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ABSTRACT We describe a learning-based technique to automatically convert a 2-D panorama to its
stereoscopic version. In particular, we train a generative adversarial network using perspective stereo pairs
as inputs. Given a 2-D panorama, we partition it into overlapping local perspective views. To satisfy the
panoramic stereo condition, we generate a sequence of left and right stereo view pairs and stitch them
to produce concentric mosaics. We also describe experiments on synthetic and real datasets as well as
comparisons with competing state-of-the-art techniques, which validate our technique.

INDEX TERMS 2D-to-stereo panorama, GAN, concentric mosaics, depth peeling loss, selector, stereo
panorama synthesis.

I. INTRODUCTION
Capturing panoramic content is made simpler with a wide
choice of consumer panoramic imaging systems available
on the market. Examples include Ricoh Theta S, Samsung
Gear 360, VSN Mobil V.360, Kodak PixPro SP360, 360fly,
and Giroptic 360cam, to name just a few. Panoramic con-
tent can be used for immersive VR experiences using head-
sets such as Oculus Rift, HTC Vive, Sony PlayStation VR,
Samsung Gear VR, and Google Daydream View. Panora-
mas can also be visualized and shared on mobile devices,
e.g., on Facebook 360 Photos and Google Photo Sphere.

There is a significant amount of legacy 2D panoramic
content online; for such content, the ‘‘3Dness’’ experience
is lacking. In this paper, we show how we can generate a
stereoscopic panorama from a single 2D panorama using a
supervised learning approach. To conform to the panoramic
stereo condition described in [36],1 we construct concentric
mosaics (CMs) [37].

One approach to generate the second view is to directly
recover the depth of the original view and then warp.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhanyu Ma.

1More specifically, Seitz [36] shows that rays in stereo panoramas lie on
a family of epipolar hyperboloids.

However, this approach has issues associated with dis-
occlusions (which need to be carefully filled to avoid
visual discontinuity or implausible appearance) and
warping artifacts (especially blur due to resampling).
The goal of our work is to generate high-quality
views without these artifacts. Generative Adversarial
Networks (GANs) [8], [12], [22], [32] are a perfect fit for
our work, given their improved performance in appearance
prediction compared to regular deep networks. We adapted
GAN in two significant ways: (1) we insert a selection layer
at the end of the generator (similar to [9] and [42]), and (2) we
add a ‘‘pseudo’’ depth peeling loss to the objective function.

While GANs are capable of generating sharp-looking
views from training stereo pairs, these views tend to lose the
original details (exhibiting weird colors). This is especially
true for highly textured objects and objects with predicted
large disparities. To avoid loss of detail, we add a selection
layer (in the spirit of [9] and [42]) at the end of the generator
to predict the probability at each disparity level. Furthermore,
to better recover an object with significantly predicted dis-
parity, we extend the original GANs design by introducing a
‘‘pseudo’’ depth peeling loss (described in Section III-B).

One simple approach would be to partition the panorama
into local perspective views (LPVs), infer their stereo
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counterparts using the network, and then stitch them back to
produce the second panorama.We explain in Section V-B that
this approach creates a stereo pair that violates the panoramic
stereo condition [36], [38].

We instead adopt the idea of the concentric
mosaic (CM) [26], [27], [37]: each LPV from the input
panorama is treated as a central view, with a synthesized
left/right stereo pair. All the left images are stitched to form
the left panorama, and all the right images are used to generate
the right panorama in a similar way. The CM representa-
tion satisfies the panoramic stereo condition since it has a
circular generator and produces epipolar hyperboloids [36].
We validate our approach on three datasets: (1) synthetic data
rendered in 3Ds Max, (2) SUN 360 dataset [41], and (3) real
data captured by multiple 360 capture systems. Experiments
show that our system can produce high-quality stereo panora-
mas as shown in Fig. 1.

FIGURE 1. A representative result for a real scene. First row: input
2D panorama image. Second row: output stereo panorama shown as a
red-cyan anaglyph.

