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ABSTRACT The conservativeness of unit commitment models-based robust optimization (RO) depends
on the modeling of uncertainty sets. This paper proposes a new two-stage robust security-constrained
unit commitment (SCUC) model, which aims at minimizing the operating cost in the base scenario while
guaranteeing that the robust solution can be adaptively and safely adjusted according to the uncertainties
of wind power, load, and N -k fault. This new model has the following characteristics: 1) the temporal
correlation of continuous uncertainties (i.e., wind power output and load) are studied and a time-correlation
constraint is established to reduce the conservativeness of uncertainty sets in the proposed robust SCUC
model; 2) the discrete characteristics of the uncertain set is used to describe the uncertainty of discrete N -k
fault; 3) the outage probability of units with different capacity is also considered with a proposed probability
criterion; and 4) the constraint approximation is simplified to a linear constraint that can be applied to RO.
The proposed model is solved by the Benders decomposition and dual theory. The simulation results on
modified IEEE-RTS-96 system show that the proposed method can effectively reduce the conservativeness
of uncertain sets and ensure the economic and security of the optimization results.

INDEX TERMS Economic dispatch, robust optimization, uncertainty set, wind/load uncertainty, unit outage
contingency.

I. INTRODUCTION
There are more and more uncertainties in today’s power
system, such as the output of renewable energy generation,
the outage probability of generators and transmission lines,
which may lead to power shortages, frequency fluctuations
and large-scale outages. These uncertainties bring new chal-
lenges to power system analysis and operation control. The
security-constrained unit commitment (SCUC) model with
uncertainties is one of the difficult problems. To cope with
this challenge, power systems are in urgent need of new dis-
patch methods. Robust optimization (RO) methods and ran-
dom programming methods have been applied to the above
problem and achieve good results [1]–[6]. Robust SCUC
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model uses closed convex sets to describe the uncertainty
and solves the optimal problem under the ‘‘worst scenario’’.
Compared with the random programming methods, Robust
SCUC model is not necessary to obtain the distribution of
uncertain quantities, and it is not necessary to generate a
typical scenario, thus it is easier to be implemented [7], [8].
However, RO methods often pursue the optimal value of
objective function in the worst case, whereas the probability
of the worst case happening in practice is not large, which
leads to the results of RO methods are often too conser-
vative [9]–[11]. In order to overcome this conservatism,
accurate modeling of uncertain sets becomes an inevitable
requirement.

There are two kinds of uncertainty sets in SCUC prob-
lem considering uncertainty, i.e. continuous uncertain sets
and discrete uncertain sets. The former mainly refers to the
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uncertainty of wind power output and load; the latter mainly
refers to the uncertainty of line interruption and unit failure,
etc. For modeling of continuous uncertainty sets, [3] uses
the box-type set to describe the uncertainty, which further
reduces the conservativeness of the RO method. Due to the
linear nature of the box-type set, this uncertain set is widely
used in the power system. Reference [11] considers the tem-
poral smoothing effect between different periods of a single
wind farm. Reference [12] considers the spatial clustering
effect between wind farms and further compresses the uncer-
tainty set of wind power.

For modeling of discrete uncertainty sets, [13], [14] require
that the total number of units operating normally is not less
than the given limit. As we know, reliability is the basic
requirement for the operation of power systems. Occasional
unit and transmission line faults may cause a large shortage
of power supply, which may even cause large-scale power
outages. Therefore, the N − 1 or N − 2 security criterion
are used to verify the scheduling plan during system oper-
ation. In recent years, with the frequent occurrence of power
outages caused by multiple independent events in power
systems, many scholars have extended the security criterion
to more generalN -k security criterion that consider k compo-
nent failures. For discrete N -k security criterion, it is difficult
for large systems to list outages one by one. In the robust
SCUC model, the worst outage contingency scenario can be
found by mathematical optimization method. Reference [6]
establishes a static robust SCUC model considering the N -k
fault constraint of the units and the transmission lines, ensur-
ing that the power imbalance in the system is not greater than
a threshold under any outage contingency. Reference [15]
establishes a joint optimization model for units output and
reserve capacity that takes into account N -k fault constraint.
Reference [16] further expands the unit commitment model
considering N -k fault constraint. Due to the low probability
of serious outage contingency in the power systems, [16] pro-
poses an improved safety criterion that allows for reduction
of conservation by reducing the load when k > 1.
The above research has done a very meaningful work.

But for modeling of continuous uncertainty sets, most of
them assume that the prediction errors among the various
scheduling periods are independent of each other. However,
this assumption of independence may not correspond to
the actual situation in practice and needs to be evaluated
through actual data. Taking different scheduling periods as
an example, Ref [17]–[19] point out that the wind power
output of two adjacent scheduling periods has a correlation.
Reference [20] analyzes the wind power data of Irish wind
farms and points out that the wind power prediction error
sequence has autocorrelation. Reference [21] verifies that the
model considering correlation can improve the economics of
the robust optimal power flow model. For modeling of dis-
crete uncertainty sets, most of the existing reference does not
discuss the outage contingency probability of components,
when the outage contingency probability of components is
not considered, the resulting uncertainty set is often too

conservative. However, the probabilities of failure of different
units or transmission lines in the power systems are different,
for example, units with larger capacity have higher reliability.

