allows new information to enter the
cell. The sigmoid layer lets activation out to potentially affect
other cells or the network’s output.

Where Xt represents an input at time t and h(t-1) represents
a hidden state at time t-1. The sigmoid layer decides whether
the information is discarded or retained. The output gate is
represented by h(t). σ and tanh are respectively a sigmoid
function and hyperbolic tangent function. V is the diagonal
matrix.

The key of the LSTM is the state of the cell. The cell
states in LSTMblocks, behave a kind of conveyor belt. Linear

FIGURE 6. A LSTM block with LSTM units.

interactions in LSTM chain preserve the long-lived unit cells.
Figure 6 presents an LSTM block with LSTM units. Each
X (t) represents an antigen during the training process. The
antigen training set (ags) is introduced into the network as an
LSTM block series to compute linear mappings from hidden
state outputs.

Each j. LSTM unit has a memory amount of Cj
t at time t.

At time t, the activation of the j. LSTM output is hjt. LSTM
unit;

hjt = σ
j
t tanh

(
cjt
)

(9)

σ
j
t , is an output gate that modulates the amount of memory

content exposure.
Output gate;

σ
j
t = σ (W0Xt + U0ht−1 + V0Ct )j (10)

The new memory contents of the memory unit Ĉjt are
updated by partially forgetting the current memory and
adding the new memory contents to Cjt.

C j
t = f jt C

j
t−1 + i

j
t Ĉ

j
t (11)

The new memory contents,

Ĉ j
t = tanh (WcXt + Ucht−1)j (12)

To what extent the current memory is forgotten, a forget-
ting gate is modulated by fjt and the degree of addition of the
new memory content to the memory cell is modulated by an
input port ijt.

f jt = σ (Wf Xt + Uf ht−1 + Vf Ct−1)j (13)

ijt = σ (WiXt + iht−1 + ViCt−1)j (14)

Figure 7 shows LSTM blocks along time series. During train-
ing, the LSTM evolves an antigenic pattern by remembering
the state of each evolution of the cell and treats them as
network inputs. The time-series information for eachmemory
cell was transferred with a sequential time as a long-term
association.

Figure 8 represents the LSTM-AIRS algorithm. Each
memory cell will be used as an LSTM block in evolutionary
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FIGURE 7. LSTM blocks along time series.

FIGURE 8. LSTM-AIRS algorithm.

terms in order to strongly match the antigen pattern. Each
mutation treatment changes the current state of the cell (Cat
time t, in order to predict inputs with time series) with an
iterative time in terms of the amount of new memory content
exposure (Ĉ at time t).
That the improvements of the state achieved by applying

mutation to specific sub-populations allow children to make
further exploration along the entry search space based on
the LSTM treatment. The updating process of LSTM block’s
state is enhanced until learning of a presented antigen pattern.
Stable attribute groups will be obtained from the output gate
by updating the previous state-of-the-art feature matrices
(hidden state) at the base of long-short-term memory func-
tions. During the evolution process, the memory cells with
desired qualities are presented in output gate as an h (t)n (n.
output in time t) will be added to this long sequences in this
way based on restimulation mechanism. These memory cells
are used for classification later.

Algorithm 1 Pseudocode of the LSTM-AIRS Algorithm
1: Input: InputPatterns, Clonerate, mutationrate,
Stimthres, Resorcemax

2: Output: Cellsmemory←MemoryPool(InputPatterns)
3: {InitializeMemoryPool (InputPatterns)}
4: {InitializeFeatureSet(�)}
5: [Train] {1...N}← (Input Patterns)
6: For I=1→ N do
7: mcbest←GetMostStimulated (CellsI)
8: Fitness← Accuracy (�, mcbest)
9: Clonenum← mcbest∗Clonerate∗ mutationrate
10: For (Cellsi ε Clonenum)
11: Cellsclones← (CloneandMutate (mcbest))
12: {IntroduceARBPool}← (Cellsclones)
13: mcandidate← Affinity (Cellsclones,Cellsbest)
14: Fitness← Accuracy (Cellsclones, mcandidate)
15: While (AverageStimulation(Cellsclones)) ≤

Stimthres
16: CompetitionforLimitedResources(Cellsclones,

Resorcemax)
17: Fitness← Accuracy (Feature set (�), Cellsi)
18: CellsLSTM← CreateLSTMMemory (Cellsi, t,

State_id)
19: ĈLSTM← UpdateLSTMMemory (CellsLSTM, t,

State_id)
20: State_id+=State_id
21: CLSTM← UpdateLSTMMemory (ĈLSTM, t+1,

State_id)
22: CellsLSTM← CLSTM
23: END
24: Cellsmemory← CellsLSTM
25: END
26: �∗←NewFeatureSet(Cellsmemory)
27: END

TABLE 1. Microarray datasets.

