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ABSTRACT Wideband spectrum sensing remains one of the challenging problems facing the wide
deployment of cognitive radio networks. Compressive sensing (CS) was proposed as a promising approach
to this problem by utilizing the sparse structure of the underutilized spectrum to capture the spectrum
with fewer measurements and simpler hardware requirements. Most of the work in compressive spectrum
sensing solely exploits the spatial- and frequency-domain structure of the spectrum neglecting the temporal
structure arising from the regularity of primary user (PU) traffic patterns. In this paper, we explore the
effectiveness of incorporating PU traffic patterns in compressive spectrum sensing. This achieves improved
sensing performance by exploiting the statistics of the PU activity in the CS recovery algorithms. The
experimental analysis through simulation shows that the proposed schemes can substantially improve the
receiver operating characteristic performance at lower sampling rate noisy spectrum measurements.

INDEX TERMS Compressive sampling, spectrum usage models, wideband spectrum sensing.

I. INTRODUCTION
Cognitive radios (CR) [1], [2] have been gaining increasing
attention as a solution to global spectrum scarcity through
opportunistic spectrum access. Studies have demonstrated the
inefficiency of the traditional radio frequency (RF) spectrum
allocation to a single primary user (PU) due to the low uti-
lization of the frequency bands both spatially and temporally.
This problem was exalted with the exponentially increasing
demand on RF spectrum due to the rapidly expanding mar-
kets of multimedia and internet of things (IoT) applications.
CR allows for dynamic spectrum access (DSA) [3] for sec-
ondary spectrum users (SU) in the interim of the absence of
the PU. In order to mitigate interference to the PU, SUs needs
to continuously monitor the wireless spectrum in order to
detect spectrum holes that are not utilized by their regis-
tered PUs. Performing wideband spectrum sensing increases
the SU chances to pinpoint vacant bands through search-
ing a wider range of frequency bands. However, it requires
sampling the spectrum at a high sampling rate according
to the Nyquist theorem. This imposes hardware technolog-
ical constraints on the needed high-speed analog to digital
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converter (ADC) and causes an increase in the energy, com-
putation, and communication overhead on the SU terminals.

Compressive sensing (CS) [4] and sparse representation
approaches have been successfully applied for reducing data
acquisition costs in a wide range of application domains
including wireless communication [5]. CS was first pro-
posed as a solution for wideband spectrum sensing in [6].
It allows for sampling the spectrum at sub-Nyquist sampling
rate using an analog to information converter (AIC) [7], while
using CS reconstruction techniques to efficiently reconstruct
the original spectrum through exploiting the sparsity arising
from under-utilization. Several approaches were proposed to
increase the effectiveness of the compressive spectrum sens-
ing by exploiting additional redundancy in order to further
reduce the required sampling rate. This includes using the
spatial correlation in cooperative networks [8]–[10] or the
geo-location database information [11].

The PU channel occupancy prior informationwas similarly
exploited in several approaches to increase the efficiency
of spectrum sensing [12]–[15]. Instead of only assuming
the sparsity of the spectrum, these approaches assume some
knowledge about the channel occupancy behavior of the
primary users. They build on other research foundation of
spatial, temporal, and geographic occupancy modeling for
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PU behavior in CR networks and utilize recent results from
structured compressive sensing and compressive sensing with
side information to incorporate this information into the com-
pressive sensing framework.

In this paper, we propose two compressive spectrum sens-
ing approaches that incorporates the statistical PU channel
occupancy pattern to enhance compressive spectrum sensing
performance. In the first approach, the occupancy model is
used to predict the spectrum support in the next time instant,
and the predicted support is used as a prior knowledge in
a modified-CS framework [16] to achieve improved recon-
struction. In the second approach, statistical information of
the channel is used to extract an occupancy likelihood for
each channel, which is used to solve a weighted compressive
sensing reconstruction problem.

A. RELATED WORK
CS was first proposed as a solution for wideband spectrum
sensing in [6] through utilizing the sparse nature of the
underutilized spectrum. CS is used to recover the spectrum
at a low sampling rate at SU. CS was able to detect the
spectrum location with fewer number of measurements. The
original CS approaches assume no prior information about
the unknown signal except its sparsity [4], [17], [18]. In many
applications, prior information is available that can help CS to
enhance the reconstruction performance with lower sampling
rates.

