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ABSTRACT Train crew management is an imperative task in a passenger railway system and is typically
decomposed into two sub-problems: crew scheduling problem and crew rostering problem. The decomposi-
tion can make the problem easier to solve but may produce degraded solutions. In this paper, we propose a
formulation to integrate these two critical sub-problems and develop a branch-and-price-and-cut algorithm
and a depth-first search-based algorithm to solve the composite problem. The numerical results show that an
integrated framework can yield better solutions than the decomposition strategy. Furthermore, results also
show that the rostering constraints have a more notable effect on the results compared with the scheduling
constraints in the integrated framework. This type of observation can only be accurately characterized when
these two sub-problems are considered in an integrated manner.

INDEX TERMS Crew scheduling, crew rostering, staff management, branch-and-price-and-cut,
rail transport.

I. INTRODUCTION
In a passenger railway transportation system, crew manage-
ment is an imperative task. In addition to the train driver,
the trainmaster, who is responsible for handling passengers’
requests, complaints and ticketing on a train, is also impor-
tant. However, the scheduling and rostering of trainmasters
is an extremely challenging job. Many railways systems rely
heavily on manual work and rule of thumb, which leaves
considerable room for improvement. Even with the assis-
tance of a decision support system, train crew management
is typically decomposed into crew scheduling and crew ros-
tering sub-problems, which are solved sequentially due to the
significant computational resources that are needed to deter-
mine a feasible schedule and roster. As might be expected,
the decomposition can result in inferior solutions compared
to the solutions obtained from the integrated framework.
To address this discrepancy, the current research proposes
an integrated crew scheduling and rostering formulation.
To effectively solve the resulting complicated program,
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we develop a depth-first search based (DFS-based) and
a branch-and-price-and-cut (BPC) algorithms. The proposed
algorithms are empirically applied to real-world cases of the
trainmaster planning cases. Empirical results show that the
integrated framework produces a superior solution compared
to solving scheduling and rostering sub-problems sequen-
tially. In addition, the proposed algorithms outperform a com-
monly used commercial optimization package and determine
the solutions that are comparable to the schedule and roster
that are currently used in practice. Finally, the rostering rules
have more impact than the scheduling rules in the planning
process, which is an observation that can only be made within
an integrated framework.

The remainder of the paper is structured as follows.
Section II provides a critical overview of recent develop-
ments in the field of crew management and related fields of
research. Section III presents a mathematical formulation of
the integrated scheduling and rostering problem, which will
be used in a later section to develop the solution algorithms.
Section IV describes the proposed solution procedure, BPC,
to find the solution to the mathematical model described in
Section III. In Section V, we develop a DFS-based solution
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approach that uses a two-stage solution strategy such that
its solution can be compared to the integrated solution.
In Section VI, the proposed method is applied empirically
to problems of various sizes to demonstrate its efficacy and
efficiency. The final section concludes the paper and suggests
potential directions for future research.

II. LITERATURE REVIEW
In the literature, train crew management is typically decom-
posed into two sub-problems: crew scheduling problem and
crew rostering problem [12]. Train crew scheduling is the
creation of duties such that the tasks within a timetable
can be covered [9]. Train crew rostering is constructing a
roster based on the duties generated in crew scheduling [9].
The duties generated in the first stage (crew scheduling) is
sequenced in the second stage (crew rostering) to form a
feasible roster so that staff members can participate in a
rotating manner. Ernst et al. [10] reviewed the staff schedul-
ing and rostering problem and identified various applica-
tions (e.g., transportation, emergency services, hospitality
and tourism) and solution approaches (i.e., artificial intelli-
gence, constraint programming, metaheuristics and mathe-
matical programming).

In passenger railway transportation, crew scheduling has
attracted the attention of numerous researchers. Chu and
Chan [8] investigated crew scheduling for the Hong Kong
Light Rail Transit and proposed a network-based heuristic
approach to iteratively construct the schedule. Liu et al. [19]
presented a genetic algorithm-based column generation
approach for passenger rail crew scheduling. The problem
was formulated as a set partitioning problem, and the genetic
algorithm was used to generate the columns that can improve
the objective restrictedmaster program. Jutte et al. [15] inves-
tigated the crew scheduling problem associated with a freight
railway crew and proposed a column generation solution.
Kwan [16] discussed the key successful factors of the crew
scheduling system in the UK and discussed several cases to
highlight the factors. Hoffmann et al. [13] incorporated the
consideration of attendance rates in a railway crew scheduling
problem and formulated it as a set covering problem. The
resulting problem is solved by a genetic algorithm-based col-
umn generation approach. These studies provide interesting
and valuable insight when a practical crew scheduling system
is to be introduced to a railway company.

Similarly, crew rostering has also been the focus of several
studies. Bianco et al. [4] proposed an integer programming
formulation for the crew rostering problem in a mass tran-
sit system and devised an iterative heuristic approach to
solve it. Caprara et al. [7] studied the crew rostering prob-
lem for railway applications and developed an approxima-
tion solution method based on the Lagrangian lower bound.
Lezaun et al. [17] studied the rostering problem for a pas-
senger railway system, emphasizing the equality issue of the
rostering. Practical issues (such as preferences of employ-
ees, similar numbers of morning, evening and night shifts,
and working days/hours per year) are considered, and the

resulting binary programming problem is solved using a
commercial software package. Nishi et al. [20] presented a
two-level decomposition approach to solve the railway crew
rostering problem with the objective of fair working condi-
tions. A branch-and-bound algorithm with additional valid
cuts was developed to reduce the feasible search space and
to tighten the duality gap.

With the gradual maturation of scheduling and rostering
techniques, studies in the literature have begun to incorporate
more practical issues when considering scheduling and ros-
tering. For instance, crew re-scheduling after disruptions and
integrated timetabling and scheduling are popular research
topics. Huisman [14] investigated the crew re-scheduling
problem that occurs when the original timetable is mod-
ified due to disruptions. The problem is formulated as a
set covering problem and is solved by a column generation
based algorithm. Rezanov and Ryan [22] studied the train
driver recovery problem (TDRP) and defined the disruption
neighborhood by identifying the set of drivers affected by
a disruption. The resulting TDRP was formulated as a set
partitioning problem that can be solved by a depth-first search
constraint branching strategy in a branch-and-bound scheme.
Potthoff et al. [21] presented a column generation-based
algorithm for crew rescheduling for when disruptions occur.
Similarly, Veelenturf et al. [25] discussed how a railway oper-
ator can adjust the timetable and crew scheduling when dis-
ruptions occur. A column generation-based algorithm com-
bined with Lagrangian heuristics was proposed to solve the
problem. Bach et al. [1] investigated the integration of train
timetabling and the crew scheduling problem. The output
of train timetabling is used to generate the crew schedule,
while the results of the crew schedule are employed to adjust
the timetable. The resulting model is solved using a column
generation approach.