Through the above analysis, the conservativeness of exist-
ing robust SCUC models may be attributed to the fact that
the time autocorrelation of wind power/load forecasting error
(continuous uncertainty sets) and the unit failure probability
(discrete uncertainty sets) are not taken into account in the
modeling process. If the above two kinds of uncertainty sets
are modeled precisely, the conservativeness of robust SCUC
model may be improved.

Therefore, this paper proposes a two-stage robust SCUC
model considering time autocorrelation of wind/load pre-
diction error and outage contingency probability of units.
The main contribution of the paper are twofold: (1) The
correlation between wind power prediction errors in adjacent
time periods is considered by using a new time autocorre-
lation constraint of uncertainty prediction error; (2) a new
αcut criterion is introduced to describe the uncertainty of
occasional N -k perturbations.
The rest of the paper is organized as follows. The uncertain

set modeling of continuous variable considering the tempo-
ral correlation of prediction errors as well as the discrete
variables considering the outage contingency probability are
introduced in Section II. The formulation of a new two-stage
robust SCUC model is presented in Sections III. Section IV
gives the solution methodologies of the proposed model.
Section IV presents numerical case study results, and the
conclusions are drawn in Section V.

II. UNCERTAIN SET MODELING FOR SCUC MODEL
A. MODELING OF CONTINUOUS UNCERTAIN SETS
In the unit commitment (UC) problem considering uncer-
tainty, wind power and load are both uncertainties, and the
same modeling method is generally used for uncertain sets
of wind power output and load. In this section, taking the
wind power output as an example, the temporal correlation
of prediction error will be taken into account when modeling
uncertain sets of wind power output.

1) THE TEMPORAL CORRELATION OF PREDICTION ERROR
The prediction error of wind power mainly stems from the
inability to accurately predict meteorological conditions.
Considering the continuity of meteorological changes,
the prediction error of wind power output prediction in adja-
cent time segments may have some correlation, the temporal
correlation of the prediction error will be verified below
before modeling the uncertainty set of wind power output.

The relative prediction error of the t-th period can be
expressed as

et =
wet − wt
wwt

(1)

where,wet andwt are the predicted output and actual output of
wind power, respectively; wut and w

l
t are the upper and lower
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bounds of the prediction error at period t , wwt = (wut +w
l
t )/2,

t = 1, · · · ,T ,T = 24.
The relative error sequence is

s1 = [e1,1, · · · en,1, · · · eN ,1, · · · , e1,T−1, · · · ,

en,T−1, · · · , eN ,T−1] (2)

s2 = [e1,2, · · · en,2, · · · eN ,2, · · · , e1,T , · · · ,

en,T , · · · , eN ,T ] (3)

where, n indicates the number of the predicting data sample,
n = 1, · · · ,N , N represents the total number of samples;
A data sample represents one day with 24 periods; et in
the Eq. (1) is the value of en,t in the Eq. (2) and (3) in the
period t of the specific sample n. s2 is a sequence in which
s1 is shifted backward by a period of time. The time interval
here is consistent with the calculation step size of the unit
commitment.

The sample of prediction error sequences is the wind
power access data from October 2017 to September 2018,
provided by Belgian transmission system operator Elia [22].
Figure 1 shows the scatter plots drawn by the sequences s1
and s2. In figure 1, the abscissa and the ordinate correspond
to the en,t and en,(t+1) of the same position in the s1 and the s2,
respectively.

FIGURE 1. Prediction error sequence scatter plot.

It can be seen that the scatter distribution in figure 1 is very
concentrated and appears elliptical, thereby demonstrating
that s1 and s2 are correlated. It is found that the Pearson
correlation coefficient (PCC) of s1 and s2 is 0.67, which
furtherly verifies that the wind power output prediction errors
of adjacent time sections have a significant correlation.

To further illustrate the effect of the time interval on the
prediction error correlation, figure 2 shows the correlation
coefficient matrix for the prediction error for each of the
24 periods (the time interval is 1 hour). In figure 2, the hor-
izontal and vertical coordinates respectively correspond to
random vectors of prediction errors in all scheduling periods.
Each square represents the prediction error correlation coef-
ficient of the corresponding two periods. The analysis shows
that the correlation coefficients of the prediction error of each
scheduling period are mostly between 0.2∼1.0, and the closer
the scheduling period is, the stronger the correlation is.

FIGURE 2. Wind power prediction error correlation matrix of different
time periods of single wind farm.

Through the analysis in this section, it can be concluded
that that there is a correlation between wind power prediction
errors of adjacent scheduling periods.