CS recovery can be modified to take advantage of hav-
ing statistical information of the signal of interest as a side
information to help in reconstruction. The idea of exploiting
side information with CS to aid the decoder in recovering the
sparse signal with fewer numbers of measurements was the
target of a lot of work in the literature.

One of the approaches to exploiting side information in CS
is through adding regularization terms and constraints based
on the partial support information and/or signal values esti-
mates [16], [19], [20]. By assuming a slow varying nature
of the signal support, information from the previous time
instant recursively help the reconstruction algorithm to find
the sparse solution with fewer number of measurements and
decrease reconstruction error in magnetic resonance imag-
ing (MRI). They proposed a modified Basis Pursuit (BP)
approach [19] that incorporates known support elements
using aweighted `1minimization approachwith zeroweights
on the known support in noise free case and regularized
modified-BP to exploit the prior knowledge of the signal
values estimates to reduce the reconstruction error. This work
was extended in [20] for the noisy case and denoted regular-
ized modified basis pursuit denoising (reg-mod-BPDN).

A different approach of integrating side information with
CS was proposed in [21] and [22] and denoted weighted CS.
In this approach, a nonuniform sparse models is assumed by
dividing the signal support into two sub-classes with different
probabilistic prior on the entries being nonzero in each sub-
class. This work was later extended into more than two sub-
classes in [23] and for arbitrary non-uniform weights in [24].

By finding the proper weights, the weighted `1 minimization
outperforms the traditional CS in reconstructing the signal
with fewer number of measurements.

On the other hand, compressive spectrum sensing with
side information was proposed in the literature with sev-
eral approaches depending on the kind of prior information
assumed. Thework in [9] exploits the two-dimensional sparse
structure when several SUs collaboratively sense a common
wide spectrum band. They use Kronecker compressive sens-
ing in order to reduce the sampling rate with lower recon-
struction error than conventional CS. Qin et al. [11] integrated
CS with a geo-location database to improve the accuracy
of spectrum sensing in wideband spectrum sensing. In [14],
a Bayesian CS with prior estimation of the weight of each
signal coefficient, strength and noise precision is utilized to
increase the performance of the PU detection.

Another set of approaches [12], [15] assumes a block-like
sparsity structure of the wideband spectrum as a result of
different occupancy behaviors and patterns for different wire-
less applications. In [15], assuming prior information about
the fixed spectrum allocation, they divided the spectrum into
sections with different lengths. They proposed a modified
minimization problem in the form of the sum of weighted
`2 norms, with a weighting factor that is iteratively updated.
The most relevant to our work is the approach proposed
in [12], they exploit the different sparsity levels for differ-
ent spectrum blocks to determine the weight of each block
for weighted CS [23]. By exploiting the knowledge of the
sparsity level in each block, their weighted CS approaches
achieved more stable recovery than other approaches with
fewer number of measurements. However, their approach
does not take into account the channel statistical pattern
variations within the block.

Finally, channel occupancy modeling was the subject of
an extensive set of recent literature studies, as it can greatly
improve the spectrum sensing by allowing SUs to fore-
cast the PU occupancy [25]. Different channel occupancy
models were proposed in the literature considering time,
geo-location, and frequency band occupancy patterns. Time
domain occupancy model can be modeled with continuous-
time semi Markov chain (CTSMC) with any arbitrary dis-
tributions to estimate the idle and busy states holding time
of the PU [26]. Beta distribution proved to be a good fit for
modeling the frequency domain model through several mea-
surements’ campaigns [27], [28]. A spatial duty cycle model
was proposed in [29], in order to estimate the average level
of PUs occupancy in different geographical location with the
knowledge of simple PUs signal parameters in certain period
and frequency range.

B. OUR CONTRIBUTION
Our contribution in this paper can be summarized as follows:
• We propose two different approaches for incorporating
the PU traffic occupancy patterns into the compressive
spectrum sensing paradigm.A predictive approach using
modified-CS [16] and a prediction of the occupancy
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patterns of the PU, and a weighted CS approach [23]
that utilizes the occupancy likelihood derived from the
PU occupancy model.

• We experimentally prove the effectiveness of the pro-
posed approaches in achieving satisfactory PU detection
results with fewer number of measurements. Which in
turn can reduce the computation load on limited capa-
bilities SU terminals.

