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ABSTRACT This paper addresses the blind signal recovery for convolutive multiple-input multiple-output
systems with high-order quadrature amplitude modulation (QAM) signals. First, a family of batch blind
recovery algorithms is proposed. Concretely, they introduce the error function of multimodulus algorithm
and the cross-correlation among different equalizer output vectors into the penalty term of the support vector
regression (SVR) framework to recover all sources simultaneously. Then, the corresponding dual-mode blind
recovery schemes are constructed to further decrease the interference. The new blind formulation through
iterative re-weighted least square achieves low complexity optimization. The SVR framework, in essence,
determines that the proposals perform better than the conventional methods in terms of data block size, total
interference, and symbol error rate. Moreover, the excellent initialization provided by the first mode and
the accurate error expression in the second mode ensure that the SVR-based dual-mode schemes work well
with the high-order QAM signals. Finally, the efficiency of the proposals over the classical approaches is
evaluated by simulations.

INDEX TERMS Convolutive MIMO systems, high-order QAM signals, blind equalization, blind source
separation, support vector regression, multimodulus algorithm.

I. INTRODUCTION
During the past decade, blind signal recovery of convolutive
multiple input multiple output (MIMO) systems has been
widely studied because of its efficient spectrum utilization
through multiple antennas and without assignment of extra
bandwidth to pilot. Due to multipath effect and multiple
antennas, the received signals suffer from both intersymbol
interference (ISI) and interchannel interference (ICI) [1],
which manifests blind signal recovery as blind equalization
and blind source separation, respectively.

Working on symbol rate, a number of blind equaliza-
tion approaches using higher-order statistics (HOS) implic-
itly or explicitly have been studied. Bussgang algorithms,
such as constant modulus algorithm (CMA) and multi-
modulus algorithm (MMA), applying HOS implicitly are
the simplest ones. Nevertheless, using in MIMO systems
alone, they cannot ensure the extraction of all sources [1].
To overcome this problem, several methods based on suc-
cessive interference cancellation have been proposed [2]–[6].
They separate sources through eliminating the effect of
the recovered sources from the observation, and then the

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Xu.

modified observation is fed into the subsequent equalizer to
retrieve another source. However, performance degradation
is observed in these methods owing to inter-stage propa-
gation of estimation errors [7]. Avoiding this defect, num-
bers of methods that can recover all sources simultaneously
have been presented [1], [8]–[17], which are constructed via
adding a separation term on the cost function of equalization.
Li and Liu [1] put forward an algorithm based on con-
stant modulus criterion and the cumulant of equalizer out-
puts. Using second-order cross-correlation among different
equalizer outputs to distinguish the sources, CMA [8]–[11]
and Shalvi and Weinstein algorithm (SWA) [12], [13] have
been extended to MIMO systems resulting in CC-CMA and
CC-SWA, which are appealing techniques for their compu-
tational simplicity. To solve the random phase rotation and
reduce the steady-state error of the above two algorithms,
cross-correlation and multimodulus algorithm (CC-MMA)
has been put forward [14], [15]. As the stability of these algo-
rithms are easily affected by the initialization, step size and
environment noise, and sometimes even divergent, recently,
their robust versions have been further studied [16], [17].
Specifically, they work as the corresponding normalized ver-
sion when the consistency rule is met, otherwise they disre-
gard the cross-correlation term and estimate the dispersion
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error by a linear function. Actually, all the above online
algorithms ordinarily exist multiple local minima and require
huge amounts of samples to converge [18], [19].

High-order quadrature amplitude modulation (QAM)
inputs are used to achieve high speed data transmission.
However, their constellations are denser than the lower-
order ones under the same transmit power, which makes
them difficult to recover. For such modulations, HOS based
equalization algorithm exhibits a relatively high residual
interference, since the error is nonzero when the equalized
signal matches with the constellation structure. To solve this
problem, hybrid [20]–[22] and dual-mode scheme [23]–[26]
have been researched. For dual-mode equalization scheme,
when the HOS based approach completes initial convergence,
the equalizer is driven by another mode, such as constella-
tion matching error (CME) [23] and decision directed algo-
rithm (DDA) [27], to unceasingly reduce the residual error.
Generally, the switching mechanism relies on acceptable ini-
tialization interference level which lies on the QAMorder and
the external noise [28]. In addition, these schemes recover
high-order QAM signals in the way of online processing.

In general, batch algorithm can efficiently exploit the sta-
tistical information of the received signal to converge with
small data blocks. Support vector regression (SVR), based
on structural risk minimization, is a valid machine learn-
ing tool in dealing with small data blocks, which can be
optimized to global minimum. In recent years, it has been
used for channel equalization in single input single output
(SISO) [29]–[32], orthogonal frequency division multiplex-
ing (OFDM) [33], and MIMO systems [34]. Specifically,
in [34], SVR framework combined with CMA and radius
directed algorithm (RDA) is researched. Since CMA has
poor ability to process multilevel signals, these methods can
only process low-order signals such as 4-QAM and 16-QAM.
In addition, the defect of random phase rotation exists.