2) UNCERTAIN SET MODELING
In the UC problem, a box-type uncertainty set is generally
adopted. Taking the wind farm as an example, the predicted
output at time point t is given by

wet − w
l
t ≤ wt ≤ w

e
t + w

u
t (4)∑

t

∣∣wt − wet ∣∣
wwt

≤ 0T (5)

where, 0T is the budget of the uncertainty.
The value of 0T plays a crucial role in the results of

robust SCUC. If the value of 0T is too large, the result is
extremely conservative; If the value of 0T is too small, the
effect of uncertainty on scheduling cannot be fully reflected.
According to the limitebery-levy central limit theorem pro-
posed in [7], the appropriate value of 0T is given by

0T = Tµ+ φ−1(α)
√
Tσ (6)

where, α is the confidence level, φ−1(·) is the cumulative
probability distribution function of the normal distribution,
T is the total scheduling period, µ and σ are the expected and
variance of

∣∣wt − wet ∣∣ /wwt , respectively. If the corresponding
statistics are missing, it can be assumed that

∣∣wt − wet ∣∣ /wwt
satisfies the normal distribution and then finds µ AND σ .
As we know, the actual prediction error does not necessarily
satisfy the normal distribution, at this time the actual distri-
bution of the prediction error

∣∣wt − wet ∣∣ /wwt can also be fitted
by historical data.

Based on the above time correlation analysis of prediction
error and the corresponding uncertainty set model, time cor-
relation constraints are added to the uncertainty set{

e|e =
|w− we|
ww

,C (s1, s2) ≥ γ
}

(7)

where, C (·) is the calculation function of PCC, γ is the
lower limit of time correlation of the uncertain scenario and
the predicted scenario. The smaller the value of γ , the more
conservative the uncertainty set is.
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Reference [3] pointed out that in the process of solving to
model, the worst scenario corresponds to the boundary of the
uncertain set. In this case, the uncertainty set of Eq. (4) and (5)
can be expressed as

W u
=


wt = wet + z

+
t w

u
t − z

−
t w

l
t∑

t
(
z+t + z

−
t
)
≤ 0T z

+
t + z

−
t ≤ 1,∀t

z+t , z
−
t ∈ {0, 1}

 (8)

When the form of the uncertainty set is changed from the
continuous type (4)-(5) to the discrete type (8), the prediction
error sequence can be expressed as e = |z+ − z−|. The
certification process is as follows.

Substitute Eq. (8) into Eq. (1), then we have

e=
|w− we|
ww

=

∣∣we+z+wu − z−wl − we∣∣
ww

=

∣∣z+wu − z−wl ∣∣
ww

(9)

In Eq. (9), ww = (wu + wl)/2, wu = wl , SO e =
|w− we| /ww can be converted to e = |z+ − z−|.
Therefore, the time correlation constraint of s1 and s2 in

Eq. (7) can be changed to the constraints on z+ and z−.
in Eq (8), z+ and z− are symmetrical. Considering that the
prediction errors of adjacent periods are correlated, the time
correlation constraint after simplification is discussed by tak-
ing z+ as an example. Two sequences in z+ separated by one
time interval are expressed as

s+1 =
[
z+1 , z

+

2 , · · · , z
+

T−1

]
(10)

s+2 =
[
z+2 , z

+

3 , · · · , z
+

T

]
(11)

According to Eq. (10) and (11), the change flag variable υ+

is defined as {
υ+|υ+t =

{
0 z+t = z+t+1
1 z+t 6= z+t+1

}
(12)

The sum of all the dimensions of vector υ+ is recorded
as 3+, 3+ is called the ‘‘variation budget’’ on the time
series. 3+ represents the number of z+ fluctuations in the
time series. The larger3+ is, the smaller the prediction error
correlation coefficient C

(
s+1 , s

+

2

)
. at the same time, the value

of C
(
s+1 , s

+

2

)
is related to 0T and 3+, and it is independent

of the specific values of z+ and υ+.
In summary, the uncertainty set considering the temporal

correlation of wind power prediction error can be expressed
as

W u
=



wt = wet + z
+
t w

u
t − z

−
t w

l
t∑

t

(
z+t + z

−
t
)
≤ 0T , z+t + z

−
t ≤ 1,∀t

z+t − z
+

t+1 ≤ υ
d+
t ,−z+t + z

+

t+1 ≤ υ
u+
t

z−t − z
−

t+1 ≤ υ
d−
t ,−z−t + z

−

t+1 ≤ υ
u−
t∑

t

(
υd+t + υ

u+
t + υ

d−
t + υ

u−
t

)
≤ 3

z+t , z
−
t , υ

d+
t , υu+t , υd−t , υu−t ∈ {0, 1}


(13)

where, 3 is the total uncertainty budget, and the superscripts
U andD of3 indicate that zt to zt+1 are from 0 to 1 and from
1 to 0, respectively.