II. RELATED WORK
In this section, we briefly review relevant techniques and
system for stereoscopic panorama capture and generation,
2D-to-stereo generation, 2D-to-3D conversion, and GANs.

A. STEREOSCOPIC PANORAMA CAPTURE
Early systems for capturing stereoscopic panoramas are
either based on a moving camera or are catadioptric. In the
first case (e.g., [26], [29]), a camera is rotated while capturing
the scene; a stereoscopic panoramic pair is generated by sam-
pling from different parts of the image sequence. Examples of
catadioptric cameras are those of Gluckman et al. [11] (with
parabolic mirrors), Kawanishi et al. [16] (with six cameras
and a hexagonal pyramidal mirror), Lin and Bajcsy [20]
(with a reflective surface, a beam splitter, and two perspective
cameras), and Yi and Ahuja [44] (with a concave lens and a
convex mirror).

It is hard for catadioptric systems with curved mir-
rors to capture high-resolution stereo panoramas due to
mirror curvature that generates blur [24], and moving
camera systems are unable to capture dynamic scenes.

Multi-camera setups [2], [4], [5], [16] are capable of captur-
ing high-resolution dynamic scenes, but they have issues with
size, expense, and camera self-occlusion (resulting in wasted
pixels). Furthermore, they require careful post-processing to
avoid visible seams.

Another complication is that of centricity, i.e., whether rays
associated with a panorama pass through a common center
of projection. This raises the question of how to maintain
stereoscopy when viewing a panorama pair. Seitz [36] has
classified all possible stereo pairs regarding their epipolar
geometry. Svoboda et al. [38] independently obtained a simi-
lar result. They have shown that the epipolar geometry has to
be a double ruled surface.

There are only a few specific types of stereo panora-
mas that satisfy stereoscopy. One example is concentric
mosaics (CMs) [26], [27], [37], which can be generated from
a sequence of perspective images captured with a circularly
rotated camera. A specific pixel column from each image is
collected to form a panorama; here, all rays are tangent to a
3D circle. The Google Jump system follows a similar design
by using a circular array of video cameras. Each image is
partitioned into left and right components and is individually
stitched to generate CMs. Richardt et al. [29] further resolved
issues caused by perspective distortion and described how to
upsample the set of captured and corrected rays using optical-
flow-based interpolation techniques.

B. 2D-TO-STEREO CONVERSION
Techniques to directly generate the second view given the
input view tend to be learning-based. In principle, these
are a cleaner approach to creating stereoscopic image pairs
because they avoid computing depth and then warping,
which has resampling and disocclusion issues. Learning-
based approaches [1], [18], [42] typically generate the right
view using convolutional neural nets (CNNs). For example,
Flynn et al. [9] employ a deep network and applied regression
to directly predict the color of the pixels without inferring
their depths. Xie et al. [42] train a CNN model with ground
truth stereo pairs extracted from a broad set of 3D movie
collections. The availability of abundant training data further
improves the robustness and quality. Nonetheless, most tech-
niques handle perspective images only, and results produced
by these techniques tend to exhibit loss of detail.

C. 2D-TO-3D CONVERSION
An alternative to directly generating stereo images is to
first add depth to the input 2D image. Techniques for
perspective image 2D-to-3D conversion are either based
on depth-from-X or are learning-based. Depth-from-X
methods [6], [13], [35], [48] use geometric and environmen-
tal cues to overcome the ill-posedness issue; such cues
include defocus, scattering (in fog or haze), and indoor scene
geometry (planes and lines constrained by Manhattan world
assumption). However, these methods work under specific
conditions and may be sensitive to image noise or lack of
visual features.
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FIGURE 2. Overview of our fully automatic 2D-to-stereo conversion system. It takes as input a single 2D panorama, samples locally perspective
views (LPVs), generates left/right pairs for each LPV using a GAN architecture, then constructs a concentric mosaic (CM) before finally mapping to a
stereoscopic panorama output (shown as anaglyph here).