The Figure 9 represents the flowchart of the suggested
framework.

VI. EXPERIMENT SETUP
The most common six microarray data sets were used in
this study [17]. Table 1 includes information on the genes,
samples and class numbers.

Experimentally obtained performance values of the algo-
rithms were achieved by dividing the data set as 70% training,
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FIGURE 9. Flowchart of the suggested framework.

15% validation, and %15 test set. A number of bootstrap data
sets were obtained from the training data set in order to ensure
the resistance of training samples against variations. Then, n
is the number of feature groups selected by separately running
the group formation algorithms which are DGF, CFG, and
IGFG based number bootstrap data sets. We set the values of
the parameters of t and n to 10 and 10. The number of features
determined from the group formation algorithms vary for
each data set. Within the scope of this study, for Colon, Lung,
Prostate, SRBCT, Lymphoma and Leukemia data sets the
number of attributes obtained based on the DGF algorithm is
179, 130, 113, 153,132 and 162, and for the CFG algorithm
is 100,123,124,136,192 and 248 and the IGFG algorithm is
20, 250, 96, 26, 30 and 306. The presence of the feature in
a feature subset was encoded with 1 while the absence of it
was encoded with 0. Each group of feature sets treated based
on the suggested LSTM-AIRS1, LSTM-PAIRS1, LSTM-
AIRS2, LSTM-PAIRS2, GA, and ANN+GA algorithms like
a single cell. Then these algorithms compared with FCBF,
CGS, SFS and BES algorithms. While stability results were
evaluated by the Jaccard test, their classifying accuracy was
evaluated using SVM, Naïve Bayes, and Random Forest clas-
sifiers. Weka was used to obtain classification accuracies.
For all algorithms, the classification accuracy of the most
optimal solution candidate obtained at the end of each run
was evaluated using only test data set with 10 cross fold
validations. The performance values added to the results were

calculated by taking the average of the number of tests.
In this paper, the validation set is used to tuning parameters
of Genetic Algorithms and Artificial Neural Network with
Genetic Algorithms. For standard AIRS the affinity threshold
value, clonal ratio, mutation ratio, np, total resource, stimu-
lating value, hypermutation ratio, number of tests parameters
set to the values of 0.2, 10, 0.1, 2, 150, 0.9, 2.0, 10 respectively
and the k-NN used as the classifier. In suggested LSTM based
AIRS the affinity threshold value, clonal ratio, mutation
ratio, np, total resource, stimulating value, hypermutation
ratio, number of tests and iteration number parameters set
to the values of 0.2, 10, 0.1, 2, 250, 0.91, 2.0, 20 and 30,
respectively. The Wekaclassalgos project source code used.

In the GA, population size takes the value 100 and chro-
mosome length varies according to the feature size of the
DGF, CFG, and IGFG algorithms. The uniform crossover
technique and tournament selectionmethod used in this study.
The mutation ratio, number of the tournament, number of
tests and iteration number set to 0.8, 2, 20 and 30. The fitness
function of AIRS and GA was calculated according to the
accuracy of the KNN classifier.

In ANN+GA, learning rate, momentum, training time
parameters set to 0.3, 0.2 and 1000. ANN training is done
by gradient descent trainer. GA selected HN size for DGF,
CFG, and IGFG algorithms are respectively 5.8, 5.4 and
4.5. The fitness function of the ANN+GA was calculated
according to mean square error (MSE) of the KNN classifier.
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All parameters of the GA and ANN+GA tuned using the
validation set.

In the FCBF algorithm, the Symmetrical Uncertainty (SU)
is computed with entropy in (15). The conditional entropy
computes the dependencies of features with the (16). If X is a
random variable and P(x) is the probability of x, the informa-
tion gain is computed with the (17), SU value computed with
using the equation of (18).