B. MODELING OF DISCRETE UNCERTAIN SETS
The conservativeness of the robust SCUC model is not only
related to the uncertainty set of the wind power output and
load, but also related to the discrete uncertainty set of the
occasional failure of the component. Those discrete uncer-
tainty sets are usually expressed by theN -k security criterion,
which could be expressed as [13], [14]

Z =

{∑
i

Ait ≥ Nunits− kG,Ait ∈ {0, 1} ,∀t

}
(14)

where, Ait indicates whether unit i is faulty during t-th period,
0 indicates outage, 1 indicates normal; Nunits denotes the
total number of units; kG denotes the maximum number of
unit faults.
The conservativeness of the uncertain set can be changed

by adjusting the parameter kG in Eq. (14). However, in the
worst scenario, the probability of outage of all units is the
same, which may result in multiple units with large capacity
being in outage status at the same time, even if the operational
reliability of these units is high. At this point, the uncer-
tain set of N -k outage contingency constraints is often too
conservative. In the actual power systems, the probability of
outage contingencies of units of different capacities or types
is different. Generally, the unit with a larger capacity has
higher operational reliability. Therefore, it is necessary to
consider probability information in the uncertain sets. The
formula for calculating the outage contingency probability of
the unit is given by [24]

pit =
λi

λi + µi
=

MTTRi
MTTFi +MTTRi

(15)

where, pit denotes the failure probability of unit i; λi denotes
the failure rate of unit i; µi denotes the repair rate of unit i;
MTTFi denotes the average time for the unit to operate with-
out failure of unit i; MTTRi denotes the average of the time
period from the failure of the unit to the end of maintenance
of unit i.

At present, the modeling of the N -k uncertainty set con-
sidering the probability of equipment failure has not yet
been carried out. Based on the above analysis, this paper
proposes a αcut criterion to reduce the conservativeness of
RO method by adding the probability information of units
outage contingencies to the uncertainty set. The worst sce-
nario generated by this αcut criterion includes only the case
where the probability is greater than the given αcut thresh-
old, and the αcut criterion constrained can be expressed
as

Nunits∏
i=1

p(1−Ait )it

Nunits∏
i=1

(1− pit)Ait ≥ αcut (16)

Eq. (16) is a nonlinear equation and cannot be directly
applied to the robust SCUC problem. A linear formula can
be obtained by taking the logarithm of both sides of the
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equation (15).

Nunits∑
i=1

(1−Ait) · log (pit)+
Nunits∑
i=1

Ait · log (1−pit) ≥ log (αcut)

(17)

Eq. (16) can be transformed into the following form

Nunits∑
i=1

Ait · (log (1−pit) log (pit))≥ log (αcut)−
Nunits∑
i=1

log (pit)

(18)

From Eq. (18), it can be concluded that if the value of αcut
is small, the resulting uncertain set is conservative; the greater
the value of αcut , the smaller the uncertainty.

III. ROBUST SCUC MODEL
A. DETERMINISTIC SCUC MODEL
The deterministic SCUC model has been modeled as
a MILP problem, and its model can be expressed as
Eq. (19)-(30). The objective (19) is to minimize the total
operation costs for the base case, including energy pro-
duction cost, startup/shutdown cost over the entire schedul-
ing horizon. Prevailing constraints include system power
balance (20), generation capacity limits of thermal units
(21)-(23) and wind farms (24), minimum ON/OFF time
limits (25)-(26), startup/shutdown costs (27)-(28), ramping
up/down limits (29)-(30), and transmission network security
constraint (31).

Min
Pbit ,I

b
it ,P

b
wt ,P

u
it (•)

∑
t

∑
i

[
∑
k

cik · Pbikt + SU
b
it + SD

b
it ] (19)∑

i

Pbit +
∑
w

Pbwt =
∑
d

Pbdt (20)

Pmin
i · I

b
it ≤ P

b
it ≤ P

max
i · Ibit (21)

0 ≤ Pbikt ≤ I
b
it · P

max
ik (22)

Pbit =
∑

k
Pbikt (23)

≤ Pbwt ≤ w
e
wt (24)[

Xbon,i(t−1) − Ton,i
]
·

[
Ibi(t−1) − I

b
it

]
≥ 0 (25)[

Xboff ,i(t−1) − Toff ,i
]
·

[
Ibit − I

b
i(t−1)

]
≥ 0 (26)

SUb
it ≥ sui · (I

b
it − I

b
i(t−1)),SU

b
it ≥ 0 (27)

SDbit ≥ sdi · (I
b
i(t−1) − I

b
it ),SD

b
it ≥ 0 (28)

Pbit − P
b
i(t−1) ≤ URi · I

b
i(t−1) + P

min
i ·

(Ibit − I
b
i(t−1))+P

max
i · (1− Ibit ) (29)

Pbi(t−1) − P
b
it ≤ DRi · I

b
it

+Pmin
i · (I

b
i(t−1) − I

b
it )+ P

max
i · (1− Ibi(t−1))

(30)∣∣∣∣∣∣
∑
m

SFl,m

 ∑
i∈U (m)

Pbit +
∑

w∈W (m)

Pbwt −
∑

d∈D(m)