• We study the state-of-the-art PU occupancy pattern
models and use it to design effective weights for the
proposed weighted CS approach.

• We experimentally validate the robustness of the pro-
posed approaches with respect to PU occupancy model
errors.

Finally, this paper offers an attempt for close integration
between compressive spectrum sensing approaches and the
state-of-the-art PU occupancy modeling. We hope this can
be efficiently utilized in future work to develop integrated
approaches for simultaneous spectrum sensing and PU occu-
pancy model learning.

C. ORGANIZATION
The remainder of this paper is organized as follows.
In section II, we explain our signal and system model and
the CS measurement process. The channel occupancy model
for the PU traffic patterns is presented in section III. The
two proposed spectrum sensing reconstruction approaches
are proposed in section IV. Simulation results are pre-
sented in section V. We finish with concluding remarks
in section VI.

We now establish some important notations. We denote by
Nt = {1, 2, . . . , n} the index set of a vector element at the
t th time instant inRn, and |Nt | denotes the number of elements
in the set Nt . For any vector u ∈ Rn, ui is the ith element
of u with i ∈ N , and uS is a sub-vector which contain the
elements of u with indices in S. The complement of any set
S ⊂ N is denoted by Sc = N \S, where \means all elements
that is found in the set N and not included the set S, and
∅ denotes an empty set. the support of vector u is written
as Supp(u) = {i ∈ N : ui 6= 0}.

II. SIGNAL MODEL AND PROBLEM STATEMENT
We Consider a CR network where each SU terminal
locally monitors a wideband of M non-overlapping chan-
nels.We assume predefined channel boundaries and unknown
power spectrum density levels for the PU of each channel.
The problem of spectrum sensing is to determine whether
each of these channels is occupied or available for opportunis-
tic use. The channel between any PU and the CR is considered
to be amultipath-fading channel with additive white Gaussian
noise (AWGN).

Consider I active PUs, whose signals are represented
by s̃i(t). The received signal at the CR from all PUs can be
modeled as follows

x(t) = x̃(t)+ w(t), (1)

where x̃(t) =
I∑
i=1

h̃i(t) ∗ s̃i(t) is the noise-free received signal

from PUs, h̃i(t) is the channel gain from the i-th PU to
the CR, ’∗’ denotes convolution, andw(t) is the additive white
Gaussian noise at the CR. Equation (1) can be written in a
discrete vector form as follows

x = x̃+ w =
I∑
i=1

h̃i ∗ s̃i + w, (2)

where x, x̃, and w are M × 1 vectors.
Taking the discrete Fourier transform (DFT) of (2),

the sensed signal can be represented as follows

X = X̃ +W =
I∑
i=1

H̃ iS̃i +W , (3)

where H̃ i is an M × M diagonal matrix, whose main diag-
onal is the M point DFT of h̃i, and X , S̃i, W are the
DFT transformation of x, s̃i, w, respectively.
Equation (3) can be stacked in a matrix form as

X = H̃S̃+W = X̃ +W . (4)

where H̃ = [H̃1, H̃2, . . . , H̃ I ] is an M × MI matrix and

S̃ = [S̃
T
1 , S̃

T
2 , . . . , S̃

T
I ]
T
is anMI × 1 vector. We assume that

each PU in the primary network is assigned a different chan-
nel, i.e., there is at most one active PU transmitter on each
channel. Thus, we can represent the PUs combined spectrum

as anM×1 vector such that S =
I∑
i=1

S̃i. We can also construct

a combined channel state information (CSI) matrix H as a
diagonal matrix, where each diagonal element corresponds to
the channel gain between the CR and the active PU occupying
this channel. This alternative formulation does not change the
sparsity order of the problem. However, the sensed spectrum
can now be represented as

X = HS+W . (5)

In order to estimate the spectrum vector S from the received
signal X , the CR receiver in compressive spectrum sensing
collects a compressed linear combination measurements of
the signal samples xt . This can be practically achieved using
an analog to information converter (AIC) with much lower
sampling rate [7] than the Nyquist rate required by analog
to digital converters. The underlying assumption to ensure
reconstruction is that the signal is sparse in the frequency
domain as the number of occupied channels is much smaller
than the total number of channels [17].
CR collects K × 1 time samples measurement vector yt

from xt , where I < K � M as follows.