Although several studies investigate the scheduling and
rostering of railway transportation within one study, the inte-
gration is not necessarily complete. For instance, [6] outlined
various approaches to model railway crew scheduling and
rostering problems and illustrated solution approaches for
the problems. However, the two sub-problems are solved
independently and are not integrated to date. In many stud-
ies, the railway crew scheduling and rostering problems are
solved sequentially, which can result in solutions that are not
as good as solutions yielded from an integrated framework.
For instance, [5] provided the experience of developing the
crew planning system in which the crew planning problem
is similarly decomposed into crew scheduling (specifically,
pairing generation and pairing selection) and crew roster-
ing sub-problems. The sub-problems are solved sequentially.
Ernst et al. [9] proposed an integrated optimization model to
solve both the crew scheduling and crew rostering problems.
To solve the proposed model for a realistic scale, they relaxed
the integer constraint of variables and rounded up the frac-
tional solutions to nearest integer. Freling et al. [11] discussed
practical issues when implementing a decision support sys-
tem for crew planning. The solution was a branch-and-price
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algorithm in which crew scheduling and the crew roster are
determined in a sequential manner.

Several observations can be summarized after reviewing
relevant studies in the literature. First, the column genera-
tion approach is one of the widely used mainstream tech-
niques due to the problem features associated with crew
scheduling and rostering. Second, as the crew scheduling
and crew rostering each pose significant computational chal-
lenges in railway transportation, only a limited number of
studies have integrated the two stages into one unified model.
Even with the intention of integration, the proposed frame-
work still solve the two sub-problems sequentially and is not
necessarily ideal. Meanwhile, recent studies in airline crew
management also investigated in eliminating the discrep-
ancy, which demonstrates the importance of this integration.
For instance, [24] presented a genetic algorithm (GA)-based
approach and showed that the solution obtained by integrated
approach is better. However, similar to relevant GA studies,
the solution quality of the proposed solution method cannot
be guaranteed. Saddoune et al. [23] proposed a dynamic con-
straint aggregation method to solve the integrated in airline
crew management problem and showed that integrating crew
scheduling and rostering can yield significant savings. There-
fore, the current research proposes an integrated railway crew
scheduling and rostering formulation and develops efficient
solution algorithms to address the resulting mathematical
program.

III. MATHEMATICAL FORMULATION
In this section, we present the formulation for the integrated
crew scheduling and rostering program. We first formally
state the problem in Section III-A followed by introduc-
ing the scheduling/rostering rules that must be considered.
In Section III-C, we present the mathematical formulation.

A. PROBLEM STATEMENT
Let us define the following terms before defining the
problem.

1. Home-base station: Each trainmaster has her/his
home-base stationwhere she/he resides in nearby areas.
When preparing the schedule/roster, the planner must
allow trainmasters to return to the home-base station
every one or two days.

2. Overnight station: The stations that are equipped with
amenities for the trainmaster to stay overnight when
she/he cannot return to the home-base station. When
a crew member stays overnight at a station other than
her/his home-base depot, this is called barracking [9].

3. Dummy station: The virtual station that is designed to
make a schedule/roster feasible.

4. Task: For a train timetable, each train journey can be
divided into a sequence of tasks. Each task is charac-
terized by its start time, end time, start station and end
station and will be performed by one trainmaster.

5. Duty: A duty can contain one or more tasks and is the
job that should be completed by a trainmaster within
one day.

6. Roster: A sequence of duties performed by a set of
trainmasters in a rotating manner over a specified plan-
ning period.

7. Feasible solution: Let us use Figure 1 to explain the
solution design that is used in our mathematical formu-
lation. For each feasible solution, we consider i weeks
and j days. For each day, there can be P positions and
each position can be assigned a task, the number of P
is based on the maximum number of task that a train-
master can be assigned in one day. Each j corresponds
to a duty that is to be performed by a trainmaster. The
working days in one week is defined as W . Further,
there can be M weeks in the planning period and the
sequence of duties forms a roster.

FIGURE 1. Solution design.

8. Basic task: There are three basic types of tasks con-
sidered in this research: (1) Working task (set of Tw):
the task that must be carried out by a trainmaster. (2)
Lift task (set of T r ): the ride that a trainmaster takes
from station A to station B to perform the task based
on station B. During the ride, the trainmaster does not
perform any tasks to service the customer. (3) Standby
task (set of T SD): the task assigned to the trainmaster to
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stand by at a station in case of emergencies. The start
and end station of this type of task is the home-base
station.

9. Dummy task: Three types of dummy tasks are included
to ensure the feasibility of the solution structure
depicted in Figure 1. In the solution structure, every
position should be assigned a task to examine the fea-
sibility of connecting the earlier task to the following
task. If less than P positions are assigned, the remain-
der of the positions should be assigned dummy tasks.
The three dummy tasks are the following: (1) Tasks
in set Tmn: the start station of this type of task is
a home-base station and the end station is a dummy
station. (2) Tasks in set T on: the start station of this type
of task is an overnight station and the end station is a
dummy station. If a task t1 is connected to a task that
belongs to these sets (t2∈TmnT on), then task t1 is the
last task of the corresponding duty, and the end station
of the duty can be determined by the start station of
task t2. (3) Tasks in set T nn: The start and end stations
of this type of task are dummy stations.

10. Two-day duty: A typical duty is the job performed by
a trainmaster for one day. However, for the railway
company we investigate, it has a special duty that spans
two days. Essentially, a trainmaster that executes this
type of duty must stay overnight at a station that is not
her/his home-base station. The scheduling and roster-
ing rules of this type of duty are different from those of
a typical one-day duty. These rules will be elaborated
more in Section III-B

Based on the definitions, the integrated crew scheduling and
rostering problem for the trainmaster for a passenger rail-
way system can be stated as follows: to generate the duties
required to cover a timetable and to sequence the duties to
form a feasible roster that requires the minimum number of
trainmasters to execute. The duty and roster that is formed
should comply with the following labor or contractual rules.

B. LABOR/CONTRACTUAL RULES FOR
SCHEDULING AND ROSTERING
The scheduling rules for trainmasters are the following:

1. All tasks should be assigned. In other words, no train
service can run without a trainmaster.

2. Only when the end station of a task is identical to the
start station of the following task can these two tasks
be performed consecutively by the same trainmaster.
Otherwise, a lift task is needed to connect the tasks.

3. Only when the end time of the previous task and the
start time of the following task is greater than 5 minutes
can these two consecutive tasks be performed by the
same trainmaster. However, if the two consecutive tasks
are for the same train service, the two tasks can be per-
formed by the same trainmaster without the intervening
5 minutes.