Pbdt

∣∣∣∣∣∣
≤ PLmax

l (31)

where, cik denotes the incremental cost of segment k of
unit i; Pbikt denotes the base case dispatch of unit i at time t
in segment k; Pbit , I

b
it are the decision variables, which are

the output of the generator set and the start and stop state
respectively; SUb

it and SD
b
it are the on-off costs; P

b
wt denotes

the dispatch of wind farm w at time t; Pbdt is the load forecast
of load d at time t; Pmax

i and Pmin
i denote the upper and lower

limits of the output of unit i; wewt denotes the predicted value
of wind power; Xbon,it , X

b
off ,it denote the on/off time counters

of unit i at time t; Ton,i, Toff ,i denote the minimum start-up
and downtime limit; sui, sdi is the start-stop cost of unit i;
URi, DRi are the unit climbing power limit; PLmax

l denotes
themaximum power flow constraint of the line; SFl,m denotes
the node power transfer factor; D(m) denotes the set of load
demands located at bus m; U (m) denotes the set of thermal
units located at bus m; W (m) denotes the set of wind farms
located at bus m.

B. ROBUST CONSTRAINTS UNDER UNCERTAINTY
The proposed robust SCUC model includes robust security
constraints (32)-(41) for handling continuous uncertainty and
discrete uncertainty as defined by the uncertainty set (13),
(14) and (18). In the proposed robust SCUCmodel, the uncer-
tainty set U include wind power forecast wuwt , load forecast
Pudt , as well as unit outage contingency statuses Ait . For the
sake of discussion, the compact form S is used to represent
the set of uncertain load/wind and outage contingency param-
eters. That is, S =

{
Pudt ,w

u
wt ,Ait

}
∈ U.

The proposed robust SCUC model is further explained as
follows.

1) System balance constraint∑
i

Puit (S)+
∑
w

Puwt (S) =
∑
d

Pudt (32)

where, Puit and P
u
wt denote the adaptive dispatch adjustment

of unit i and wind farm w at time t in response to uncertain
intervals; Pudt denotes the uncertain load demand of load d at
time t .

(2) Generation limits of thermal units andwind farms under
uncertainties.

Pmin
i · IAit ≤ Puit (S) ≤ P

max
i · IAit (33)

IAit ≤ Ibit (34)

Ibit + Ait − 1 ≤ IAit (35)

0 ≤ Puwt (S) ≤ w
u
wt (36)

where, IAit is auxiliary binary variable, which indicates the
value of the unit commitment Ibit obtained in the deterministic
SCUC model under contingency outage.

(3) Dispatch adjustments of thermal units in response to
uncertainty sets are restricted by their corrective capabilities
and generation dispatches in the base case.

Puit (S)− P
b
it ≤ Rupi · IAit −

(
Ibit − IAit

)
· Pmin

i (37)

Pbit − P
u
it (S) ≤ Rdowni · IAit +

(
Ibit − IAit

)
· Pmax

i (38)
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where, Rupi , Rdowni are the up/down corrective action limits of
unit i; corrective capabilities Rupi , Rdowni refer to the 10-min
spinning reserve capacities of generations units.

(4) Hourly ramping up and down limits of thermal units
under uncertainty sets.

Puit (S)− P
u
i(t−1)(S) ≤ URi · IAi(t−1) + Pmin

i · (IAit − IAi(t−1))

+Pmax
i · (1− IAit ) (39)

Pui(t−1)(S)− P
u
it (S) ≤ DRi · IAit + Pmin

i · (IAi(t−1) − IAit )

+Pmax
i · (1− IAi(t−1)) (40)

(5) Transmission network constraint∣∣∣∣∣∣
∑
m

SFl,m(
∑

i∈U (m)

Puit (S)+
∑

w∈W (m)

Puwt (S)−
∑

d∈D(m)

Pudt )

∣∣∣∣∣∣≤PLmax
l

(41)

For the sake of discussion, the compact matrix formu-
lation (42) is used to represent the above robust SCUC
model. In (42), matrix inequality (a) represents constraints in
base scenario; matrix inequality (b) represents constraints in
uncertain scenarios.

Min
Ib,Pb

NT
· Ib + cT · Pb

s.t.


X · Ib + Y · Pb ≤ gb (a)
Q · Ib +W · Pb + R · Pu(S) ≤ gu(S) (b)
Pb ≥ 0,Pu ≥ 0, Ib ∈ {0, 1} (c)

(42)

where, Ib represents commitment related decisions Ibit ,
SUb

it and SDbit ; P
b represents dispatch related decisions

Pbit and P
b
wt ; P

u(S) represents dispatch related decisions Puit
and Puwt in response to uncertainties.

IV. SOLUTION METHODOLOGY
The proposed robust SCUC model (42) can be decompose
into a master UC problem in first stage and security checking
subproblem under various uncertainties in two stage by the
Benders decomposition (BD).

A. MASTER UNIT COMMITMENT PROBLEM
The objective of master UC problem is Eq. (19), the con-
straints include Eq. (20)-(31) and all Benders cuts obtained
from the security checking subproblem in the two stage.