H (X) = −
∑

i
P (xi) log 2P (Xi) (15)

H (X|Y) =
∑

j
P (yj) log 2

×

∑
i
P (xi | yj) log 2(P (xi | yj)) (16)

IG (X|Y) = H (X)−H (X|Y) (17)

SU (X,Y) = 2
[
x =

IG (X |Y)
H (X)+ H (Y)

)
]

(18)

In CGS algorithm, 10 fold cross-validation procedure used.
The CV accuracies calculated using the KNN classifier.
In SFS and BES algorithms the number of tests and iteration
number parameters took the values of 20 and 30, respectively.
KNN classifier used and the k parameter set to the value 5.

VII. RESULTS AND DISCUSSION
The stability of feature selection approaches is obtained by
measuring the similarity between feature sets. In this study,
the Jaccard index was calculated using the formula given in
(19). Parameter m was used to specify the number of feature
sets while expressing two feature sets used for Si and Sj
similarity measurement.

JaccardIndex = Ij
(
Si,Sj

)
=
∣∣Si∩Sj

∣∣ / ∣∣Si ∪ Sj∣∣ (19)

The stability estimation was calculated using the Jaccard test
formula specified in (20).∑

(S) =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

Ij
(
Si,Sj

)
(20)

In this paper, it was focused on the problem of instability
encountered in feature selection algorithms. As a solution to
this problem, stable feature groups were obtained by com-
bining group-level learning and meta-dynamics of suggested
approaches. For all algorithms, the fitness function was cal-
culated with the accuracy of the k-NN classifier. The fitness
function is computed using the formula given in (21).

Fitness function = Accuracy=
TP+TN

TP+ FP+ FN+ TN
(21)

We applied the 10 fold cross-validation procedures. The
average values of the 10 × 10 CV were obtained for each
microarray data set. The best accuracy results for tested
methods are written in bold and the worst accuracy results
represented by using the asterisk symbol after the value in
all tables. Table 2 shows the accuracy performances of the
AIRS classifiers based on six common microarray data sets.
The results in Table 2 also show the highest classification
accuracy which was reached by the PAIRS2 algorithm based

TABLE 2. Accuracy of airs based classifier methods.

TABLE 3. Accuracy of standard classifier methods.

on Lymphoma data set with 99.3% and the obtained highest
classification accuracy was 98.8% for the AIRS2 algorithm
based on Colon data set. The AIRS1 and PAIRS1 algorithms
reached the best accuracy performances with 91.8% and
89.2% based on Colon and Prostate data sets respectively.
The comparison of accuracy performance in Table 2 shows
the lowest classification accuracy that was obtained by the
AIRS1 algorithm based on SRBCT dataset with the accuracy
of 70.1%.

The average classification accuracy of AIRS2 and
PAIRS2 algorithms are better than the other algorithms.
The average classification accuracy of the AIRS2 algo-
rithm is 92.8% and the average accuracy performance of the
PAIRS2 algorithm is 93.2%.

The classification accuracy of the k-NN, SVM, NB, and
RF classifier methods is given in Table 3. Classification
results in Table 3 are obtained from WEKA by using 10 fold
cross validations for classifiers. The SMO was used for
the SVM classifier method. For RF classifier method the
maxDepth, numFeatures, numTrees parameters are set to 0,
0, 100 respectively. It can be concluded from the results
in Table 3 that SVM classifier achieved the highest average
classification accuracy by 95% when compared with other
classifiers. The SVM classifier achieved the highest classi-
fication accuracy based on Lymphoma data set with 100%.
SVM and RF classifiers give the same results for the Lung
data set by the accuracy of 99.4%. SVM and NB classifiers
achieved the highest classifier results for Leukemia data set
with the accuracy of 98.6%. k-NN classifier achieved the
highest classifier results for Lung data set with the accuracy of
98.8%. Consequently, looking at the averaged classification
results generally in all cases of data sets SVM classifier has
better accuracy result than other classifiers.
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TABLE 4. Classification accuracy of feature selection algorithms.

TABLE 5. Classification accuracy of algorithms based on DGF.