4. The working hour per day cannot exceed the upper
bound regulated by labor and contractual laws.

5. A duty cannot contain two consecutive lift tasks.
6. A duty cannot contain only lift tasks.

The following rules should be followed when building the
roster for the trainmaster:

1. The duty in the first day of the week should begin from
the home-base station whereas the duty in the last day
of the week should end at the same home-base station.

2. The end station of the duty from the previous day
should be identical to the first station of the duty in the
current day.

3. A trainmaster should have at least 12 hours of rest time
between the duty from the previous day and the duty of
the current day. However, a two-day duty is considered
as one duty and therefore is not constrained by this rule.

4. A trainmaster must return to her/his home-base station
every two days. If a two-day duty is generated, the end
station of the first day duty should be an overnight
station, which has space for rest.

5. The weekly working hour cannot exceed the upper and
lower bounds regulated by labor and contractual laws.

C. MATHEMATICAL FORMULATION OF INTEGRATED
SCHEDULING AND ROSTERING PROBLEM
We next introduce the notation that will be used throughout
the paper followed by a detailed description of the model.
Parameters
Max An arbitrary large number.
M The maximum number of weeks needed to

complete the roster.
D Number of working days in a week. D is

typically 6.
P The maximum number of tasks in one duty.
N The number of tasks.
SD The number of standby duties.
SS The number of overnight stations.
RT bw The preparation time required before a

working task.
RT br The preparation time required before a lift task.
WHmax

day The maximum working hours for a one-day
duty.

WHmax
2days The maximum working hours for a two-day

duty.
WHmin

week The minimum weekly working hours. This
value is set in the railway company’s
contractual rule and is 40 hours. This minimum
is usually set for the sake of salary or fairness.

WHmax
week The maximum working hours every week. This

value is regulated by labor laws and is
44 hours.

R The rest hours needed between two
consecutive duties. It is typically 12 hours
according to local labor laws. Note that a
two-day duty does not require R.
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Day The number of hours in one day (i.e., 24 hours or
1,440 minutes).

WT st The clock-in time of task t . It is the time for a
trainmaster start the preparation before the
assigned task.

WT et The clock-out time of task t . It is the time when
a trainmaster finish the work after task.

Sst The start station of task t . Each station is
assigned an arbitrary unique number. Sst will be
assigned a value that is equal to its start station’s
given number. For instance, if a station A is
assigned number 1, Sst ← 1 for the tasks start
from station A.

Set The end station of task t . Similar to the example
above, Set ← 1 for the tasks end at station A.

WH t1t2 The time required for a trainmaster to finalize
task t1 (i.e., clean the train, etc.) and prepare for
task t2 (i.e., check in or examine relevant
equipment). In other words, WH t1t2 is the
minimum time needed to connect tasks t1 and t2.

τ i,j The penalty to prevent assigning tasks to later
weeks in the objective. τ i,j is discussed with the
objective function.

Set
T The set of tasks, including working, lifting and

standby tasks.
Tw The set of working tasks, Tw⊆T .
T r The set of lift tasks, T r⊆T .
T SD The set of standby tasks, T SD⊆T .
Tm The set of tasks that start from the home-base

station, Tm⊆T .
T o The set of tasks that start from overnight

stations, T o⊆T .
Tmn The set of dummy tasks that start from the

home-base station and end at a dummy station,
Tmn⊆T .

T on The set of dummy tasks that start from an
overnight station and end at a dummy station,
T on⊆T .

T nn The set of dummy tasks that start and end at
dummy stations,T nn⊆T .

T t1 The set of tasks that task t1 can connect to,
T t1⊆T .

Variables

x i,j,pt If task t is assigned to the pth position of day j in
week i, then x i,j,pt = 1. Otherwise, x i,j,pt = 0.

yi,j,pt1,t2 If the pth position is task t1 and the (p+ 1)th

position is task t2, then y
i,j,p
t1,t2 = 1. Otherwise,

yi,j,pt1,t2 = 0.
zi,jmm If the duty in day j in week i starts and ends at the

home-base station, zi,jmm = 1. Otherwise, zi,jmm =.
zi,jmo Intermediate decision variable. If zi,jmo = 1, the duty

in day j in week i starts at the home-base station
and ends at an overnight station. zi,jmo = otherwise.

zi,jom Intermediate decision variable. If the duty in day j
in week i starts at an overnight station and ends at
the home-base station, zi,jom = 1. Otherwise, zi,jom =.

γ i,j Intermediate decision variable. If γ i,j = 1, the
duties of i and j together are considered as a
two-day duty. Otherwise, γ i,j = 0.

Minimize
M∑
i=1

D∑
j=1

∑
t∈Tw,T r

τ i,j × x i,j,1t (1)

Subject to
∑
t

x i,j,pt = 1 ∀i, ∀j, ∀p (2)∑
i

∑
j

∑
p

x i,j,pt = 1 ∀t ∈Tw

∀i,∀j, (3)

x i,j,pt1 +x
i,j,p+1
t2 − 2yi,j,pt1,t2 ≥ 0

∀p = 1 . . . P− 1

∀t1 ∈ T

∀t2 ∈ T

∀i,∀j, (4)

x i,j,pt1 +x
i,j,p+1
t2 − yi,j,pt1,t2 ≤ 1 ∀p = 1 . . . P− 1

∀t1 ∈ T ,

∀t2 ∈ T

∀i,∀j, (5)

yi,j,pt1,t2 = 0 ∀p = 1 . . . P− 1,

∀t1 ∈ T ,

∀t2 /∈ T t1 (6)∑
t∈Tm

x i,j,1t +

∑
p=2..P

∑
t∈Tmn

x i,j,pt ≥ 2zi,jmm ∀i,∀j,

(7)∑
t∈Tm

x i,j,1t +

∑
p=2..P

∑
t∈T on

x i,j,pt ≥ 2zi,jmo ∀i,∀j,

(8)∑
t∈T o

x i,j,1t +

∑
p=2..P

∑
t∈Tmn

x i,j,pt ≥ 2zi,jom ∀i,∀j,

(9)

zi,jmm + z
i,j
mo + z

i,j
om = 1 ∀i,∀j (10)

zi,1mm + z
i,1
mo = 1 ∀i (11)

zi,Dmm + z
i,D
om = 1 ∀i (12)∑

p=1..P−1

∑
t1

∑
t2∈Tmn,T on

Set1 × y
i,j,p
t1,t2

=

∑
t

Sst × x
i,j+1,1
t ∀i, j = 1 . . .D− 1

(13)∑
t∈Tm

WT st × x
i,j+1,1
t + Day

−

∑
p=1..P−1

∑
t1

∑
t2∈Tmn

WT et1 × y
i,j,p
t1,t2≥ R ∀i,

j = 1 . . .D− 1 (14)
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∑
t∈Tw

RT bw × x
i,j,1
t +

∑
t∈T r

RT br × x
i,j,1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2 × y
i,j,p
t1,t2≤WH

max
day

∀i, ∀j (15)∑
j

(∑
t∈Tw

RT bw × x
i,j,1
t +

∑
t∈T r

RT br × x
i,j,1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2×y
i,j,p
t1,t2