Learning-based techniques (e.g., [7], [15], [33], [34])
generate a depth map by training on extensive 3D data.
For example, the system of Karsch et al. [15] automatically
generates depth maps using a non-parametric depth sampling
technique. More recent approaches are now CNN-based.
Liu et al. [21] use deep CNN and continuous CRF, while
Wang et al. [40] use a trained CNN to jointly predict a global
layout composed of pixel-wise depth values and semantic
labels. Roy and Todorovic [31] propose a neural regression
forest model combined with CNNs.

D. GENERATIVE ADVERSARIAL NETWORKS (GANs)
Since its introduction, the use of GAN [12], [46] has seen
impressive successes. For example, Denton et al. [8] propose
a generative parametric model to produce high-quality sam-
ples of natural images. To perform image editing operations,
Zhu et al. [47] use GAN to learn the manifold of natural
images as a constraint. Mathieu et al. [23] use a GAN model
that learns to separate the factor of variation associated with
the labels from the other sources of variability. More recently,
the conditional GAN is introduced for conditional image
generation applications. To translate visual concepts from
characters to pixels, Reed et al. [28] use a GAN-based deep
architecture. Pathak et al. [25] present an unsupervised visual
feature learning algorithm with GAN to perform context-
based pixel prediction. Isola et al. [14] use conditional GAN
for image-to-image translation. In this paper, we show how to
combine the selection layer and ‘‘pseudo’’ depth peeling loss
with adversarial networks to further improve visual results,
in addition to using CMs to produce conceptually-valid stereo
panoramas.

III. STEREO IMAGE SYNTHESIS
The only input to our system is a single panoramic image;
the pipeline for generating the panoramic stereo pair is
shown in Fig. 2. We first apply perspective projection to

obtain locally perspective views (LPVs). A special GAN
architecture is used to recover stereo views for each LPV.
The left/right pairs are then used to construct a concentric
mosaic (CM), after which, the final panoramic stereo pair is
created. We now describe how we sample LPVs.

A. LOCAL PERSPECTIVE VIEW EXTRACTION
The typical way of generating 2D panoramas is to cap-
ture multiple perspective images while rotating the camera,
and then stitch these images [39]. For our work, we do
the reverse: we project the input panorama to overlap-
ping perspective images (which we call local perspective
views or LPVs). The input is a 2D full-view panorama, with
horizontal FoV of 360◦ and vertical FoV of 180◦. As shown
in Fig. 3 (left), to extract the LPVs, we first map the original
panorama into spherical coordinates.

We synthesize an LPV with a virtual camera placed at
the sphere center pointing out within the x − y plane; the
LPVs are then generated by rotating the virtual camera about
the z axis. We extract 32 overlapping LPVs with horizontal
and vertical FoV of 90◦. Fig. 3 (right) shows representative
extracted LPVs.

Once the LPVs have been extracted, the next step is to gen-
erate stereo views for each LPV. To do this, we use a modified
GAN architecture. We now describe how we formulate our
objective for this architecture.

FIGURE 3. Extraction of local perspective views (LPVs). Left: Panorama
mapped on a sphere, with a virtual camera. Right: Representative LPVs.
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B. OBJECTIVE FORMULATION
GAN [12] estimates the generative models that learn a map-
ping from random noise vector z to output y by minimizing
an adversarial loss. During the training process, we train two
models simultaneously: a generative model G that represents
the data distribution and a discriminative model D that esti-
mates the probability to differentiate a sample whether is a
ground truth data or generated by G. We extend the usual
GAN architecture by introducing a new ‘‘pseudo’’ depth peel-
ing loss that applies bigger weights to larger disparity regions.
We train the network to predict both left and right views.