Table 4 summarizes the classification accuracy perfor-
mance of the FCBF, CGS, SFS and BES algorithms by
using microarray datasets. Each of the selected feature sets
evaluated based on the SVM, NB and RF classifiers. There
is a remarkable average accuracy performance difference
between the CGS and FCBF algorithms. The highest clas-
sification accuracy was achieved by CGS algorithm based
on Lung data set with an accuracy of 98.6% by SVM clas-
sifier. The lowest classification accuracy was obtained by
FCBF algorithm based on SRBCT data set with the accuracy
of 36.5% by SVM classifier. According to the average classi-
fication accuracies of feature selection algorithms in Table 4,
the best average accuracy performance was achieved by CGS
algorithmwith the accuracy of 93.3% and the lowest accuracy
performance was obtained through FCBF algorithm with the
accuracy of 67.2% by based on the SVM classifier. SFS and
BES algorithms achieved the highest classification accuracy
based on Lung and Leukemia datasets respectively. The SFS
and BES algorithms respectively reached the best average
classification performances with the accuracy of 77.1% and
82.7% by SVM classifier.

Table 5 lists the classification accuracy of the algo-
rithms based on the DGF group formation algorithm. The
LSTMPAIRS1 algorithm achieved the highest classification
performance by SVM classifier with an accuracy of 99.6%.
The lowest classification accuracy was obtained through the
GA algorithm based on SRBCT data set with the accu-
racy of 53.8% by NB classifier. According to the average

classification accuracies of the comparative algorithms
in Table 5, the best average accuracy performance was
achieved through the LSTM-PAIRS2 algorithm with the
accuracy of 91.1% by SVM classifier and the lowest accuracy
performance was obtained throughGA algorithm by based on
the NB classifier with the accuracy of 74.1%.

The classification accuracy of the algorithms based on the
CFG group formation algorithm was evaluated in Table 6.
While the LSTM-AIRS2 algorithm given in Table 6 has the
highest classification with the accuracy of 98.6% based on
NB classifier, the lowest classification accuracy was obtained
through GA with the accuracy of 60.2% by NB classifier.
Average classifier performance shows that the highest accu-
racy performance was achieved through the LSTM-PAIRS2
algorithm with the accuracy of 83.3% based on SVM clas-
sifier and the lowest accuracy performance was obtained
through GA with the accuracy of 72.2% based on NB clas-
sifier.

Table 7 shows the classification accuracy of the algorithms
based on the IGFG group formation algorithm. ANN+GA
algorithm achieved the highest performance with the accu-
racy of 95.8% by using SVM classifier in Lung data set. The
lowest classification performance was obtained through GA
by NB classifier with the accuracy of 57.8% in Prostate data
set. According to the average classification accuracies of fea-
ture selection algorithms in Table 7, the best average accuracy
performance was achieved through the LSTM-PAIRS2 algo-
rithm by based on SVM classifier with the accuracy of 78.9%
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TABLE 6. Classification accuracy of algorithms based on CFG.

TABLE 7. Classification accuracy of algorithms based on IGFG.

and the lowest average accuracy performance was obtained
through GA algorithm by based on the NB classifier with
the accuracy of 68.3%. These results clearly indicate that the
in general for all algorithms highest average classification
accuracies are achieved respectively by the DGF, CFG and
IGFG group formation algorithms. According to the average
classification accuracies the highest classification accuracy
was achieved by the LSTM-PAIRS2 algorithm and the lowest
classification accuracy was obtained via GA in terms of
DGF, CFG and IGFG group formation algorithms. Generally,
accuracy performances of the ANN+GA tend to be better
than the GA accuracy results.

Figure 10-12 shows the stability performances of the
comparative algorithms in terms of the group formation
algorithms based on the six common datasets. The high-
est stability performance was achieved via LSTM-PAIRS1,
LSTM-AIRS2, LSTM-PAIRS2 and ANN+GA algorithms
based on the DGF feature groups in terms of Lung dataset.
The lowest stability performance was obtained by GA based
on the DGF feature groups in terms of the SRBCT datasets.

According to the stability performances of the compara-
tive algorithms based on CFG feature group in figure 11,
the highest stability performance was achieved by the LSTM-
PAIRS2algorithm in terms of the Lung dataset. The lowest
stability performance was obtained by GA in terms of the
Prostate datasets. ANN+GA and GA algorithms have the
same stability results in terms of the SRBCT dataset. LSTM-
AIRS1and LSTM-PAIRS1 algorithms have higher stabil-
ity performance than LSTM-AIRS2 and LSTM-PAIRS2
algorithms in terms of Lymphoma and Leukemia datasets.