≥WHmin
week ∀i

(16)∑
j

(∑
t∈Tw

RT bw × x
i,j,1
t +

∑
t∈T r

RT br × x
i,j,1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2×y
i,j,p
t1,t2

≤WHmax
week ∀i

(17)(∑
t∈Tw

RT bw × x
i,j,1
t +

∑
t∈T r

RT br × x
i,j,1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2 × y
i,j,p
t1,t2


+

(∑
t∈Tw

RT bw×x
i,j+1,1
t +

∑
t∈T r

RT br×x
i,j+1,1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2×y
i,j+1,p
t1,t2

≤WHmax
2days

+

(
1− γ i,j

)
×Max ∀i, j = 1 . . .D− 1

(18)

zi,jmo + z
i,j+1
om = 2γ i,j ∀i, j = 1 . . .D− 1 (19)

x i,j,pt ∈ {0, 1} ∀i,∀j,∀p,∀t (20)

yi,j,pt1,t2∈ {0, 1} ∀i,∀j,

∀p = 1 . . . P− 1

∀t1 ∈ T ,

∀t2 ∈ T (21)

zi,jmm∈ {0, 1} ∀i,∀j (22)

zi,jmo∈ {0, 1} ∀i,∀j (23)

zi,jom∈ {0, 1} ∀i,∀j (24)

γ i,j∈ {0, 1} ∀i, j = 1 . . .D− 1 (25)

The objective function aims to minimize the days required
to complete the roster iteration. As each duty in each day
requires a trainmaster to service, the objection equivalently
minimizes the total number of trainmasters needed for the
roster. If the first assigned task to a duty (indexed by p = 1)
is a working/lifting task (x i,j,1t = 1 ∀t∈TwT r ), then the
duty is considered to be a working duty. Otherwise, the duty
is defined as a standby duty and will not be considered in

the objective function. As the objective function (1) aims
to minimize the days in the final rostering, τ i,j is designed
to increase based on the week a duty is in such that the
duties assigned in later weeks will be punished. For instance,
τ 1,j≤τ 2,j. . . ≤τM ,j.
Constraint (2) ensures that each position p for day j of

week i is assigned exactly one task t∈T . Constraint (3) makes
sure that each task t ∈Tw is assigned and one trainmaster
will perform the task. Constraints (4), (5) and (6) together
calculate intermediate variable yi,j,pt1,t2 based on the values of

variables x i,j,pt1 and x i,j,p+1t2 . If x i,j,pt1 = 1 and x i,j,p+1t2 = 1,
task t2 is performed following t1 while task t1 and t2 are
respectively assigned to positions p and p+1 of day j of
week i. In this case, the intermediate variable yi,j,pt1,t2 = 1

for later calculation. If either x i,j,pt1 6= 0 or x i,j,p+1t2 6= 0, then
yi,j,pt1,t2= 0. Suppose that connecting tasks t1 and t2 violates any
scheduling rules (e.g., time and location), then constraint (6)
together with constraints (4) and (5) ensure that yi,j,pt1,t2= 0 to
prevent this type of task connection.
Constraint (7) determines if the start and end stations

of the first/last tasks in a duty is the home-base station.
If
∑

t∈Tm x
i,j,1
t = 1, then the first task of the duty

in day j of week i starts from the home-base station.
If
∑

p=2..P
∑

t∈Tmn x
i,j,p
t = 1, the last task of the duty in

day j of week i ends at the home-base station. Suppose that∑
t∈Tm x

i,j,1
t = 1 and

∑
p=2..P

∑
t∈Tmn x

i,j,p
t = 1, then zi,jmm

must be 1 to represent that the first and last tasks in a duty
respectively start and end at that home-base station. Similarly,
in constraint (8), if

∑
t∈Tm x

i,j,1
t = 1, the first task of the

duty in day j of week i starts from the home-base station.
If
∑

p=2..P
∑

t∈T on x
i,j,p
t = 1, the last task of the duty in

day j of week i ends from an overnight station. Suppose
that

∑
t∈Tm x

i,j,1
t = 1 and

∑
p=2..P

∑
t∈T on x

i,j,p
t = 1,

zi,jmo = 1, indicating that the duty starts from the home-
base station and ends at an overnight station. Constraint (9)
is a scenario in which a duty starts from an overnight sta-
tion (

∑
t∈T o x

i,j,1
t = 1) and ends at the home-base station

(
∑

p=2..P
∑

t∈Tmn x
i,j,p
t = 1). The interpretation is similar to

those of constraints (7) and (8). Only one scenario specified
in constraints (7)(9) for each duty can occur, which is ensured
in constraint (10).

The first duty of a week must start at the home-base
station, therefore constraint (11) ensures that either zi,1mm= 1
or zi,1mo = 1. Based on this assumption, zi,1om must be 0.
The last duty of a week must end at the home-base sta-
tion. Constraint (12) makes sure that either zi,Dmm = 1 or
zi,Dom = 1. Similarly, zi,Dmo= 0. The start time and start station
of each duty can be identified based on the first task of that
duty. For instance, if x i,j,1t = 1, then the first task is t ,
the start station is Sst and the start time is WT st . The end
station and end time of a duty can be determined based on
Tmn and T on. If yi,j,pt1,t2 = 1 while t2∈TmnT on, the last task of
the duty is t1, the end station is Set1 and the end time of the
duty is WT et1 . Constraints (13)-(19) are constructed based on
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this principle. Constraint (13) makes sure that the end station
of the duty in day j of week i is the start station of the duty
in day j+1. At the same time, to connect the two duties and
form a feasible roster, the trainmaster must have enough rest
time. This labor law constraint is enforced in constraint (14).
The clock-in time of the next day (

∑
t∈Tm WT

s
t×x

i,j+1,1
t ),

plus 24 hours, minus the clock-out time of the current day
(
∑

p=1..P−1
∑

t1

∑
t2∈Tmn WT

e
t1×y

i,j,p
t1,t2 ) must be greater than

the required rest time (R). The daily working hour constraint
is described in constraint (15). For each duty, the preparation
time (

∑
t∈Tw RT

bw
×x

i,j,1
t +

∑
t∈T r RT

br
×x

i,j,1
t ) and working

time (
∑

p
∑

t1

∑
t2∈T t1 WH t1t2×y

i,j,p
t1,t2 ) should not exceed the

working hour limit of a day (WHmax
day ). The preparation time

(either RT bw or RT br ) is calculated based on what the first
task is (i.e., working task or lifting task).

Based on the daily working hours calculated in
constraint (15), constraints (16) and (17) specify the
lower and upper bounds of weekly working hours,
respectively.