To avoid the shortcomings of online algorithm and recover
high-order QAM sources at the same time, SVR framework
along with MMA(p, 2) and DDA is considered in this paper.
First, we present a family of SVR based batch blind sig-
nal recovery algorithms. Concretely, the error function of
MMA(p, 2) [35], [36] is introduced into the SVR’s penalty
term, and the cross-correlation among different equalizer
output vectors regarded as an error is combined with the SVR
framework to restore all sources simultaneously. After that,
a family of dual-mode blind recovery schemes are presented
to further reduce the residual interference. The cost func-
tions of above approaches are minimized through iterative
re-weighted least square (IRWLS). Our proposals correct
the random phase rotation and complete convergence with
small data blocks. More importantly, SVR based dual-mode
schemes show extremely low residual interference and are
suitable for recovering high-order QAM signals.

The remainder of this paper is organized as follows.
Section II formulates the MIMO systems model. Section III
proposes the novel algorithms and dual-mode schemes along
with computational complexity analysis. In Section IV,

numerical results are presented to illustrate the performance
of the proposals. Finally, Section V concludes this paper.

FIGURE 1. Block diagram for MIMO systems blind signal recovery.

II. PROBLEM FORMULATION
The linear time-invariant convolutive MIMO systems
depicted in Fig. 1 with NT transmitters and NR receivers
(NR ≥ NT ) are considered. Supposing that the signals of each
original source are independently and identically distributed
(i.i.d) and each source is independent of others. The original
sources {si(n), 1 ≤ i ≤ NT } are propagated to the receivers
through different subchannels {hij(n), 1 ≤ i ≤ NR, 1 ≤ j ≤
NT }. {xi(n), 1 ≤ i ≤ NR} are received signals disturbed by
i.i.d additive white Gaussian noise {vi(n), 1 ≤ i ≤ NR}.
To mitigate ISI and ICI, NT multiple input single output
(MISO) equalizers wi (1 ≤ i ≤ NT ) with tap coefficients
wi = [wT

i1, · · · ,w
T
iNR ]

T are cascaded. {yi(n), 1 ≤ i ≤ NT }
are the recovered signals at MISO equalizer i. Given each
subchannel hij and subequalizer wij with length Lh and Lw
respectively, the equations linking the above quantities can
be expressed as

xi(n) =
NT∑
j

hTij sj(n)+ vi(n) i = 1 · · ·NR, (1)

yi(n) =
NR∑
j

wT
ij xj(n) i = 1 · · ·NT , (2)

where (·)T denotes the transpose operation, hij =

[hij(0), · · · , hij(Lh− 1)]T represents the subchannel between
transmitter j and receiver i, sj(n) = [sj(n), · · · , sj(n − Lh +
1)]T , wij = [wij(0), · · · ,wij(Lw − 1)]T is the subequalizer
between receiver j and the output of MISO equalizer i, and
xj(n) = [xj(n), · · · , xj(n− Lw + 1)]T .
Now, the channel input vector s(n), received signal vec-

tor x(n), noise vector v(n), and channel matrixH (NR×NTLh)
are defined respectively as

s(n) =

 s1(n)
...

sNT (n)

 , x(n) =
 x1(n)

...

xNR (n)

 , v(n) =
 v1(n)

...

vNR (n)

,
and

H =

 hT11 · · · h
T
1NT

...
. . .

...

hTNR1 · · · h
T
NRNT

, (3)
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then (1) can be written in matrix form

x(n) = Hs(n)+ v(n). (4)

The equalizer input vector x(n), equalizer matrixW (NRLw×
NT ), and recovered signal vector y(n) are defined respectively
as

x(n) =

 x1(n)
...

xNR (n)

 ,W =
 wT

11 · · · wT
1NR

...
. . .

...

wT
NT 1
· · · wT

NTNR


T

,

and

y(n) =

 y1(n)
...

yNT (n)

, (5)

then (2) can be expressed in matrix form

y(n) =WT x(n). (6)

III. THE PROPOSED METHODS
By introducing the error function of MMA(p, 2) and the
cross-correlation among different equalizer output vectors
into the SVR’s penalty term respectively, we first put for-
ward a family of batch algorithms titled SVR based cross-
correlation and multimodulus algorithm SVR-CC-MMA
(p, 2). Then, replacing the error of MMA(p, 2) into the error
of DDA, SVR based cross-correlation and decision directed
algorithm (SVR-CC-DDA) is proposed, and it cascades with
SVR-CC-MMA(p, 2) to further reduce residual interference
and recover high-order QAM signals. After that, for compar-
ison, DDA is extended toMIMO systems directly resulting in
cross-correlation and decision directed algorithm (CC-DDA)
which cascades with CC-MMA to construct another dual-
mode scheme. Finally, the computational complexity of these
algorithms is analyzed.

A. SVR-CC-MMA(p, 2)
In this section, splitting into blind equalization and source
separation, the problem of blind signal recovery is for-
mulated. The IRWLS method is utilized for cost function
optimization.

Now, the blind equalization problem is considered. We can
bring the errors of real and imaginary part respectively into
the SVR’s penalty term, and then add these two terms together
to formulate the final cost function for blind equalization.
However, it is found that the computational burden in the
process of optimization is relatively high in this way. For the
computational simplicity, the blind equalization cost function
is deduced as follows. During simulations, we have found that
the algorithm using this deduction performs as well as the
former.