FIGURE 10. Stability performance of the comparative algorithms based
on DFG.

The stability performance of the comparative algorithms
based on IGFG presents the LSTM-PAIRS1 and LSTM-
AIRS2 have highest stability performance in terms of the
Lung datasets.

ANN+GA algorithm achieves the highest stability results
based on IGFG in terms of the Lung and Lymphoma datasets.
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FIGURE 11. Stability performance of the comparative algorithms based
on CFG.

FIGURE 12. Stability performance of the comparative algorithms based
on IGFG.

Suggested algorithms achieve the highest stability perfor-
mance based on Lung dataset generally. The stability perfor-
mances of ANN+GA are more stable than the GA algorithm
for DGF, CFG and IGFG feature groups. It can be inferred
that the initially selected genes based on the group formation
algorithm affect the stability results.

The stability performances of the feature selection algo-
rithms in figure 13 show that the highest stability results were
achieved through CGS and FCBF algorithms based on Colon,
Lung, and Prostate data sets. The SFS and BES algorithms
achieved the highest stability results in terms of Lymphoma,
Leukemia and SRBCT datasets respectively.

FIGURE 13. Stability performance of the feature selection algorithms.

FIGURE 14. Feature size of the LSTM-AIRS1 algorithm.

FIGURE 15. Feature size of the LSTM-PAIRS1 algorithm.

Figure 14-20 shows the feature size of the comparative
algorithms. The LSTM-AIRS1 algorithm has results close
to each other based on the DGF and IGFG feature groups
in terms of Colon, SRBCT and Lymphoma datasets and for
Lung and Prostate data sets based on CFG and IGFG feature
groups.

In LSTM-PAIRS1 algorithm, the highest feature size
was obtained based on the CFG and lowest feature size
was achieved based on IGFG in general. In the LSTM-
AIRS2 algorithm, the highest feature size was obtained
by based on the CFG in terms of Colon, Lymphoma and
Leukemia datasets, and the lowest feature size was achieved
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FIGURE 16. Feature size of the LSTM-AIRS2 algorithm.

FIGURE 17. Feature size of the LSTM-PAIRS2 algorithm.

FIGURE 18. Feature size of the GA algorithm.

FIGURE 19. Feature size of the ANN+GA algorithm.

based on DGF and IGFG in terms of Lung data set. The
Lymphoma and Leukemia data sets had the highest feature
size in the LSTM-PAIRS2 algorithm based on CFG feature
group. The lowest feature size was achieved based on the
IGFG feature group in terms of the Colon data set. The
feature size of the ANN+GA algorithm was smaller than
the GA except Lung and Prostate datasets based on DGF.
GA generally has the highest feature size by based on IGFG.

FIGURE 20. Feature size of the feature selection algorithms.

ANN+GA have the highest feature size based on CFG like
the suggested algorithms. Figure 20 represents the feature
size of the feature selection algorithms. The average feature
size of the CGS, FCBF, SFS and BES algorithms are 2.9, 7.6,
6.1 and 51.6, respectively. CGS selects the minimum average
feature size that is shown in figure 20.

VIII. CONCLUSIONS
The main motivation of this work is to create a framework
in order to model a stability mechanism for robust feature
selection. The development of stable associative immune
memory is modeled based on the LSTM memory blocks.
LSTM recurrent neural networks are trained with the AIRS
in order to be effective for sequential learning problems. The
aim of this study was to better understand the immunological
principles and mechanisms of the biological processes of
AIRS. This paper presented a novel sequence model with an
LSTM embedded into AIRS to solve the problem of sequence
learning. A general framework was used to combine the gene
selection framework with the evolution of immune memory
using LSTM recurrent neural networks. This study also has
an analysis of using a different type of feature groups based
on the different feature selection algorithms. The suggested
algorithms achieved remarkable increases in their robust-
ness and classification accuracy. In conclusion, LSTM based
AIRS is a robust and effective method for microarray analy-
sis.

Future studies may explore the issue of building model for
the associative memory based on different type of Recurrent
Neural Networks (RNNs). For example, Gated Recurrent
Unit (GRU), could be used which may further improve the
solutions generated by LSTM. Since the GRU has a less
complex structure than the LSTM, it is computationally more
efficient and has less execution time.
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