Constraints (18) and (19) limit the working hours of a
two-day duty. If a duty is a two-day duty (γ i,j will be 1 in
constraint (19)), then

(
1−γ i,j

)
×Max= 0 and the working

hours are constrained by WHmax
2days. For duties that are not

two-day duties, the working hours are not bound by this
constraint because the right-hand-side of the equation is a
large number.

If zi,jmo = 1 and zi,j+1om = 1, the duties of day j and j+1
in week i are considered as a two-day duty and γ i,j = 1.
Otherwise, γ i,j= 0, meaning that these two duties are not a
two-day duty. The decision variables of the model are binary
integers (constraints (20)-(25)).

The mathematical formulation described above is a com-
plicated program, especially when large-scale problem is to
be solved. In fact, only crew scheduling and set covering
problems have been shown to be NP-complete problems in
the literature (i.e., [3]). The integration of crew rostering with
crew scheduling can be even more difficult to solve. There-
fore, we propose two solution schemes to solve the problem
in the following sections and demonstrate their effectiveness
in numerical experiments.

IV. SOLUTION APPROACH: A
BRANCH-AND-PRICE-AND-CUT ALGORITHM (BPC)
In this section, we propose a BPC algorithm that can solve the
integrated formulation that is described in Section III. The
branch-and-price-and-cut algorithm integrates the branch
and bound and column generation methods for solving
large-scale integer programming problems [2]. The cut
generation is included to further accelerate the solution
process.

A. OVERALL ALGORITHMIC PROCESS
The proposed BPC is illustrated in Figure 2. We first decom-
pose the problem into master and pricing programs. The
master program identifies the roster of the duties/columns

generated from the pricing program while the pricing
program finds good duties/columns for the master pro-
gram. The master and pricing programs will be detailed
in Section IV-C and Section IV-D respectively.

FIGURE 2. Branch-and-Price-and-Cut Algorithm.

As the number of columns in the original master program
can be large, we form the restricted master program (RMP),
which only contains a limited number of columns/duties gen-
erated on the fly from the pricing program. In addition, as the
RMP can remain difficult to solve, we solve the relaxation
of RMP, whose integer variables are relaxed as continuous
variables. After solving the linear relaxation of RMP, we gen-
erate the pricing program based on the dual variables from
the relaxed RMP, which indicates what kind of duties should
be generated to improve the roster in RMP. We then solve
the pricing program to find the best reduced cost. If the
resulting reduced cost is negative, the column/duty identified
is added to the RMP, and we return to step 2. If the pricing
program fails to identify new column with a negative reduced
cost, we continue to examine if all determined variables are
integers. If not, we go to step 8 and branch on the non-integral
decision variable. Based on the identified solution, we add
cuts to fathom the infeasible solutions from the enumera-
tion tree to accelerate the solution procedure and move to
step 2. If all decision variables are integer values, the final
step terminates the process and reports the incumbent
solution.

B. INITIAL FEASIBLE SOLUTION
To begin the algorithm with the feasible solution in Step 0 of
Figure 2, we develop a heuristic solution. The heuristic
begins from constructing the subnetwork that is illustrated
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FIGURE 3. Illustration of subnetwork.

in Figure 3. The network contains a super source S and super
sink node T. The remainder of the nodes in this network
represent the tasks that must be serviced. The arcs in the
network represent connecting the prior tasks to the following
tasks that are specified in the nodes.

In the design of the subnetwork, each path corresponds
to a feasible duty that can be performed by a trainmaster.
To ensure the feasibility of each path, time, location and labor
law constraints should be satisfied. For instance, if a train-
master can perform task 4 after completing task 1 without
violating the time constraints (i.e., the rest time is sufficient
and does not violate labor laws) and location constraints
(i.e., the end location of task 1 is the starting location of
task 4), then node 1 and node 4 are connected. That is, when
connecting two task nodes, constraints (4)(6) are satisfied
automatically.

The arc of this network has two properties: cost and time.
The arc cost can be adjusted based on the dual variables asso-
ciated with the constraints in RMP. The adjustment is detailed
in Section IV-D. The arc time is WH t1t2 . The time of each
duty generated must satisfy the time constraint (15). There-
fore, a constrained shortest path (CSP) algorithm adapted
from [18] is used to obtain a solution. With this design,
the duty hours of all identified paths in this network are
feasible and do not violate any constraints. In other words,
only the feasible duties will be generated in the design.

Based on the design, the following heuristic determines
the initial feasible solution in an efficient manner. We use
Figure 4 as an example to illustrate the proposed heuristic.
Step 1: Initialize node cost as −1 for all nodes. The costs

of corresponding incoming arcs are initialized based on that
node as −1. For instance, if the cost of node 4 is −1, then
arcs (1, 4) and (3, 4) are of cost −1.
Step 2: Find the constrained shortest path from source

node S to destination node T. For all arcs connected to
the nodes in that path, update the node and arc costs to 0.
For instance, in Figure 4 (a), the first shortest path is
S−1− 3− 4−T . Then, the costs of nodes 1, 3, 4 are updated
as 0. The costs of all incoming arcs for these nodes are
updated to 0 (as shown in Figure 4 (b)).
Step 3: Repeat Step 2 until the costs of all nodes are 0.

FIGURE 4. Illustrative network for the initial feasible solution heuristic.

Note that all the arc can be re-used when identifying the
constrained shortest path, regardless of the arc cost (either
0 or −1). If a task is covered more than once, the additional
coverages can be considered as lift tasks. Therefore, all solu-
tions identified in this method are feasible.

In the network illustrated in Figure 3, it is also possible
to generate a two-day duty. Suppose that a path that starts
from a home-base station and ends at an overnight station is
generated (for instance, path S−2− 4− 7−T in Figure 3)
and the end/overnight station is station k . Next, we modified
the arc cost of the task whose start station is k (i.e., that the
task associated with node 9 start from station k) in the lower
half network to a large negative number in the next iteration
(i.e., the arc cost of (S, 9) is modified as a large negative
number). With this modification, the next generated path will
start from station k (i.e., path S−9− 13− 14−T in Figure 3).
Then, path S−2− 4− 7−T and path S−9− 13− 14−T
together form a two-day duty.

With generated duties that cover all of the tasks, we can
solve the RMP described in Section IV-C to form a feasible
roster. As the number of duties generated in this heuristic is
very limited, it is not computationally difficult to solve the
resulting RMP when identifying the initial feasible solutions.

C. RESTRICTED MASTER PROGRAM (RMP)
In the algorithm design, because the duties are generated by
the pricing sub-problem, the duties are known when solving
the RMP (rostering problem). Therefore, the RMP can be
simplified in the following manner.

Denote Shome as the home-base station,W s
c as the clock-in

time for duty c,W e
c as the clock-out time for duty c, Ssc as the

start station of duty c, Sec as the end station of duty c,WH c as
the working hour of duty c and dc,t as the indicator parameters
(dc,t = 1 if task t is contained in duty c; otherwise, dc,t= 0).