Min
Ib,Pb

NT
· Ib + cT · Pb

s.t.


X · Ib + Y · Pb ≤ gb

All Benders cuts obtained so far
Pb ≥ 0, Ib ∈ {0, 1}

(43)

B. SECURITY EVALUATION FOR UNCERTAINTY SETS
The security subproblem is to verify whether the Ib and Pb

obtained by the master UC problem in the base sce-
nario is feasible in the uncertainty interval. The security
check constraint in the uncertain scenario includes (32)-(41).

The security evaluation subproblem is solved via two steps in
sequence.

1) IDENTIFY THE WORST SCENARIO WITH THE LARGEST
SECURITY VIOLATION
The problem of determining the worst scenario can be
expressed as a Max-Min problem (39). In order to make the
constraints in the uncertain scenario feasible, it is necessary
to introduce a slack variable, where the slack variable can be
understood as a security violation in the worst scenario, so the
security violation needs to be minimized.

Max
S

Min
Pu,v

1T · v

s.t.

{
R · Pu + v ≤ gu(S)− Q · Î

b
−W · P̂

b

v ≥ 0,Pu ≥ 0
(44)

where, v are vector of slack variables; 1T · v represents the
largest security violation.

In this paper, dual theory is adopted to solve (44) with inte-
ger variables in the inner minimization problem. The inner
minimization problem is an LP problem, and dual theory can
be used to transfer (44) into a single level problem (45).

maxλT
(
gu (S)− Q · Î

b
−W · P̂

b)
s.t.


λTR ≤ 0T

−1T ≤ λT ≤ 1

λT ≤ 0T
(45)

where, λ are optimal dual solutions of constraints in (44).
Due to the existence of quadratic form λT · gu(S) in the

objective function, model (45) is a typical bilinear program-
ming problem and generally it is not a convex optimization
problem. The auxiliary variable method in [7] can be applied
to solve (45), thereby deriving the worst scenario Sworst = Ŝ
corresponding to the largest security violation.

2) GENERATE BENDERS CUTS CORRESPONDING
TO THE WORST SCENARIO WITH THE LARGEST
SECURITY VIOLATION
If the largest security violation 1T · v in the worst
scenario Ŝworst is higher than the predefined threshold,
the threshold for security evaluation is set to 10−3MWh.
We can directly generating valid Benders cut (46) to the
master UC problem, and the Benders cut is feed backed to
the master UC problem to find robust UC solutions that can
alleviate security violations.

1T · v+ λT ·
[
Q ·

(
Ib − Î

b)
+W ·

(
Pb − P̂

b)]
≤ 0 (46)

In summary, the proposed robust SCUCmodel is solved by
the following steps.
Step 1) The master UC model is solved. The optimal

solutions Ib and Pb are passed on the security evaluation
subproblem for uncertainties.
Step 2) This step checks the security checking subproblem

for the uncertainty set, which includes two steps. The first
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substep transfer (44) into a single level problem (45) by dual
theory and identify the worst scenario Ŝworst that would lead
to the largest security violation.
Step 3) If the largest security violation in the worst scenario

Ŝworst is higher than the predefined threshold, and generates
Benders cut (46) to the master UC problem. The iterative
procedure stops when the Ib and Pb of first stage satisfies
all security violation checks.

V. CASE STUDIES
To illustrate the economical and reliability of the proposed
method, numerical cases are conducted on one area of
the modified IEEE-RTS-96 system [23], which includes
24 buses and 32 units. The IEEE RTS-96 system provides
outage probability information for units with different capac-
ities. This paper slightly adjusts the parameters in the case to
make the units with larger capacity have high power supply
reliability. The proposed two-stage robust SCUC model is
solved using YALMIP and Gurobi-7.5.2 onMATLAB 2015b.

A. ROBUST SCUC MODEL CONSIDERING CONTINUOUS
UNCERTAIN PREDICTION ERRORS
The maximum load in the improved IEEE-RTS-96 system is
approximately 2500 MW. A wind farm is connected to the
bus 10, the maximumwind power permeability is about 33%,
and the averagewind power permeability is 21%.Wind power
and load access data are from Elia.

TABLE 1. Comparison of scheduling results of three models.

To verify the validity of the proposed model, the following
three models are compared in table 1. Parameters are esti-
mated based on historical data. When 0T = 12, 3 = 3, the
UC decisions under the three models are calculated and the
security check is performed. The security check is whether
the dispatch plan can satisfy the minimum safety violation
in equation (42) below the given safety threshold under the
actual output of wind power and load. The three UC models
are explained as follow

a. Traditional SCUC model. The deterministic optimiza-
tion algorithm is adopted, and the wind power and load
prediction errors are not considered.

b. Two-stage robust unit commitment (RUC). Consider
wind power and load forecasting errors, but do not consider
time correlation.

c. Two-stage robust unit commitment that takes into
account the temporal correlation of the prediction
error (TRUC).