yt = 8txt , (6)

where 8t is a K ×M random full rank measurement matrix
whose entries can be independent and identically distributed
random variables drawn from some probability distribu-
tion. We chose our measurement matrix to be a Gaussian

29098 VOLUME 7, 2019



O. M. Eltabie et al.: Incorporating Primary Occupancy Patterns in Compressive Spectrum Sensing

matrix, where each element is drawn from an independent
and identically distributed (i.i.d.) Gaussian random variable
with zero mean and 1/K variance. It was shown in [17] that
such measurement matrix achieves with high probability the
restricted isometry property (RIP) condition necessary for
reconstruction, with number of measurements K in the order
of O(I log(M/I ). Meanwhile, it reduces the required sam-
pling rate by a factor of K/M . Several hardware architecture
designs were proposed to efficiently implement such random
sensing without the need for high rate ADC, the reader is
referred to [5] for complete review of such designs.

Substituting from (5), equation (6) can be rewritten as

yt = 8tF−1X t = 8tF−1H tSt + W̌ t , (7)

where F−1 is the M × M inverse DFT matrix and
W̌ t = 8tF−1W t .
In order to detect the spectrum PU presence, we need

to recover the spectrum St using the minimum number of
compressed measurements yt . In this paper, we aim to utilize
the knowledge of the statistical spectrum occupancy pattern
of the PU to further reduce the sampling rate and enhance
the recovery process. In the next section, we will outline the
channel occupancy modeling we used in this regard.

III. CHANNEL OCCUPANCY MODELING
PU channel occupancy modeling has recently been an active
area of research within the CR literature, it has been used
to improve sensing and/or spectrum management through
making proactive decisions based on the prior history of the
channel. For example, SU can select rarely used channels to
reduce the frequency of spectrum handoffs. It is also used to
help selecting better channels for control purpose and others
for data transmission. Furthermore, statistical information
of the spectrum utilization helps to control the transmission
power of the CR and reduce interference to the PU.

We model the channel occupancy from both temporal
and frequency domains, neglecting the geographically spatial
domain for the time being. A time domain model is used to
model the arrival and departure of the primary user and the
busy/idle periods of the channel. Meanwhile, another statisti-
cal model is used to capture the frequency domain statistical
correlation between the adjacent channels due to the block-
like structure of the heterogeneous wideband spectrum.

Following the work in [30], we model the channel
occupancy using a Continuous-Time Semi Markov Chain
(CTSMC) model. The channel is considered to be switching
between two states. The state s0 represents the channel being
idle and hence available for opportunistic usage. Contrarily,
the state s1 represents the channel being busy with PU activ-
ity. The channel remains in either one of the two states for a
random time interval denoted as state holding time. However,
experimental field measurements have demonstrated that the
state holding times do not usually follow the exponential
distribution and are more adequately described by other dis-
tribution such as generalized Pareto, a mixture of uniform and

generalized Pareto, hyper-Erlang, as well as geometric and
log-normal distributions [31].

We choose to use the generalized Pareto (GP) distribution
to model the perceived lengths of the busy and idle periods.
The GP distribution was empirically shown in [31] to be a
good fit for channel occupancy modeling for various primary
radio technologies especially in low-time resolution observa-
tions. Moreover, it was found in [32] to offer higher accu-
racy and less sensitivity to imperfect spectrum sensing than
the other distributions. The cumulative distribution function
(CDF) of the state holding times T under the GP distribution
is given by:

FGP(T ;µ; λ;α) = 1−
[
1+

α(T − µ)
λ

]−1/α
(8)

where µ, λ, and α represent the location, scale, and
shape parameters, respectively. These parameters satisfy that

T > µ when α > 0, and µ 6 T 6 µ −
λ

α
when α 6 0 and

µ, λ > 0, α < 1/2.
The mean E{T } and the variance V{T } of the state holding

times under GP distribution can be calculated from its param-
eters as follows:

E{T } = µ+
λ

1− α
,

V{T } =
λ2

(1− α)2(1− 2α)
(9)

One of the straightforward statistical metrics of the PU
activity pattern is the duty cycle (DC) of the channel. The
DC for a channel denoted9 represents the average probabil-
ity of the channel being busy over time and can be calculated
as (10):

9 =
E{TON }

E{TON } + E{TOFF }
(10)

where E{TON } is the mean holding time for the busy state s1
and E{TOFF } is the mean holding time for the idle state s0.