Let Du be the set of all duties, Dus be the set of
standby duties (Dus⊆Du), Dut be the set of working duties
(Dut⊆Du,Dus∩Dut= ∅), Dumo be the set of duties whose
start station is a home-base station and end station is not
a home-base station (Dumo⊆Du), Duom be the set of duties
whose start station is not a home-base station and end station
is a home-base station (Duom⊆Du) and Dumm be the duties
whose start and end stations are a home-base station.
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Based on the notation above, the decision variable of
the RMP is Xi,j,c, whose value determines if duty c is
assigned to day j of week i (Xi,j,c = 1 yes; Xi,j,c= 0, oth-
erwise). We present the formulation of RMP, followed by an
explanation.

Minimize
M∑
i=1

D∑
j=1

∑
c∈Dut

τ i,j × Xi,j,c (26)

Subject to
∑
c∈Du

Xi,j,c = 1 ∀i, ∀j (27)

M∑
i=1

D∑
j=1

∑
c∈Dut

dc,t × X i,j,c ≥ 1 ∀t ∈ Tw (28)

∑
c∈Du

Ssc × Xi,j,c=S
home

∀i, j = 1 (29)∑
c∈Du

Sec×X i,j,c=S
home

∀i, j = D (30)∑
c∈Du

Sec × Xi,j,c =
∑
c∈Du

Ssc × Xi,j+1,c

∀i, j = 1..D− 1 (31)∑
c∈Dumo,Dumm

W s
c×X i,j+1,c + Day

−

∑
c∈Duom,Dumm

W e
c ×Xi,j,c≥ R ∀i, j=1..D−1

(32)
D∑
j=1

∑
c∈Du

WH c×X i,j,c≥WHmin
week ∀i (33)

D∑
j=1

∑
c∈Du

WH c × Xi,j,c≤WHmax
week ∀i (34)

∑
c∈Dumo

WH c × Xi,j,c +
∑

c∈Duom
WH c × Xi,j+1,c

≤ WHmax
2days ∀i, j = 1..D− 1 (35)

Xi,j,c ∈ {0, 1} ∀i,∀j,∀c (36)

In the simplified formulation, the duties can be classified as
working duties (Dut ) and standby duties (Dus) and the objec-
tive function (1) in the original problem is reduced to (26).
Constraint (27) is similar to constraint (2). Constraint (2)
ensures that each position p for day j of week i is assigned
exactly one task t∈T . Constraint (27) makes sure that only
one duty will be assigned to day j of week i. Constraint (28)
corresponds to constraint (3) and ensures that all tasks will be
covered by one trainmaster.

Because the tasks in each duty are known when
solving RMP, based on the tasks assigned to a duty,
the start station (Ssc), end station (Sec ), clock-in time (W s

c ),
clock-out time (W e

c ) and working hours (W h
c ) of that

duty are also known. Therefore, the location constraints
that are specified in constraints (11)(12) can be modi-
fied to constraints (29)(30). Constraint (13) is reduced to
constraint (31). The resting time constraint (14) can be

stated as constraint (32). The weekly working hours con-
straints (16)(17) can be simplified as constraints (33)(34).
The working hours limit of a two-day duty constraint (18)
can be reduced to constraint (35)

Because the RMP determines the roster with given duties,
the following pricing problem generates duties on-the-fly to
improve the quality of the roster in RMP.

D. PRICING PROGRAM
Let ω be dual variables associated with constraints (27),
(29)(35) (i.e., ω27

m,n is the dual variable associated with con-
straint (27)) and let πt be the dual variable that corresponds to
constraint (28). Based on the RMP described in Section IV-C,
the reduced cost of variable Xi,j,c ∀c∈Dut is:

τ i,j−
∑

(m,n)∈(i,j)

ω27
m,n −

∑
t∈Tw

dc,t × πt −
∑

m∈i,j=1

Ssc × ω
29
m

−

∑
m∈i,j=D

Sec × ω
30
m −

∑
(m,n)∈(i,j)

Sec×ω
31
m,n

−

∑
(m,n)∈(i,j+1)

Ssc×ω
31
m,n−

∑
(m,n)∈(i,j+1),c∈Dumo,Dumm

W s
c×ω

32
m,n

−

∑
(m,n)∈(i,j),c∈Duom,Dumm

(
−W e

c
)
×ω32

m,n −
∑
m∈i

WH c × ω
33
m

−

∑
m∈i

WH c × ω
34
m −

∑
(m,n)∈(i,j),c∈Dumo

WH c×ω
35
m,n

−

∑
(m,n)∈(i,j+1),c∈Duom

WH c×ω
35
m,n (37)

In each iteration, a duty/column should be generated based
on the reduced cost. However, because the day and week of
a duty to be assigned are determined in the RMP, the pricing
program only generates the duty/column that covers the tasks
that must be covered the most. Therefore, dual variables
related to week i and day j (namely, ω) can be ignored and the
index (ijp) is replaced by p. For instance, x i,j,pt and yi,j,pt1,t2 are
respectively replaced by xpt and ypt1,t2 . As a result, the objec-
tive function can be reduced to:

min−
∑
t∈Tw

dc,t×πt (38)

Because the parameter dc,t indicates whether or not a task t is

contained in duty c, we can replace dc,t with
P∑
p=1

xpt and form

the following pricing program:

Maximize
∑
t∈Tw

P∑
p=1

xpt × π t (39)

Subject to
∑
t

xpt = 1 ∀p (40)

xpt1+x
p+1
t2 − 2ypt1,t2 ≥ 0 ∀p = 1 . . . P− 1

∀t1 ∈ T , ∀t2 ∈ T

(41)

xpt1+x
p+1
t2 − ypt1,t2 ≤ 1 ∀p = 1 . . . P− 1

∀t1 ∈ T , ∀t2 ∈ T

(42)
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ypt1,t2 = 0 ∀p = 1 . . . P− 1,

∀t1 ∈ T , ∀t2 /∈ T t1 (43)∑
t∈Tm

x1t +
∑
p=2..P

∑
t∈Tmn

xpt ≥ 2zmm (44)

∑
t∈Tm

x1t +
∑
p=2..P

∑
t∈T on

xpt ≥ 2zmo (45)

∑
t∈T o

x1t +
∑
p=2..P

∑
t∈Tmn

xpt ≥ 2zom (46)

zmm + zmo + zom = 1 (47)∑
t∈Tw

RT bw × x
1
t +

∑
t∈T r

RT br × x
1
t

+

∑
p

∑
t1

∑
t2∈T t1

WH t1t2 × y
p
t1,t2≤WH

max
day

(48)

xpt ∈ {0, 1} ∀p, ∀t (49)

ypt1,t2∈ {0, 1} ∀p = 1 . . . P− 1

∀t1 ∈ T , ∀t2 ∈ T (50)

zmm∈ {0, 1} (51)

zmo∈ {0, 1} (52)

zom∈ {0, 1} (53)

The objective function (39) aims to identify the column/duty
that benefits the rostering in the RMP the most based on
the dual variable that corresponds to constraint (28). Con-
straint (40) is equivalent to constraint (2), stating that each
position can be assigned a task. Constraints (41)(47) are
comparable to constraints (4)(10) with minor modifications
of indices. The interpretations of these constraints are similar
to the original program and are referred to in Section III-C.
Constraint (48) is equivalent to constraint (15), indicating the
upper bound of daily working hours. The decision variable is
a binary integer (constraints (49)(53)).