As can be seen from table 1, the deterministic SCUCmodel
has the lowest operating cost and the fastest calculation speed.
When considering the uncertainty, deterministic UC decision

can not guarantee the security of the power system. Whereas
the RUC and TRUC models can ensure the security opera-
tion of the power system. Compared with the RUC model,
the TRUC model reduces the conservativeness of uncertainty
set, thereby reducing the operating cost and improving the
calculation efficiency.

To further explain the mechanism of the TRUC model,
the ‘‘wind power worst scenario’’ calculated by RUC and
TRUC is labeled in figure 3.

FIGURE 3. Wind power worst scenario solution results of RUC and TRUC.

The worst scenario of RUC fluctuates many times between
the predicted value and the predicted lower bound, and mul-
tiple wind climb events occur. According to the time correla-
tion analysis of the previous wind output, the probability of
such scenario is low. In the TRUCmodel, due to the variation
budget 3, the fluctuation of wind power prediction error is
limited, so the scene with low probability of occurrence is
eliminated, the number of climb of thermal units is reduced,
as a result the economics of robust optimization is improved.

The optimization results of the TRUC model are mainly
affected by the uncertainty budget 0T and the change bud-
get 3. Figure 4 shows the results of TRUC model under
different 0T and 3.

As can be seen from figure 4, as the budget uncer-
tainty 0T increases, the uncertainty set becomes more and
more conservative, the optimization result increases, and
the probability of passing the security check is also higher.

FIGURE 4. Robust optimization costs under different 0T and 3.
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Further comparisons of the effects of changes in 3 under
different conditions 0T on the optimization results show
that when 0T is small, the results changes greatly with the
increase of 3; when 0T is large, the variation of the robust
optimization results with the change of 3 is small. Through
analysis, it can be concluded that under a small3, the uncer-
tainty prediction error is too concentrated, and the actual
prediction error cannot be fully reflected, resulting in an ideal
optimization result. When 0T is large, the uncertain budget
can fully reflect the error of the predicted value over the
entire scheduling period, so the RO cost is less affected by3.
Therefore, in RUC problem, when 0T is reasonably selected,
3 can be used as an auxiliary parameter, and the conservatism
of RUC model can be changed by fine-tuning 3.
From the above analysis, we can see that the change of 3

will adjust the robust optimization results. In order to test the
influence of the 3 on the robustness of the TRUC model,
the robust security check is performed on the UC solution
under different 3. The adjusted Elia’s historical data from
January 2018 to June 2018 (including forecast data, real data
and forecast upper and lower limits) is used as the input
data. In the test, 0T is set to 12, 3 is changed for robust
testing. The robust test results of the above three UC models
are shown in Table 2. In Table 2, total cost represents the
sum of costs in all historical scenarios, and αrobust denotes
the proportion of passing the robust test. As can be seen
from Table 2, the traditional SCUC model has the poorest
robust performance. Compared with the RUC model, TRUC
model improves economics while ensuring robustness. When
3 = 6, the αrobust of TRUC is 93.44%, and the αrobust of
the RUC is 93.99%, the robustness of TRUC and RUC is
approximately the same, but the total operating cost of TRUC
model is reduced by approximately 46,000$ compared with
that of RUC model.

TABLE 2. Robust test results based on historical data.

B. CASE STUDIES OF N-k OUTAGE CONTINGENCIES
In order to demonstrate how the αcut criterion exclude unit
outage contingencies with very low probability from the
uncertainty set, this section analyzes the test results by chang-
ing the parameters kG and αcut on the IEEE RTS-96 system.
The data of MTTF and MTTR are shown in Table 3.

When theαcut criterion is not considered, the RUCdecision
is only affected by the N -k outage contingency constraint.
Table 4 gives the RO cost under different kG. As can be seen
from Table 4, as kG increases, the cost of RUC model in the
worst scenario also increases. When kG is equal to 4, the RUC
model has no optimal solution. This is because the spinning

TABLE 3. MTTF and MTTR for different capacity generators.

TABLE 4. Robust optimization cost under different kG.

reserve capacities of the units that can operate normally in the
system cannot meet the load demand.

In order to verify that the N -k criterion can effectively
ensure that the system operates security under different out-
age contingencies scenario, it is necessary to perform security
check on the RUC decision. Randomly generate 500 sets of
outage contingencies scenarios under different outage num-
bers, and perform safety tests under different N -k outage
constraints to obtain the average value of the expected energy
not supplied (EENS) under different fault numbers, as shown
in Table 5.

TABLE 5. EENS test under different unit failure numbers (MWH).

It can be seen from Table 5 that with the increase of kG, the
robustness of the UC decisions are improved, and the average
value of the EENS under different outage decreases. When
the number of unit failures is equal to kG, the N -k security
criterion can be guarantee that the UC decision feasible in
worst scenario.