Assuming that we have gotten NR observations and each
of them is a data block with N symbols, the cost function (3)

in [30] is generalized for MIMO systems as

FBE (W)=
NT∑
i=1

JBE (wi)=
NT∑
i=1

[
1
2
‖wi ‖

2
+C1

N∑
n=1

Lε1 (ui(n))
]
,

(7)

where JBE (wi) corresponds to MISO equalizer i, C1 is the
trade-off factor, ui(n) is the penalty term for the n-th sym-
bol of MISO equalizer i, and Lε(u) is usually selected as
ε-insensitive loss function

Lε(u) =

{
u2 − 2uε + ε2, u ≥ ε
0, u < ε,

(8)

where ε denotes the width of insensitive region.
To link the blind equalization with the SVR framework, we

construct ui(n) = |ei(n)| with the MMA(p, 2) [35], [36] error
function ei(n) being

ei(n) =
[∣∣|yi,R(n)|p − RpR∣∣2 + ∣∣|yi,I (n)|p − RpI ∣∣2] 1

2

, (9)

where yi,R(n) and yi,I (n) are the real and imaginary part of
the n-th symbol in MISO equalizer i, RpR and RpI containing
the prior knowledge about source modulation are defined as

RpR =
E[|si,R(n)|2p]
E[|si,R(n)|p]

and RpI =
E[|si,I (n)|2p]
E[|si,I (n)|p]

respectively, in which si,R(n) and si,I (n) denote the real and
imaginary part of si(n).

When the function (7) is used alone, multiple MISO equal-
izers will capture the same source and some of the desired
sources are not recovered. Ideally, the equalizer outputs are
uncorrelated (cross-correlation value equals 0) when the orig-
inal sources are i.i.d. Therefore, the cross-correlation among
them can regard as an error, which can be used to separate
sources blindly. Under the SVR framework, we construct the
following cost function

FBSS (W) =
NT∑
i=1

JBSS (wi)

=

NT∑
i=1

[
1
2
‖ wi ‖

2
+C2

NT∑
j=1;j6=i

τ−1∑
δ=1−τ

Lε2 (uij(δ))
]
,

(10)

where C2 is the trade-off factor, τ = Lw+Lh−1 is the length
of joint impulse response of subchannel and subequalizer,
uij(δ) = |cij(δ)|, and cij(δ) is the cross-correlation between
MISO equalizer i and j with δ delay, defined as

cij(δ) =


1
N
yT
i
y∗
jδ
, δ ≥ 0

1
N
yT
i|δ|

y∗
j
, δ < 0,

(11)

here (·)∗ denotes the conjugate operation, y
i
= [yi(1), · · · ,

yi(N )]T represents the output vector of MISO equalizer i,
y
jδ
= [0, · · · , 0, yj(1), · · · , yj(N − δ)]T is gotten via
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moving all the elements of y
j
down δ units and embedding

zero in the front, and y
i|δ|
= [0, · · · , 0, yi(1), · · · , yi(N −

|δ|)]T is constructed similarly.
To realize blind equalization and source separation simul-

taneously, function (7) and (10) are added, constructing the
final cost function as

F(W) = FBE (W)+ βFBSS (W)

=

NT∑
i=1

JBE (wi)+ βJBSS (wi) =
NT∑
i=1

J (wi), (12)

where β is the adjustment factor between source separation
and equalization.

The cost function constructed above has no closed form
solution, and it is generally minimized by iterative pro-
cessing. IRWLS with low computational cost than iterative
re-weighted quadratic programming (IRWQP) has been suc-
cessfully applied to the optimization of SVR [37] and proven
to converge to the SVR solution [38]. To optimize the cost
function (12) and obtain an appropriate recovery matrix W,
it is utilized in the next derivation.

After constructing the quadratic approximation of the first
order Taylor expansion of Lε(u), cost function F(W) can be
written as (13), shown at the bottom of this page, where the
superscript k represents the number of iterations, uki (n) =
|eki (n)| and e

k
i (n) = [||yki,R(n)|

p
−RpR|

2
+||yki,I (n)|

p
−RpI |

2]
1
2 is

the error with regard to the n-th symbol ofMISO equalizer i in

the k-th iteration, ukij(δ) = |c
k
ij(δ)| and c

k
ij(δ) is the correlation

between MISO equalizer i and j with δ delay in the k-th
iteration, CTE is constant terms that do not depend on W,
and the weighting factors ai(n) and bij(δ) form as follows

ai(n) =
C1

uki (n)

dLε1 (u)
du

∣∣∣∣
uki (n)

=


0, uki (n) < ε1

2C1(uki (n)− ε1)

uki (n)
, uki (n) ≥ ε1,

(14)

bij(δ) =
C2

ukij(δ)

dLε2 (u)
du

∣∣∣∣
ukij(δ)

=


0, ukij(δ) < ε2

2C2(ukij(δ)− ε2)

ukij(δ)
, ukij(δ) ≥ ε2.

(15)

The function J ′′(wi) in (13) is a quadratic approximation to
J (wi) leading to the same value J ′′(wk

i ) = J (wk
i ) and gradient

∇wiJ
′′(wk

i ) = ∇wiJ (w
k
i ) in the k-th iteration. Therefore, p

k
i =

ws
i−w

k
i can be considered as a descending direction for J (wi),

where ws
i is the least square solution to (13), and it is utilized

to construct a linear search approach [39], i.e., wk+1
i =

wk
i + η

kpki . The value of ηk can be calculated via a back-
tracking line search [39], and if J (wk+1

i ) ≥ J (wk
i ), it is

iteratively declined until a strict decrease in (12) is observed.