1) ADVERSARIAL LOSS
By using GAN, the generator network is encouraged by
the discriminator network to produce non-blurry results.
For our left-to-right view conversion task, the objective is
expressed as

LGAN (G,D)=E[logD(RV )]+E[log(1− D(G(LV )))], (1)

where RV and LV are the right and left views, respectively,
G is the generator that attempts to minimize the objective
function, and D is the discriminator that tries to maximize it.
Note that we also perform right-to-left view conversion, using
the same formulation as above, except the views are swapped.

2) ‘‘Pseudo’’ DEPTH PEELING LOSS
In using conventional GAN, we noticed that the quality of
reconstruction is disparity dependent, with larger disparities
creatingmore loss in detail. To address this problem, wemod-
ulate the weights based on the amount of disparity, with
higher weights at larger disparity regions and lower weights
at small disparity regions. More specifically, we evenly par-
tition the image into three parts (foreground, middle, and
background) based on their depth. This specific loss function,
cast as an L1-based objective, is

LPL1 (G) = E

[
3∑
i=1

ωi||li(RV )− li(G(LV ))||1

]
, (2)

where li is the ith partition and ωi is its weight.

3) FULL OBJECTIVE FORMULATION
To extract the stereo views from a single image, we optimize

E = argmin
G

max
D

[LGAN (G,D)+ LPL1 (G)] (3)

by training a network. However, instead of learning the dis-
tribution of color information to estimate the intensity of a
pixel, our network learns to predict a probability of disparity
map representing the shifting of a pixel at different depth
levels. This is done because the probability of disparity map
is differentiable, unlike the disparity map itself. Then we
feed the probability map into the selector and we show in
Section V that using the selector generates higher quality
results compared to directly inferring color [14], especially
on the highly textured objects.

C. NETWORK ARCHITECTURE
In this section, we describe our network architecture for
optimizing the objective described in the previous section.
In addition to the usual generator and discriminator, we also
add a selector at the end of the generator; this is done to
improve the quality of detail in the output.

1) GENERATOR
The core parts of our generator G are U-net and selector.
Similar to [14] and [30], we also use the U-net skip block in
our network. Specifically, we use 9 convolution layers in the
downsampling path, as the input size is 512× 512× 3. All
convolutions are 4 × 4 spatial filters applied with stride 2.
The downsampling factor is 2 in the downsamping path,
but the number of filters doubles until 512. Meanwhile,
the upsampling factor is the same as the downsampling
factor and the number of filters mirrors the downsampling
path as well. As Fig. 4 shows, there are concatenate skip
connections between downsampling path and upsampling
path. The size of the output in the final convolution layer is
512× 512× 26, with 26 being the disparity range (0 to 25)
in our training dataset. The selector interprets this represen-
tation as the probability disparity map across the different
disparities.

2) SELECTOR
We observe that the original GAN [12] or the image-to-
image translation approach [14] can produce non-blurry
outputs by training stereo views. However, these meth-
ods are less successful in recovering texture. Inspired by
Flynn et al. [9] and Xie et al. [42], we add a selector at
the end of the generator network. Instead of estimating
the color of each pixel, the selector generates a set of
probability disparity maps (shifting on each disparity level)
indicating the likelihood of each pixel on the given depth
level. This is similar to the idea of the plane sweep [3],
except that the evidence is learned rather than derived from
multiple displaced images of the same scene. We mod-
ify the disparity range of selector based on our training
data. Fig. 5 shows our selector structure, where the brighter
regions of probability map represent a higher likelihood
of having that disparity. The output of the selector is the
predicted view.

3) DISCRIMINATOR
As shown in Fig. 4, we have 6 convolution layers in the
downsampling path. We also use the LeakyReLU activation
with a slope of 0.2. The first four convolutions are 4×4 spatial
filters applied with a stride 2. The last two convolutions are
4× 4 spatial filters applied with a stride 1. At the end of the
discriminator, there is a sigmoid activation function to output
the probability of the generated image being real, namely,
the Binary Cross Entropy (BCE) associated with the target
label (1 = real, 0 = fake).
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FIGURE 4. Our network architecture. The generator and discriminator are shown in detail, with corresponding kernel size information. The input
to the generator is an LPV. while the output of the selector is the estimated novel view. The input to the discriminator is the output generated
from the generator or the ground truth view, while the output of the sigmoid module is used to measure the Binary Cross Entropy (BCE) with the
target label. N = 7 represents the number of the repeated blocks.