In order to capture the non-homogeneous nature of the
wideband spectrum, we categorize the channel duty cycles
in the wideband spectrum into different band blocks based
on their traffic behavior. It was empirically found through
several measurements’ campaigns [27], [28] that Beta distri-
bution offers the best fit to model the duty cycle of a group
of channels. The probability density function of the Beta
distribution is given by:

F(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 (11)

where 0 < x < 1, α > 0, β > 0 and B(α, β) is the Beta
function defined as:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt (12)

The mean value for the duty cycle can be calculated from
the beta distribution parameters as follows:

E{9} =
α

α + β
, (13)
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FIGURE 1. The duty cycle distribution CDF corresponding to different load
level wireless sub-band.

The values of the Beta distribution parameters vary for
different use cases of the wireless sub-bands, resulting in
different distribution of the DC values. Figure 1 illustrate
the cumulative distribution function (CDF) of the empiri-
cally verified DC distribution for three different load levels,
very low PU load with an average DC value of 0.095
(E-GSM900UL), mediumPU loadwith an averageDC value
of 0.42 (ISM), and heavy occupied band with an average
DC value of 0.91 (E-GSM 900 DL) [30]. It is worth not-
ing that the beta distribution parameters of the DC are
directly proportional to the spectrum sparsity level, with an
expected reduced performance of standard compressive sens-
ing approaches in heavy occupied sub-bands.

For certain values of α and β, we generate a set of M dif-
ferent DC values from the Beta distribution. Then, we assign
these values of the DC to the various channel taking into
consideration that channels with similar occupancy patterns
usually occur in groups, with contiguous channels showing
strong correlation. In order to model such correlation, we use
the DC cluster generation model in [30] to cluster the chan-
nels into groups with similar or close value of DC. We first
categorize DC values into five different types ranging from
very low activity to very high activity, with the set of activ-
ity partition values defined at {0, 0.05, 0.40, 0.60, 0.95, 1}.
We then use a geometrically distributed random variable
to model the number of contiguous channels per cluster to
generate accurate model for PU traffic. The CDF for geomet-
rically distributed random variable is given by:

FGeom(k; p)=1− (1− p)k , k ∈ N∗={1, 2, 3, . . .} (14)

where k is the number of channels belonging to the same
cluster and 0 6 p 6 1 and the value of p can be empirically
set from the relation p ≈ M .10−3 where M the number of the
channels of the whole band as long as it satisfies p 6 1.

FIGURE 2. DCs for two different Beta distribution parameters
in (a) and (b) with their corresponding time frequency
model for PUs activity in (c) and (d).

The distribution of the clusters on the whole band is uni-
formly distributed between the five group types. Taking into
consideration that no two adjacent clusters are from the same
group type unless it is the only group type available. Resulting
in a set 9 = {91, 92, . . . , 9M } of the DC values for the
M channels of the band. Figure 2 illustrates the resulting
DC values for 128 channels.

In order to retain a certain DC 9i value for the ith channel,
the mean period length of the busy and idle distributions
E{TON } and E{TOFF } are chosen to satisfy the following
relation:

E{TOFF } = E{TON }(
1
9i
− 1) (15)

For each channel, we generate a set of busy state holding
times TON sampled from the GP distribution in (8) for a given
location, scale and shape parameters µON , λON , and αON ,
respectively. For each channel, a location µiOFF and scale
λiOFF parameters for the idle state holding times are calculated
form the DC value 9i of the channel as follows:

µiOFF = µON (
1
9i
− 1),

λiOFF = λON (
1
9i
− 1),

αOFF = αON (16)

Figure 2 illustrates the simulated PU traffic pattern over
100 time instances for two different set of α and β parameters.
It clearly shows the effect of the distribution of the DC values
on the state holding times for the idle and busy states.

IV. SPECTRUM RECOVERY
In this section, we explain our proposed approach for
CR spectrum recovery from the compressed measurements.
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The CR senses a compressed set of spectrum measurements
as discussed in section II, and recursively recovers the spec-
trum based on the received signal and the prior information on
the spectrum obtained from the channel statistical occupancy
model. Our aim is to efficiently incorporate the channel occu-
pancy information in order to efficiently recover the spectrum
with a fewer number of measurements.