F ′′(W) =
NT∑
i=1

J ′′(wi) =
NT∑
i=1

J ′′BE (wi)+ βJ ′′BSS (wi)

=

NT∑
i=1

[
1+ β
2
‖ wi ‖

2
+C1

( N∑
n=1

Lε1 (u
k
i (n))+

dLε1 (u)
du

∣∣∣∣
uki (n)

[ui(n)]2 − [uki (n)]
2

2uki (n)

)

+βC2

( NT∑
j=1;j6=i

τ−1∑
δ=1−τ

Lε2 (u
k
ij(δ))+

dLε2 (u)
du

∣∣∣∣
ukij(δ)

[uij(δ)]2 − [ukij(δ)]
2

2ukij(δ)

)]

=

NT∑
i=1

[
1+ β
2
‖ wi ‖

2
+
1
2

N∑
n=1

ai(n)|ei(n)|2 +
β

2

NT∑
j=1;j6=i

τ−1∑
δ=1−τ

bij(δ)|cij(δ)|2
]
+ CTE (13)

∇wiJ
′′(wi) = (1+ β)wi + p

N∑
i=1

ai(n)

×

[(
|yi,R(n)|p − R

p
R

)
|yi,R(n)|p−1sgn[yi,R(n)]+j ·

(
|yi,I (n)|p − R

p
I

)
|yi,I (n)|p−1sgn[yi,I (n)]

]
x∗(n)+βf = 0 (16)

(1+ β)wi + p
N∑
i=1

ai(n)
[
|yi,R(n)|2p−2yi,R(n)+ j · |yi,R(n)|2p−2yi,I (n)

]
x∗(n)

= pRpR

N∑
i=1

ai(n)
[
|yi,R(n)|p−1sgn[yi,R(n)]+ j · |yi,I (n)|p−1sgn[yi,I (n)]

]
x∗(n)

+j·
N∑
i=1

ai(n)
[
|yi,R(n)|2p−2 − |yi,I (n)|2p−2

]
× yi,I (n)x∗(n)− βf (17)
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To obtain the least square solution ws
i to J

′′(wi), its gradient
shown in (16), as shown at the bottom of the previous page,
is set to zero, where sgn[·] is the signum function and f is the
derivative of the second term in square bracket of (10) with
regard to wi

f =
1
N

NT∑
j=1;j6=i

×

[ τ−1∑
δ=0

bij(δ)cij(δ)XHy
jδ
+

−1∑
δ=1−τ

bij(δ)cij(δ)(X(|δ|))Hy
j

]
,

here (·)H denotes the complex conjugate transpose operation,
X (N × NRLw) and X(|δ|) (N × NRLw) represent the MISO
equalizer input matrix and its shifting version respectively,
writing as

X =

 xT (1)
...

xT (N )

 =
 xT1 (1) · · · x

T
NR (1)

...
. . .

...

xT1 (N ) · · · xTNR (N )

,
and

X(|δ|)
=



0 · · · 0
...

. . .
...

0 · · · 0
xT1 (1) · · · xTNR (1)
...

. . .
...

xT1 (N − |δ|) · · · x
T
NR (N − |δ|)


.

Specifically, X(|δ|) is obtained via moving all the vectors of
X down |δ| units and embedding appropriate zero vector 0 on
the top.

Using the fact RpI = RpR for QAM modulation and reorder-
ing terms, equation (16) is rewritten as (17), shown at the
bottom of the previous page, whose matrix form is

[pXHDaDbX+ (1+ β)I]wi = pRpRX
HDaYA

+j · pXHDaYB−βf, (18)

where I is an identity matrix with appropriate size, Da and
Db are diagonal matrices with diagonal elements ai(n) and
|yi,R(n)|2p−2 respectively, YA and YB are column vectors
containing |yi,R(n)|p−1sgn[yi,R(n)]+j·|yi,I (n)|p−1sgn[yi,I (n)]
and (|yi,R(n)|2p−2−|yi,I (n)|2p−2)yi,I (n) in the i-th row respec-
tively.

The above deduction realizes the IRWLS solution
for J (wi), which can recover one of the sources. To clearly
show the blind recovery of all sources, the SVR-CC-
MMA(p, 2) procedure is summarized in Algorithm 1.

B. SVR-CC-DDA AND SVR BASED DUAL-MODE SCHEME
In contrast with MMA, the error of DDA is equal to zero
for multimodulus signal when the equalizer output coincides
with the transmitted signal [28]. Therefore, it possesses the

Algorithm 1 Summary of the SVR-CC-MMA(p, 2)
Procedure for Blind Signal Recovery in Convolutive MIMO
Systems

1: initialization: initialize MIMO equalizer matrix W0
=

[w0
1, · · · , w0

NT ], obtain yi(n) by (2), ei(n) by (9), cij(δ)
by (11), calculate ui(n) = |ei(n)| and uij(δ) = |cij(δ)|,
compute ai(n) from (14) and bij(δ) from (15) (i, j =
1 · · ·NT and i 6= j). Set i=1, k=0 and initialize η0.