With this formulation, we can design a sub-problem net-
work similar to the network shown in Section IV-B, set
the costs of the corresponding incoming arcs of node t as
−πt t∈Tw and solve it with the constrained shortest path
algorithm that was proposed by Lin (2014)

E. CUT GENERATION
To accelerate the solution process, we develop the following
cuts to prune the branch-and-price-and-cut tree whenever
possible.
Cut I (Cut to AvoidMultiple Duties in One Day):As shown

in constraint (27), each day can only be assigned one duty.
If X ri,j,c at the r

th iteration is a binary value (i.e., X ri,j,c = 1),

then the following cut (54) can be added for the r ′th iteration
after r th (∀r ′>r):∑

c′∈Du c

X r
′

i,j,c′ = 1−
∑
c

X ri,j,c ∀(i, j), ∀r
′ > r (54)

Cut II (Cut for Infeasible Connecting Location): For any
Xi,j,c = 1, then Xi,j+1,c′= 0 ∀Ssc′ 6=S

e
c . Considering con-

straint (31), ifX ri,j,c = 1,meaning that
∑

c′∈Du S
e
c′×X

r
i,j,c′=S

e
c ,

then constraint (31) can be simplified as:∑
c′∈Du

Ssc′×X
r ′
i,j+1,c′ = Sec , ∀i, j = 1..D− 1, ∀r ′ > r (55)

As X r
′

i,j+1,c′∈ {0, 1}, the following cut (56) can be added to

restrict the value of variable X r
′

i,j+1,c′ whose duty c′’s start
station Ssc′ is not equal to end station Sec of duty c:

if Ssc′ 6=S
e
c , then X r

′

i,j+1,c′ = 0, ∀i, j= 1..D−1, ∀r ′>r

(56)

In other words, if Xi,j,c = 1, the tree node of
Xi,j+1,c′ ∀Ssc′ 6=S

e
c and its following leaf nodes can be

pruned. This cut is a location-based cut to ensure the con-
necting locations of duties.
Cut III (Cut for Infeasible Connecting Time): Derived

from constraint (32), if X ri,j,c = 1 and c∈DuomDumm, indi-
cating that

∑
c′∈Du

W e
c′×X

r
i,j,c′=W

e
c , then constraint (32) can be

simplified as:∑
c′∈Dumo,Dumm

W s
c′×X

r ′
i,j+1,c′≥W

e
c+R−Day

∀i, j = 1..D− 1, ∀r ′>r (57)

Similar to Cut II, if c′∈DumoDumm and W s
c′<W

e
c+R−Day,

then cut (58) can be added to restrict the value of
variable X r

′

i,j+1,c′ :

X r
′

i,j+1,c′ = 0, ∀i, j= 1..D−1, ∀r ′>r (58)

This cut is a time-based cut that is used to ensure that the rest
time between duties does not violate the scheduling/rostering
rule.
Proposition 1: Cuts I-III or their combination never

exclude the optimal solutions of the integrated program.
Proof: Define a solution set S that represents all solu-

tions of the problem. Assume that the optimal solution
of problem is S∗. Let S∗⊆S ′ and assume that Cuts I-III
exclude S ′. Since solution S ′ is excluded by cuts due to its
infeasibility, S∗ is neither a feasible nor an optimal solution,
which contradicts with the assumption.
Proposition 2: The BPC algorithm finds an optimal solu-

tion in a finite number of iterations.
Proof: From Proposition 1, Cuts I-III never exclude the

optimal solutions. Since these cuts are always added into the
master problem, the feasible search space can be reduced.
Because the solution space is finite, the algorithm can find
the optimal solution in a finite number of iterations.

V. DEPTH-FIRST SEARCH-BASED (DFS-BASED)
ALGORITHM
In this section, we propose a DFS-based algorithm that
can solve the crew scheduling and rostering problems inde-
pendently and sequentially. With this DFS-based algorithm,
we can compare the two-stage solutions with the integrated
solutions from the BPC.
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Algorithm 1 DFS
Begin
Initialize a list Duty= {∅} for duty storage
Sort the tasks by departure time and number them as
1...N
For i := 1 to N do
Begin
Order ← i;
Let k be task i;
While Order 6= {∅}
Begin
For j := k + 1 To N
Begin
Let l be the last element in Order ;
If connecting l and j satisfies the scheduling rules
Then
Order ← Order ∪ j;

End If
If j = N then
If Order satisfies the scheduling rules
Then

Duty← Duty ∪ Order;
End If

End If
End For
Let k be the last element in Order ;
Delete the last element in Order ;

End While
End For

End

The DFS-based algorithm has three steps: column/duty
enumeration, scheduling optimization and roster optimiza-
tion. The first step enumerates the potential columns/duties
with the DFS search procedure Algorithm DFS. During col-
umn enumeration in the DFS, the scheduling rules are exam-
ined so that infeasible duties can be eliminated. The second
step is a set partitioning problem that identifies the mini-
mum number of duties required to cover a timetable. The
final step solves the roster optimization that is described
in Section IV-C with the columns/duties to ensure that the
roster is formed without violating the rostering rules. The
DFS search procedure can be summarized in the following
pseudocode.

The DFS search procedure enumerates all of the potential
duties. We then solve the following set partitioning program
to identify the minimum number of duties to cover all of the
tasks. In the program, the parameter dc,t indicates whether or
not task t is contained in duty c and the decision variable Xc
determines if duty c is selected.

Minimize
∑
c∈Du

Xc (59)

Subject to
∑
c∈Du

dc,t × X c = 1 ∀t ∈ Tw (60)

Xc ∈ {0, 1} ∀c ∈ Du (61)

With the selected duties, we solve the program described in
Section IV-C so that a feasible roster can be formed.

VI. EMPIRICAL STUDY
To validate the effectiveness and evaluate the efficiency of the
proposed solution frameworks, we empirically apply them to
problems of different sizes. In the validation, we compare the
solutions derived using our methods to the solutions from a
commonly used commercial optimization package Gurobi.
The solution from Gurobi can be considered to be the opti-
mal solution and serves as a benchmark for the other two
algorithms. The proposedBPC andDFS-based algorithms are
implemented in the ANSI C++ programming language. The
numerical experiments for both Gurobi 7.5.2 and our solution
methods are conducted on aWindows-based machine with an
Intel 3.4 GHz CPU processor and 16 GB of memory.