FIGURE 5. Selector structure. Each column represents a different uniform
disparity map and its corresponding color image. The operation between
disparity map and color image represents dot product. Top row: each
image is a shifted version of the original based on the uniform disparity.
Bottom row: each image depicts the probability distribution for image
pixels having that particular disparity.

IV. STEREO PANORAMA SYNTHESIS
Our stereo panorama output is generated from concentric
mosaics (CMs) [37]. A CM can be constructed from a series
of images captured along a circular path. In our approach,
we train our network to produce this series of stereo images
from a single 2D panorama. As the left of Fig. 6 shows,
for a given LPV (‘‘Center View’’), we generate its left and
right LPVs. More specifically, we train two models using our
network for the left and right LPV synthesis: we use the left
LPVs as inputs to train the right LPV synthesis network and
vice versa. This helps to generate two LPVs with horizontal
parallax and with a predefined interocular distance.

The series of stereo LPVs generated for all the input
LPVs can be thought of as being arranged along a circular
path whose radius is the shift in perspective with respect

FIGURE 6. Stereo panorama synthesis. Left: Each originally sampled LPV
is the ‘‘Center view’’, and the output stereo LPVs are denoted as
‘‘Left view’’ and ‘‘Right view’’. Note that the output views are along a
circle. Right: The same columns from different right LPVs are resampled
to constitute the right panorama, in the exact same manner as CM.
The left panorama is created the same way with left LPVs.

to the original LPV. This is exactly the setup for concen-
tric mosaics (CMs). The right of Fig. 6 shows how the
right panorama is constructed from the same columns of the
right LPVs; the left panorama is constructed in the same way
using the left LPVs.

Please note that generating either the left or right panorama
only is not sufficient. Suppose we use the original panorama
and the left panorama as the stereo pair. For any given stereo
view, the mid-interocular position is between the panorama
center and a point on the circle corresponding to the locus
of left LPVs. As the user rotates, this mid-interocular posi-
tion moves along another circle. This is in comparison with
our left-right synthesis, where the mid-interocular position
remains at the center. This reasoning is consistent with the
panoramic stereo condition described in [36].

V. EXPERIMENTS
In this section, we describe how we acquire synthetic
and real data for testing, and show both qualitative and
quantitative results. We also show results of a user study
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involving the use of an HTC VIVE headset to experi-
ence two versions of the stereoscopic panorama, namely
ours (left-right panorama pair) and a reference method
(input-right panorama pair). This user study is done as val-
idation of the panoramic stereo condition.

a: Data Acquisition
For synthetic data, we downloaded 263 room models online;
their virtual sizes range from 2× 2 m2 to 4× 4 m2. To render
the stereo pairs, we set one camera roughly in the middle
of the room and the second camera next to it with the base-
line 35 mm (this is about half the average adult human inte-
rocular distance). To synthesize the right-view CM, we rotate
the virtual camera about its center by 360◦ to render input
LPVs, while rotating the corresponding virtual right camera
along a circle (with the baseline as the radius) to render the
right LPVs (and depth images of right LPVs simultaneously).
The left-view CM is synthesized similarly. All LPVs are of
resolution 542× 542 with 90◦ field of view (FoV).
Since we train using the left and right views, we are

training for the baseline of 2 ∗ 35 = 70 mm, which is
close to the average human interocular distance. We do not
use publicly available stereo datasets (e.g., KITTI [10]) due
to their typically wide baseline. We render 6016 pairs of
stereo views and randomly separate them into 5516 groups for
training and 500 groups for testing. For real data, we collect
40 panoramas from SUN360 database [41]. We also captured
60 panoramas using our panoramic capture system, which
consists of a Canon 5D Mark II camera (with a fish-eye lens)
mounted on a tripod.