2: repeat
3: for 1 ≤ i ≤ NT do
4: calculate ws

i via solving (18).
5: update wk+1

i = wk
i + η

k [ws
i − wk

i ].
6: recompute ei(n), ui(n), ai(n), cij(δ), uij(δ), and

bij(δ) (j = 1 · · ·NT and j 6= i), update i = i+ 1.
7: while J (wk+1

i ) ≥ J (wk
i ) do

8: compute ηk = ρηk with 0 < ρ < 1.
9: update wk+1

i = wk
i + η

k [ws
i − wk

i ].
10: recompute ei(n), ui(n), ai(n), cij(δ), uij(δ),

and bij(δ) (j = 1 · · ·NT and j 6= i).
11: end while
12: end for
13: set i=1 and update k = k + 1.
14: until convergence.

ability to handle high-order QAM signals when the equalizer
has been reasonably initialized. As in conventional DDA [27],
the error term to be penalized in SVR-CC-DDA is

ei(n) = yi(n)− dec[yi(n)], (19)

where dec[·] is the decision function. By the similar deriva-
tion as the previous one, the matrix equation to be iterated in
the IRWLS method is

[XHDaX+ (1+ β)I]wi = XHDad− βf, (20)

where d is the column vector that contains dec[yi(n)] in the
n-th row.

The procedure of SVR-CC-DDA is consistent with the
SVR-CC-MMA(p, 2), except for
• Step 1: because it works in the second mode of the dual-

mode scheme, the initialization matrix W0 is the value of W
provided by SVR-CC-MMA(p, 2).
• Steps 1, 6 and 10: ei(n) is computed by (19) rather

than (9).
• Step 4: ws

i is obtained by solving (20) rather than (18).
In the SVR based dual-mode scheme, first SVR-CC-

MMA(p, 2) are used to provide suitable initialization for W,
and then SVR-CC-DDA is employed to unceasingly miti-
gate the residual interference. For simplicity, this process is
titled SVR based cross-correlation multimodulus and deci-
sion directed scheme SVR-CC-MM(p, 2)-DD.
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C. CC-DDA AND TRADITIONAL DUAL-MODE SCHEME
Inspired by CC-CMA [9], we generalize DDA for MIMO
scenario with NT sources as follows

FDD(W) = E
NT∑
i=1

[
yi(n)− dec[yi(n)]

]2
+α

NT∑
i,j=1;i6=j

τ−1∑
δ=1−τ

|rij(δ)|2, (21)

whereα is the adjustment factor, and rij(δ) is themeasurement
of correlation betweenMISO equalizer i and j, which are used
to separate different sources, defined as

rij(δ) = E[yi(n)y∗j (n− δ)]. (22)

Stochastic gradient descent is applied to minimize the cost
function FDD(W) efficiently, leading to the updating equation

W(n+ 1) =W(n)− µ[11(n) · · ·1NT (n)]x
∗(n),

where µ denotes step-size and

1i(n) = 2
[
yi(n)− dec[yi(n)]

]
+ 2α

NT∑
j=1;j6=i

τ−1∑
δ=1−τ

r̂ij(δ)yj(n− δ), (23)

here r̂ij(δ) denotes an estimation of rij(δ) and is generally
obtained by rectangular window sample averaging.

For high-order QAM signals, CC-MMA exists a relatively
high steady-state error, therefore CC-DDA follows it to fur-
ther mitigate the residual error. In the next section, this online
dual-mode scheme titled cross-correlation multimodulus and
decision directed scheme (CC-MM-DD) is used for contrast.

D. COMPUTATIONAL COMPLEXITY
This part discusses the computational complexity of the pro-
posals and traditional algorithms. The complexity of these
algorithms in one iteration is summarized in Table 1, where
Lr is the length of rectangular window.

TABLE 1. Computational complexity of different algorithms.

For CC-MMA, the complexity of blind equalization is
linear with NR and Lw, and the complexity of blind source
separation is linear with τ and Lr . The complexity order of
CC-CMA and CC-DDA (α 6= 0) not presented in this table
is the same as that of CC-MMA. For the CC-MM-DD, blind
source separation can generally be accomplished in the first
mode, thus it is appropriate to adopt α = 0 in the CC-DDA
(i.e., deleting cross-correlation items), which reduces the
complexity. For SVR based algorithms, although the com-
plexity contain term pertaining to N 2

RL
2
w, the value of NRLw is

generally small relative to N , so it will not increase sharply.
SVR-CC-DDA with β 6= 0 has the same complexity order as
SVR-CC-MMA(p, 2). Similarly, using β = 0, its complexity
will be significantly reduced. By the way, it is pointed out
that the complexity of the proposed algorithms is mainly
concentrated on solving ws

i in (18) and (20), and the compu-
tational complexity of the inverse operation involved in these
formulas is not high due to the value of NRLw is relatively
small.

It is stated here that the above results are the complexity of
one iteration. Although they are given in mathematical form,
the traditional algorithms are online processing, while the
SVR based algorithms are batch processing, so it is not easy
to compare the complexity intuitively from Table1. Here we
give a qualitative conclusion: applying IRWLS optimization
method, the computational complexity of SVR based algo-
rithms is comparable to that of conventional algorithms. In the
simulation, we will further elaborate on this conclusion.