Under the N -k security criterion, this paper proposes a
αcut criterion that takes into account the outage probability
of the units. This subsection focuses on investigating how
the αcut criterion affects the performance of UC decisions.
Figure 5 shows the cost of RUC model for N -k security
criterion at different αcut .
It can be seen from figure 5 that the cost of robust CCUC

model under different N -k security criterion will decrease
with the increase of αcut . The larger kG is, the more the
optimization cost is affected by αcut . Through analysis, it can
be concluded when αcut = 10−7 and 10−6, the uncertainty
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FIGURE 5. N-k outage contingencies constrained robust optimization
cost under different αcut .

set is quite conservative that contains extremely outage con-
tingencies that are very unlikely to occur, resulting in the cost
of RUCmodel is high. As αcut increases, due to the limitation
of the αcut criterion, some extreme scenarios will be excluded
from the uncertainty set, and the conservativeness of the
uncertain set is reduced. When αcut ≥ 10−4, kG = 2 and 3,
the cost of RUC model are the same. This is because the αcut
criterion limits the worst scenario in the uncertainty set, so the
worst scenario are the same when kG = 2 and 3.
The unit commitment under different αcut are compared as

follows. Figure 6 shows the unit commitment and the outage
contingencies condition of the units in the worst scenario at
different αcut when kG is equal to 3. In figure 6, the abscissa
denotes the scheduling period and the ordinate denotes the
unit number. It can be seen from the figure 6 that when
αcut is equal to 10−7, since the value of αcut is too small,
the outage contingency probability fails to affect the uncertain
sets; the maximum number of outages in this case is three; the
worst scenario obtained at this case is the most serious outage
scenario of the system. In this worst scenario, the EENS is
1150 MW, so the UC decision is quite conservative, it is
necessary to open a large number of units to cope with
the uncertainty of the fault. As αcut increase to be 10−5,

FIGURE 6. Unit commitment decision under different αcut .

the uncertainty set is affected by the αcut criterion. The outage
units in the worst scenario still is three, but the conserva-
tiveness is limited, so there is no need to turn on expensive
12MW and 20MW units during the operation horizon. When
αcut increases to 10−4, the N -k constraint is no longer a
key factor affecting the uncertain set. At this time, there are
two units in the worst scenario, so in the base case, it is not
necessary to turn on all the units to cope with the uncertainty.
When αcut becomes 10−2.5, only one unit outage in the worst
scenario. However, at this time the UC decision can not very
well protect the system against uncertainty because some
outage contingencies with high impact are excluded from the
uncertainty set by tight αcut constraints.

TABLE 6. Robust optimization cost with all uncertainties ($).
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C. CASE STUDIES CONSIDERING CONTINUOUS
UNCERTAINTY AND N-k OUTAGE
CONTINGENCIES CONSTRAINT
Based on the analysis of the section A considering the uncer-
tainties prediction error time correlation and the section B
considering the unit outage probability of N -k security cri-
terion, this section tests the effects of three uncertainties of
wind power, load and outage contingency of unit on the
optimization cost of the robust SCUC model. The results are
shown in Table 6.

It can be seen from table 6 that when kG = 3 and
αcut = 10−7, regardless of the values of 0T and 3, there is
no feasible robust solution in the worst scenario. According
to the analysis, there are three outage units in this case, and
considering the uncertainty of wind power and load, even if
all the units in the power system are turned on at the same time
and they cannot meet the maximum security violation. When
αcut is equal to 10−5, it is limited by αcut criterion, and there
is a feasible solution under theN -3 security criterion. As with
the analysis of section A and section B, the optimization cost
decreases with the decrease of uncertainty budget 0T . When
the value of 0T is unchanged, the optimization cost decreases
as the value of 3 decreases. Comparing the impact of differ-
ent αcut on the N -k security criterion, when kG is large, the
optimization cost is greatly affected by αcut . When the value
of kG is small, the optimization cost is less affected by αcut .
According to the comprehensive comparison, compared with
the uncertainty of wind power and load, the impact of unit
outage contingencies on system operation is more serious.

VI. CONCLUSIONS
In order to reduce the conservativeness of the robust unit
commitment model, this paper proposes a two-stage robust
SCUC model considering time autocorrelation of wind/load
prediction error and outage contingency probability of units.
The main conclusions of this paper are as follows.:

1) For the conservative of uncertainty set of wind/load,
the prediction error time correlation constraint proposed in
this paper reduces the conservativeness of uncertainty set
under the premise of ensuring robustness.

2) Because of the uncertainty set of N -k contingency con-
straint is too conservative, this paper proposes a αcut criterion
considering the outage contingency probability of unit. Under
the premise of ensuring the reliable operation of the power
system, the proposed αcut criterion effectively eliminates
the fault scenarios with low probability of occurrence and
improves the economics of robust CCUC model.

3) Considering wind/load uncertainty and N -k outage con-
tingency uncertainty at the same time, it is concluded that
compared with the uncertainty of wind/load, the impact of
the outage of units on the operation of the power systems is
more serious.

It should be pointed out that although the αcut criterion con-
sidering the outage contingency probability of unit proposed
in this paper effectively reduces the conservativeness of the

uncertainty set, however, the method of selecting the value
of αcut has not been discussed in detail, we will leave this
topic to the next paper.
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