The system in (7) has infinite number of solutions. How-
ever, taking sparsity into consideration, classical CS theory
search for the sparsest solution by solving an `0 minimiza-
tion problem, which unfortunately is an NP-hard problem.
Replacing the `0-norm minimization with the convex
`1-norm, the program has a feasible solution which converge
to the sparsest solution by solving the following basis pursuit
(BP) optimization problem [33]

minimize
xt

‖xt‖1 subject to yt = 8txt (17)

Assuming noisy observation environment, this problem is
modified to a Lagrangian variant known as the BP denoising
(BPDN) as follows

minimize
xt

‖xt‖1 + λ
∥∥yt −8txt

∥∥2
2. (18)

where λ is a penalty parameter, that can be used to trade-off
between enforcing the sparsity of the spectrum andminimiza-
tion of the L2 norm term [34]. The smaller λ gets, the more
coefficients will be shrunk to zero. The choice of λ affects the
performance of the recovery program. Fortunately, λ could
be estimated if the noise variance is known as was shown
in [33]. The BPDN optimization problem in (18) is very
similar to the more common Least Absolute Shrinkage and
Selection Operator (LASSO) [35]. Several other alternative
CS recovery approaches were presented in the literature such
as orthogonal matching pursuit (OMP) [36] and CoSaMP
approach [37].

We propose two different CS with side information
approaches to incorporate the prior channel occupancy infor-
mation into the recovery process. In the first approach,
we iteratively use the statistical occupancy model to predict a
partial support knowledge from the previous sensing instant,
which is used to improve the recovery performance of the
CS using the Modified BPDN (mod-BPDN) approach [38].
In the second approach, we use the statistical occupancy
model to estimate a sparsity confidence level for each band
that is used as weights in a weighted CS approach [21].

Consider that the spectrum support (set of occupied chan-
nel bands) at time t is represented by Supp(St ), andNt denotes
its support set representing the index of these channels.
Recursive CS algorithms are originally proposed to utilize the
spectrum slow varying spectrum pattern in the time domain
for some signals. This is achieved in the dynamic regularized
version via reducing the search space to find only the sparsest
signal outside the previous time instant support. This dynamic
(mod-BPDN) recovery problem [38] can be formulated as
follows:

minimize
xt

‖xt T c‖1 + λ
∥∥yt −8txt

∥∥2
2. (19)

FIGURE 3. States of the channel over a period of time.

FIGURE 4. Discrete-Time Markov Chain (DTMC) model.

where T is the recovered support set found at the previous
time instant t − 1.

At each time instant t , the CR captures a measurement of
the spectrum as shown in (6). Instead of relying on the support
at the previous time instant Supp(Ŝt−1) = N̂t−1 as in [38],
an estimate Ñt of the current time instant support is predicted
using the channel occupancy model.

Assuming a knowledge of the spectrum at the previous
time instant Ŝt−1. We can identify the status of the channels
with decision vector d̂t−1 = {ŝi,1,t−1, ŝi,2,t−1, . . . , ŝi,M ,t−1},
where ŝi,M ,t−1 denotes the state of the channel M being
busy or idle at t − 1. The decision vector at the CR is found
as:

d̂ t−1 = (
∣∣∣Ŝt−1∣∣∣ > ρ), (20)

where ρ is a threshold calculated under Neyman-Pearson
detection settings for a given probability of false alarm. This
computation requires the knowledge of the noise statistics.
It is worth noting that some alternative compressive spectrum
sensing approaches such as [10] can avoid this assumption
and directly detect the spectrum holes without full spectrum
recovery. However, they assume a sequential recovery pro-
cess where the spectrum signal maintains a fixed support in
the frequency domain during the acquisition processes.

Sampling the CTSMC model outlined in the last section
with a sampling period Ts, we can generate a sequence of
states s0 and s1 for the channel being busy or idle as shown
in Figure 3. The PU arrival and departure can be simplified
by a two-state discrete time Markov chain (DTMC) as shown
in Figure 4. The transition matrix for the DTMC is expressed
as:

P =
[
P00 P01
P10 P11

]
(21)

where Pij is the probability that the channel transitions from
state si to state sj.
It is worth noting that this simplified DTMC model can

capture the average occupancy of the channel but fails to
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characterize the lengths of the state holding times described
in the last section.