IV. NUMERICAL RESULTS
In this section, the blind recovery capability of the pro-
posals is evaluated in contrast with CC-CMA, CC-MMA,
and CC-MM-DD. All the experiments were implemented in
MATLAB 2014a running on a PC with Intel i5 processor
(2.3GHz) and 8G RAM. The evaluation indexes include the
total interference (TI), convergence probability, symbol error
rate (SER), etc. Containing ISI and ICI, the TI [1], [14] for
MISO equalizer i is defined as

TIi =

∑
j,n
|gji(n)|

2
−max

j,n
|gji(n)|

2

max
j,n
|gji(n)|2

=

∑
n
|gji(n)|

2
−max

j,n
|gji(n)|

2

max
j,n
|gji(n)|2

+

∑
l 6=j,n
|gli(n)|

2

max
j,n
|gji(n)|2

, (24)

where gji is the combined impulse response from transmitter
j to MISO equalizer i

gji =
NR∑
q=1

hqj ∗ wiq, (25)

here * is the convolution operator. The first term of the
measure function TI in (24) reflects the residual ISI level in
the output signal of theMISO equalizer i, and the second term
represents the residual ICI level. Unless otherwise specified,
64-QAMmodulation and signal to noise ratio (SNR) of 30 dB
have been taken into account. By default, the TI threshold is
set to -15 dB, as with this level the equalizer is already pos-
sible to switch to the DDA based second mode. We consider
that the method is convergent if all sources are successfully
recovered while the final TI is lower than the given threshold.

The systems considered in simulations are the 2-input/
3-output real channel H1, 2-input/4-output complex chan-
nel H2 [1], and randomly generated complex channel H3.
In particular, H3 with Lh = 3 is a 2-input/4-output system
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TABLE 2. Parameter values of different algorithms for 64-QAM signals.

whose tap coefficients are modeled as i.i.d complex Gaussian
variables with zero-mean and unit variance. In all cases,
the MIMO equalizer W with Lw = 9 is initialized to 1 at the
positions (5, 2) and (23, 1), and initialized to 0 at the other
positions.

After a comprehensive consideration of the TI level, sta-
bility and convergence speed of CC-CMA, CC-MMA, and
CC-DDA, the value of adjustment factor α is set to 0.2 and
step-size µ with different values has been adopted for each
subequalizer. The length of rectangular window Lr is set to
10. For the SVR basedmethods, the situations of p= 2, 3, and
4 are studied. As below, the TIi difference of two successive
IRWLS iterations is taken as the termination condition of
Algorithm 1.

TIi(k + 1)− TIi(k) > −10−3 for all 1 ≤ i ≤ NT . (26)

The parameter C1 and C2 have no significant impact on the
performance of the algorithm except that too small value (less
than 0.01) will increase the TI level. It has been observed
that usually not a substantive gain can be observed via using
a non-zero insensitive region, when the loss function Lε(u)
defined in (8) is employed. Simulations have illustrated that
product ρηk controls the optimization process, i.e., a relative
large value of ρη0 will cause the algorithm to diverge while
a smaller value will rise the IRWLS iterations. Generally,
the feasible range of adjustment factor β is relatively wide.
With too small value, multiple MISO equalizers may target
the same source leading to others neglected, while too large
value will intensify divergence. We empirically realize that β
with the following value can well compromise equalization
and source separation

β =
N
2
·

E
[∣∣|si,L(n)|p − RpL ∣∣2]

E
[∣∣|si,L(n)|2 − R2L ∣∣2] , (27)

where si,L(n) denotes the real or imaginary part of si(n).
For dual-mode scheme, blind source separation is usually
implemented in the first mode, therefore, α and β are set
to 0 in the iteration to cut down computation cost when the
equalizer works in the second mode. According to the above
analysis, the parameters in Table 2 are considered to recover
64-QAM signals. In the following, four groups of experi-
ments are designed from different aspects. Except for specific
statements, the results are averaged over 500 independent
Monte Carlo runs in all evaluations.

FIGURE 2. TI versus the number of samples for the CC-MMA and CC-CMA.
(a) H1. (b) H1.

A. SVR-CC-MMA(p, 2) VERSUS CC-MMA
AND CC-CMA IN TI LEVEL
Fig. 2 illustrates the TI level achieved by the CC-MMA and
CC-CMA. It can be seen that the performance of CC-MMA
is better than that of CC-CMA. However, both of them need
a huge volume of samples to converge. Taking CC-MMA as
an example, about 60000 samples are needed to converge and
the final TI levels are about -24 dB and -22 dB respectively
for system H1 and H2. Fig. 3 depicts the variation of the
TI level with data block size N for SVR-CC-MMA(p, 2).
Apparently, SVR-CC-MMA(p, 2) with small data blocks per-
form a lower TI than CC-MMA and CC-CMA.With different
value of p, there are significant differences in the TI level,
and SVR-CC-MMA(4, 2) shows the best performance. Due
to the nonlinear structure of MMA(p, 2) error function, it is
difficult to explain why the performance is better when p
equals 4. Consistent with [35], we can intuitively explain that
the SVR-CC-MMA(p, 2) with a higher dispersion constant
(e.g, a larger p) is capable of performing better. However,
when p is larger than 4, the appropriate value of η0 is difficult
to select leading to poor robustness.
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FIGURE 3. TI versus data block size for the SVR-CC-MMA(p, 2). (a) H1.
(b) H2.

FIGURE 4. The combined impulse responses using the SVR-CC-MMA(2, 2).

With a view to visualize the source separation ability of
the SVR-CC-MMA(p, 2), Fig. 4 shows a random imple-
mentation of the combined impulse response gji when the
SVR-CC-MMA(2, 2) is applied to H2 with N = 1500.
As we can see that the equalizers compensate the convolution

FIGURE 5. Recovered test symbol constellations using single algorithms.
(a) CC-MMA. (b) CC-MMA. (c) SVR-CC-MMA(4, 2). (d) SVR-CC-MMA(4, 2).

distortion of the channel to a certain extent and capture dif-
ferent sources respectively. Due to the inherent fuzziness in
blind signal recovery,MISO equalizer 1 captures source 2 and
MISO equalizer 2 captures source 1.