A. VALIDATION
The data and results from the experiment are respectively
summarized in Table 1 and Table 2 There are fix groups
of trainmasters tested. The study area is located in southern
Taiwan and is a portion of the network that the Taiwan Rail-
ways Administration (TRA) currently operates. The groups
of trainmasters service all of the train services in this area
that are listed in the timetable.

TABLE 1. Experiment data.

TABLE 2. The comparison of solutions from different approaches.

In Table 2, we present the results from TRA’s current
practice, the solution from the integrated formulation that
was described in Section III-C using Gurobi, and the solu-
tions from the DFS-based and BPC algorithms. In addition,
the convergence of the proposed BPC is depicted in Figure 5.
The TRA’s current practice is determined by a manual
approach and relies heavily on rule of thumb. Because it
is challenging to prepare a schedule or roster, TRA rarely
prepares the schedule/roster from scratch. Instead, they typi-
cally modify the current schedule/roster and attempt to find a
feasible schedule/roster with minimal changes.
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FIGURE 5. The convergence of BPC.

Group A is the problem instance that can be solved by
all four solution approaches. In TRA’s practice, there are
17 working trainmasters and 1 standby trainmaster. In the
optimal solution determined by Gurobi, the same number
of trainmasters is needed. However, servicing the same
timetable, only 15 working trainmasters are needed and
3 trainmasters can be standby which significantly improves
the flexibility of TRA’s operation. If there is any emergency,
TRA can have more standby trainmasters to handle the sud-
den occurrence. In this instance, the DFS-based algorithm
obtains the number of working trainmasters and standby
trainmasters as 15 and 15, respectively, which is worse than
the Gurobi solution. The DFS-based algorithm corresponds
to a typical two-stage solution approach that is frequently
adopted in the literature (i.e., to solve scheduling and ros-
tering independently and sequentially). The aim of the first
stage is minimizing the number of duties required to cover
a timetable. The output of the first stage of the problem
is then used in the second stage to determine the minimal
roster. However, in determining duties in the first stage,
the roster of the second stage is not considered. Therefore,
the resulting second stage requires many standby trainmasters
to form a feasible roster. The result demonstrates the benefit
of integrating the scheduling and rostering within one for-
mulation. For the proposed BPC algorithm, the solution is
identical to that from Gurobi, which shows the effectiveness
of the BPC algorithm. In terms of computational time, both
the DFS-based and BPC algorithms outperform Gurobi and
can obtain solutions faster. Compared to TRA’s current prac-
tice, although the total number of trainmasters is identical,
the solutions from Gurobi/BPC are more flexible because
the number of standby trainmasters is higher than in TRA’s
current practice.

In Group B, because there are many short and frequent
train tasks in the timetable, the number of potential combi-
nations and resulting schedules/rosters is significant. Thus,
although the number of trainmasters is smaller than the
number of Group A, the resulting program is beyond the
reach of Gurobi because the numbers of decision variables
and constraints are extremely large. Therefore, in this and
following experiments, only the solutions from our methods

are reported. In this experiment, both the DFS-based and
BPC algorithms can determine solutions within reasonable
computational times. The DFS-based algorithm outperforms
the BPC algorithm in computational time in this case. How-
ever, the solution quality of the BPC algorithm remains better
than that of the DFS-based algorithm. In the BPC solution,
the required trainmasters require a lower number of standby
trainmasters when compared to the DFS-based solution.With
the same number of total trainmasters, the solution from BPC
is still more flexible because one more standby trainmaster is
arranged.

When the problem size grows larger (i.e. Groups C, D,
E and F), even the DFS-based algorithm struggles and cannot
determine the solution, as does the BPC algorithm. There-
fore, the BPC is the most efficient solution approach and
can potentially solve problems of realistic sizes. In terms of
solution quality, BPC identifies the solutions that are at least
as good as those developed by TRA in practice over several
years of modifications (i.e., Groups C and F) with reasonable
computational effort. In Group D and E, BPC even finds a
solution with one less working duty and one more standby
duty. This kind of solution can improve the flexibility of the
company’s operations.

B. SENSITIVITY ANALYSIS
We next conduct a sensitivity analysis of the problem param-
eters for Group A to examine the impact of these parame-
ters. The results are summarized in Table 3. In this table,
we present more details such that the impact of parameter
adjustment can be accurately evaluated.

When perturbing the maximum daily working hours,
we found that no feasible solution can be identified for
total daily working hours less than 9 hours, indicating that
some tasks required more than 9 hours to complete. When
the maximum daily working hours increase, the number of
working and standby duties remain identical, which means
that the maximum number of working hours may not be
the decisive factor in the scheduling/rostering. However, the
average preparation time per week and the maximum waiting
time between tasks decreases when compared to the base
case. These decreases show a better usage of trainmasters’
working hours.

In the sensitivity analysis (b) of Table 3, when the maxi-
mumweeklyworking hours increase, the numbers of working
and standby duties do not change. However, the required
working and standby duties increase when the maximum
weekly working hours decrease. Compared to the results
shown in analysis (a) of Table 3, the maximum weekly
working hours is a more critical factor than the maximum
daily working hours. This phenomenon is more apparent
in analysis (c) of Table 3. Even with a very high maxi-
mum daily working hours (i.e., 12 hours), only the maxi-
mum weekly working hours has an impact on the number
of duties required. It is believed that the maximum weekly
working hours actually constrains the feasible region and
thus the impact of the maximum daily working hours is
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TABLE 3. Sensitivity analysis.

less significant. This kind of observation is only possible
when the scheduling and rostering problems are considered
in an integrated manner, which demonstrates the benefit of
integration in our research. In analysis (d) of Table 3, the rest
time also has no obvious impact on the number of duties
required. The explanation for this is similar to the explanation
presented above.

VII. CONCLUDING REMARKS
In this research, we formulate the integrated scheduling
and rostering problem of trainmasters for passenger railway
transportation. To efficiently solve the resulting program,

we propose two solution approaches: DFS-based and BPC
algorithms. Empirical results show that the BPC algorithm
performs best and can solve problems of realistic size using
reasonable computational effort. Further, an integrated frame-
work yields better solutions when compared to a conven-
tional two-stage solution strategy. Finally, we found that
rostering rules had more impact on the final results than
scheduling rules. Although encouraging results are obtained
with the proposed solution framework, the current study can
be extended in many directions. For instance, as shown in
many studies, fairness is as important as efficiency in prac-
tice. In addition, disruptions and integration with timetables
can be an interesting direction of extension. Because the
current research integrated scheduling and rostering prob-
lems, it sheds light on taking these practical issues into
consideration.
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