Once we have collected the data, we extract the LPVs
from each panorama using the technique described in
Section III-A. Each LPV has a resolution of 512 × 512 and
the same FoV (90◦) as the rendered image. Note that the
synthetic dataset has a slightly larger resolution to enable data
augmentation during training.

b: Training details and parameters
We set ω1 = 50, ω2 = 30, and ω3 = 20 in Equ. 2.
For training, we first collect the input images with the res-
olution of 542 × 542. We randomly crop them to the reso-
lution of 512 × 512 for data augmentation. Before training,
we normalize the images between −1 and 1. We initialize
the learning rate to 0.0002. After 100 epochs, we reduce it
to 0.0001. For optimization, we have used Adam [17] with
β1 = 0.5.Meanwhile, we set the weights based on a Gaussian
distribution with the mean 0 and the standard deviation 0.02.
Our training process takes about 14 hours on an NVIDIA
Tesla M4000 GPU with the batch size of 8 for 150 epochs.
All networks are implemented with PyTorch.

A. RESULTS
To prove the selection layer is effective, we conduct an exper-
iment with and without selector structure. To analyze the
contribution of the ‘‘pseudo’’ depth peeling loss, we conduct
an ablation study of comparison with GAN and GAN+L1.

To further evaluate our method, we use Deep3D [42],
MonoDepth [43] and Pix2Pix [14] as baselines. Please note
that we use the same training data to retrain their networks
without changing any settings.

Our system takes about 4 seconds for LPV extraction.
Our trained model takes about 25 seconds for predicting and
saving 64 LPVs (with the batch size of 1 in inference process),
after which the output panoramic stereo pair is synthesized
in 5 seconds.

1) QUANTITATIVE EVALUATION
We compute themean absolute error (MAE, also used in [42])
and SSIM on the validation set to evaluate the quality of our
results. MAE is defined as MAE= |N −G|/n, where n is the
number of pixels, N is the inferred novel view, and G is the
ground truth.

Fig. 7 shows L1 error maps for two LPVs. Using GAN
alone produces the highest errors. It generates images that
are nearly copies of the original because it does not factor
in disparity shifts. Our proposed ‘‘pseudo’’ depth peeling
loss produces better results than GAN+L1, especially on
foreground regions with large disparity.

FIGURE 7. Comparisons of error maps. The error for our ‘‘pseudo’’ depth
peeling loss is typically less that that for GAN and GAN+L1.

TABLE 1. Quantitative comparisons using MAE (mean absolute error) and
SSIM metrics. Our approach produced the best numbers.

FIGURE 8. Visual comparisons of ours without selection layer and ours.
The closeup views are, from top to bottom: ours without selection layer,
ours. Our results recover more detail of texture.
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FIGURE 9. Visual comparisons. The closeup views are, from top to bottom: Deep3D [42], MonoDepth [43], Pix2Pix [14], ours. Our results appear sharp
with fewer artifacts.

Table 1 compares quantitative performance (in terms
of MAE and SSIM) on the validation set. Our sys-
tem produces the best values among ours without selec-
tion layer, GAN, GAN+L1, and three state-of-the-art
approaches [14], [42], [43]. These results validate our design
decisions that include using the selector and ‘‘pseudo’’ depth
peeling loss.

2) QUALITATIVE EVALUATION
Fig. 8 shows the visual comparisons between ours without
selection layer and ours. The results of ours with selection
layer can recover more detail of texture, which prove the
selector is effective. Fig. 9 shows results for representa-
tive real scenes (from left to right: bedroom, dining room,
kitchen, and living room). We also show results from three
state-of-the-art approaches, namely those of Deep3D [42],
MonoDepth [43] and Pix2Pix [14]. Specifically, Pix2Pix is
a GAN based image translation method, and network struc-
tures of other two methods are normally convolutional neu-
ral networks. The results of our system appear to have the
best fidelity. By comparison, results from Deep3D [42] and

MonoDepth [43] tend to be blurry, and this is likely caused by
Euclidean distance minimization. Results from Pix2Pix [14]
exhibit noisy colors, and this is likely due to the image-to-
image transformation not preserving stereo geometry.