Fig.5 shows a random implementation of the constel-
lations with 1500 recovered test symbols for H2. For
CC-MMA, the equalizer is trained with 60000 samples,
and for SVR-CC-MMA (4, 2), the equalizer is trained with
N = 1500. It directly exhibits that the equalizer outputs of
SVR-CC-MMA (4, 2) are compact than that of CC-MMA.
The random phase rotation is corrected, because the cost
function is minimized separately in the real and imaginary
parts of the signal. Although SVR-CC-MMA (4, 2) represents
the best TI level of the family, its constellations are still rela-
tively vague for 64-QAM signals owing to the ambient noise
and a higher residual TI. Incidentally, SVR-CC-MMA (p, 2)
possess the outstanding ability to blindly recover 16-QAM
signals regardless of the value of p.

B. SVR-CC-MM(p, 2)-DD VERSUS CC-MM-DD IN TI LEVEL
In this experiment, the blind signal recovery capability of
dual-mode schemes is verified via H2. Since CC-MMA
achieves steady convergence after 60000 iterations, the dual-
mode scheme CC-MM-DD is switched to CC-DDA from
here. Fig. 6 depicts the convergence process of the TI level
with the number of iterations for CC-MM-DD.As shown in it,
the TI level has been significantly reduced after switching
to CC-DDA. Fig. 7 plots the variation of the TI level with
data block size for SVR-CC-MM(p, 2)-DD. Compared with
the corresponding single algorithms in Fig. 3b, it is found
that SVR-CC-MM(p, 2)-DD can significantly reduce the
residual interference of the system. Similar to the decline of
CC-MM-DD, the rapid descent process of SVR-CC-MM(2,
2)-DD is shown in Fig. 11, which will be detailedly discussed
in group C. Moreover, CC-MM-DD achieves steady-state
convergence after 80000 iterations leading to the TI level
about −34 dB and −37 dB respectively for equalizer out-
puts y1 and y2, while SVR-CC-MM(p, 2)-DD solely require
700 samples resulting in a lower TI level. Same as the
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FIGURE 6. TI versus the number of samples for the CC-MM-DD.

FIGURE 7. TI versus data block size for the SVR-CC-MM(p, 2)-DD.

previous experiment, this result again demonstrates the
extremely significant advantage of the SVR based methods
over the traditional methods in residual TI level and data
block size. With the increase of data block size, SVR-CC-
MM(p, 2)-DD provide more and more better performance
than CC-MM-DD in terms of the TI level. An understandable
phenomenon is that once the SVR-CC-MMA(p, 2) provide
reliable initialization convergence, the SVR-CC-MM(p, 2)-
DD exhibit similar residual TI level regardless the value
of p. In Fig. 7, compared with others, SVR-CC-MM(2, 2)-
DD exhibits higher residual TI levels in the case of N less
than 700, since the data block is too small resulting in the
unreliable initial TI level and invalid switching mechanism
sometimes.

Under the same parameter settings in Fig. 5, Fig. 8 exhibits
the recovered test symbol constellations when CC-MM-DD
and SVR-CC-MM(4, 2)-DD are applied. Apparently, the
constellations in Fig. 8 are more compact than the corre-
sponding ones in Fig. 5 owing to the fact that the residual TI
level is remarkably decreased. For SVR-CC-MM(p, 2)-DD,
the clarity of constellation is consistent regardless of the
value of p, however, this conclusion is not valid for
SVR-CC-MMA(p, 2).

FIGURE 8. Recovered test symbol constellations using dual-mode
schemes. (a) CC-MM-DD. (b) CC-MM-DD. (c) SVR-CC-MM(4, 2)-DD.
(d) SVR-CC-MM(4, 2)-DD.

FIGURE 9. SER versus SNR for different methods.

C. THE SIMULATION FOR THE OTHER
EVALUATION INDEXES
In this group of experiments, the performance of the proposed
algorithms will be simulated from four perspectives: SER,
convergence probability, convergence process, and conver-
gence time. The simulation system is H2.

Figure 9 shows the SER of thewhole system over a range of
SNR values. For the SVR based methods, equalizer is trained
with N = 1500. Firstly, under the same SNR, the SER of
SVR-CC-MMA(p, 2) are lower than that of CC-MMA, and
SVR-CC-MMA(4, 2) owning the lowest SER represents the
best performance of single algorithms. Secondly, dual-mode
schemes significantly reduce the SER of their corresponding
single algorithms under the condition of higher SNR. With
the increase of SNR, the noise becomes smaller and smaller
while the success rate of mode switching is higher and higher,
which make the performance improvement more and more
obvious. Finally, we point out that SVR-CC-MM(p, 2)-DD
with p = 2, 3, and 4 possess the same performance and show
the lowest SER.

Fig. 10 indicates that the convergence probability of
SVR-CC-MMA(p, 2) vary with data block size. Among
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FIGURE 10. Convergence probability versus data block size for the
SVR-CC-MMA(p, 2).

FIGURE 11. TI versus the IRWLS iterations for the SVR-CC-MM(2, 2)-DD in
different realizations with N = 1500.

them, SVR-CC-MMA(2, 2) providing the best performance
can converge all the time when N is more than 700. With
the increase of data blocks, the convergence probability of
these algorithms is increasing. Dual-mode scheme SVR-CC-
MM(p, 2)-DD are constructed by switching to SVR-CC-DDA
from the corresponding SVR-CC-MMA(p, 2), thus their con-
vergence probability not presented in the figure is almost the
same as the corresponding single algorithms.

With respect to the convergence process of the SVR based
methods, Fig. 11 depicts 50 independent realizations of SVR-
CC-MM(2, 2)-DD with N = 1500. To clearly show the
convergence process of each mode, the equalizer switches
fromSVR-CC-MMA(2, 2) to SVR-CC-DDAafter 20 IRWLS
iterations. The two subgraphs in Fig. 11 correspond to the
convergence process of two MISO equalizers respectively.
It can be seen that 10 iterations are enough to achieve
convergence for SVR-CC-MMA(2, 2) in all cases while
only twice are required for SVR-CC-DDA. Consequently,
compared with SVR-CC-MMA(2, 2), dual-mode scheme
SVR-CC-MM(2, 2)-DD with slight calculation increment
reduces the residual TI level significantly. In the simulation,
we have found that the number of iterations required by

TABLE 3. Convergence time (s) of the SVR based algorithms.

FIGURE 12. Equalizer output constellations of the SVR-CC-MM(4, 2)-DD
using 256-QAM with N = 2000 and SNR = 35 dB.

different algorithms to achieve convergence is slightly dif-
ferent. In general, SVR-CC-MMA(2, 2) and SVR-CC-DDA
perform slightly less iterations than the others. In addition,
the number of iterations increases with the decrease of the
data block size and the increase of the modulation order.

To further elaborate on computational complexity, the con-
vergence time of different algorithms is counted, although
this index is somewhat rough. The convergence times of
the CC-CMA, CC-MMA and CC-MM-DD are 2.86s, 2.90s
and 3.49s, respectively. The results of the SVR basedmethods
with different data block sizes N are shown in Table 3.
All these results roughly illustrate that the proposed algo-
rithms own comparable computational complexity with tra-
ditional algorithms. For SVR based methods, under the same
data block size, the larger the value of p, the longer the
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FIGURE 13. Equalizer output constellations of the SVR-CC-MM(4, 2)-DD
using 1024-QAM with N = 3000 and SNR = 40 dB.

convergence time. The main reason for this phenomenon is
that the appropriate η0 is relatively small at this time, which
makes the number of iterations increase. Besides, in dual-
mode schemes, the computational cost in the second mode is
much less than the first mode. Finally, we point out that the
low complexity of the proposals is derived from the IRWLS
optimization.

D. DEALING WITH 256-QAM AND 1024-QAM INPUTS
In the last experiment, 256-QAM and 1024-QAM inputs are
considered inH3 under SNR = 35 dB and 40 dB respectively.
In the simulation, we have found that CC-MMA cannot pro-
vide an acceptable initialization TI under the conditions of
these twomodulations, whichmakes the CC-MM-DD always
divergent. With the increase of modulation order, SVR-CC-
MM(p, 2)-DD require relatively large data blocks (compared
to 64-QAM) to achieve signal recovery. In this situation, they
possess roughly the same convergence probability whether
p is equal to 2, 3, or 4. Since SVR-CC-MMA(4, 2) can
provide better initial convergence than the others, thus the
corresponding dual-mode scheme SVR-CC-MM(4, 2)-DD is
an optimal choice for recovering these two QAM signals. The
parameter settings are the same as Table 2 except that β is
calculated by (27).

With N = 2000, Fig. 12 intuitively shows the recov-
ered 256-QAM constellations with 30000 test symbols. For
1024-QAM modulation, N = 3000 are used to train the
equalizer and the results with 30000 test symbols are shown
in Fig. 13. As shown in these figures, the recovered signals
are clear and compact. In addition, a similar recovery effect
can be obtained when SVR-CC-MM(4, 2)-DD is applied to
H1 and H2. However, these results are omitted here since the
shortage of space. To the best of our knowledged, the lit-
erature does not involve methods that perform similarly to
SVR-CC-MM(4, 2)-DD for convolutive MIMO systems with
high-order QAM inputs. The results state that it can be
applied to blind signal recovery for convolutive MIMO
systems with 256-QAM or 1024-QAM inputs.

V. CONCLUSION
We have addressed a family of batch blind signal recovery
algorithms from the SVR point of view for linear time-
invariant convolutive MIMO systems. Since multimodulus
property exists a large nonzero error for high-order QAM
inputs when the equalizer outputs match with the con-
stellation, then dual-mode blind signal recovery schemes
have been presented to further mitigate residual TI. In con-
trast with CC-MMA, the novel SVR-CC-MMA(p, 2) with
small data blocks achieve a lower residual TI. Dual-mode
schemes significantly decrease the SER in higher SNR with
respect to single algorithms. Compared with CC-MM-DD,
SVR-CC-MM(p, 2)-DD merely use small data blocks to
converge and perform a lower residual TI. Consequently,
they are applicable to some special scenarios, such as short
burst communication.Moreover, the convergence probability,
convergence process, and computational complexity are also
studied. Finally, we validate the ability of SVR-CC-MM(4,
2)-DD to recover signal for convolutive MIMO systems with
256-QAM and 1024-QAM inputs.
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