Fig. 11 shows four additional stereo panorama results of
real indoor scenes, converted to red-cyan anaglyphs.2

FIGURE 10. Two failure cases with distortion artifacts.

Fig. 10 shows two failure cases. In the first case, our
method fails to recover the right-most part of the object. This
is because the selector can only estimate pixel shifting, but not

2Note that these anaglyphs are ‘‘optimized’’ versions without red,
to reduce retinal rivalry. See http://3dtv.at/Knowhow/AnaglyphComparison_
en.aspx.
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FIGURE 11. Four stereo panorama results of real indoor scenes in red-cyan anaglyph form.

recover missing pixels. In the second case, our approach fails
to recover the scene of larger disparity range, and this is
because of the fixed disparity range used during learning.
Pixels with disparities beyond this range tend to be clamped
to similar values, causing the observed distortion artifacts.

B. USER STUDY
As with [45], we ran a user study to evaluate user experi-
ence of stereo panoramas. In particular, we wish to validate
our design decision to generate left-right panoramic pairs,
as opposed to the simpler (reference) approach of using the
original panorama plus the right-view panorama. Please note
that technically, our output conforms to the stereo panorama
condition while the reference output does not.

To generate the reference stereo pair, we use the origi-
nal (center view) panorama as the ‘‘left’’ view, while the
‘‘right’’ panorama is created right LPVs. The baseline for the
reference stereo is the same as that for ours, i.e., 70 mm.

Each subject is showed 10 different scenes, with each
generated in two ways (ours and the reference). The order of
the panorama stereo shown is randomized. The device used
for visualization (in the form of stereoscope, not anaglyph)
is the HTC VIVE with GoPro VR Player. Fifteen sub-
jects (7 females and 8 males) took part in our user study;
they are university students who all have normal stereopsis
perception. They are also not told how each stereo panorama
was generated. Each subject takes on average 1-2 minutes to
visualize a panorama stereo pair.

After each experience, the participants are asked to respond
to two questions: ‘‘Do you perceive 3D?’’, and ‘‘Do you
feel comfortable of viewing the stereo panoramas?’’ Each
response is in the form of a rating between 1 to 10, with
10 representing complete agreement. Results are shown
in Table 2. This user study, while limited in scope, appears to
support our design decision to generate left-right panoramic
stereo views through LPV and CM synthesis.

VI. DISCUSSION AND FUTURE WORK
Our work is currently constrained to indoor scenes.
Conceptually, since our technique is data-driven, it should be

TABLE 2. User study results (mean scores µ and their standard
deviations σ ).

applicable to outdoor scenes as well, as long as sufficient
data are available. It would be interesting to see how well our
system works beyond indoor scenes.

An immediate future direction is to fuse our approach
with geometry-based methods. More specifically, we can
impose additional priors on the structure of the scene to
both improve both depth estimation and accelerate the view
synthesis process. We can first estimate the coarse scene
geometry using geometric cues such as vanishing points and
Manhattan World structures and integrate such geometry into
our deep learning solution process.

VII. CONCLUSIONS
We propose a technique to automatically convert a 2D
panorama to a stereoscopic pair. We adapted the GAN
architecture to add the selection layer on the generator and
introduced the ‘‘pseudo’’ depth peeling loss term. Another
contribution is we adhere to the panoramic stereo condition
by generating concentric mosaics (CMs) instead of merely
creating another panorama with shifted views. Experiments,
both quantitative and qualitative, show that our technique
can generate high-quality 3D stereoscopic panoramas, thus
justifying our design decisions.
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