Assuming a knowledge of the DC values for each channel
of the spectrum 9 = {91, 92, . . . , 9M }. We can config-
ure the described DTMC model in (21) to predict the next
state of each channel by setting the transition probabilities as
P01 = P11 = 9 and the P10 = P00 = 1 − 9, thus the
transition matrix will be on the form:

P =
[
1−9 9

1−9 9

]
(22)

A prediction of the decision vector is writing as d̃ t . Assum-
ing that both S̃t and d̃t share the same predicted support
sets Ñt , the full spectrum can be recovered from the com-
pressed measurements yt by solving the following modified
BPDN minimization problem [38].

minimize
St

∥∥∥St Ñ c
t

∥∥∥
1
+ λ

∥∥∥yt −8tF−1H tSt
∥∥∥2
2
. (23)

This optimization problem can be regarded as finding the
sparsest signal outside the predicted support Supp(S̃t ) = Ñt .
Hence, the sparsity of St Ñ c

t
in the proposed predictive algo-

rithm is reduced to |St |−
∣∣∣Ñt ∣∣∣. This reduction in sparsity order

leads to further reduction in the required number of mea-
surements needed for prefect reconstruction. It was shown
in [20], that under Markovian conditions, the solution of (19)
becomes a causal MAP estimate. The algorithm of this pre-
dictive approach is presented in Algorithm 1.

Algorithm 1 Predictive Scheme
Input:
y(M × 1), F(M ×M ), K
Internal Algorithm Parameters:
N0 = ∅ (initial index set)
for t = 1 to tend do
Generate Measurement Matrix: 8t (K ×M )
Signal Acquisition: yt = 8tF−1X t = 8tF−1H tSt +
W̌ t ,

Recovery: Ŝt = minimizeSt
∥∥∥St Ñ c

t

∥∥∥
1
+

λ
∥∥yt −8tF−1H tSt

∥∥2
2

Decision vector : d̂ t = (
∣∣∣Ŝt ∣∣∣ > ρ)

Predict decision vector for next time instant: d̃ t+1
Refine Search Space : Ñt+1 = {m ∈ {1, 2, . . . ,M} :
d̃ t+1 = 1
Output: Ŝt (total support recovery)

end for

We note here that in the absence of any prior information
about free and occupied channels, the spectrum support N0
is initialized as an empty vector. This for example is used
to initialize the algorithm at the first time instant. In this
case, this scheme is the same as classical CS approaches, and
the minimization problem in (23) reduces to the following

unconstrained BPDN minimization program

minimize
St

‖St‖1 + λ
∥∥∥yt −8tF−1H tSt

∥∥∥2
2
. (24)

The described predictive approach utilizes the statistical
information of the channel occupancy behavior to predict the
most probable support set and reduce the dimensionality of
the search space, which in turn improves the reconstruction
results for the same number of measurements. However,
the minimization problem in (23) relies heavily on the pre-
diction accuracy and can cause accumulation of errors over
time. This is mainly caused by the complete elimination of the
predicted occupied channels form the `1 search term. On the
other hand, the prediction using the simplified DTMC model
ignores the characterization of the state holding times which
can significantly reduce its accuracy.

Instead of using such prediction for the channel bands,
we alternatively propose to use a weighted CS approach [21],
where we use the channel occupancy model to impose
a weight of every channel for being occupied. The new
weighted minimization problem is formulated as follows:

minimize
St

‖St‖w1 + λ
∥∥∥yt −8tF−1H tSt

∥∥∥2
2
. (25)

where the ‖x‖w1 represents a weighted L1 norm given by

‖x‖w1 =
n∑
i=1

wi | xi | (26)

where x and w is M × 1 signal and positive weight vector.
The optimal choice of the weight vector in weighted

CS remains an open problem. However, it is intuitive that
higher weights are given to channels with higher likelihood
of being unoccupied. Thus, we chose the weights in our
spectrum sensing problem to represent the probability of
a channel being vacant. Which is directly related to the
DC value of the channel based on our CTSMC model (10)
in the following way:

wi = P(di = s0) = 1−9i (27)

It is worth mentioning that the choosing equal weights for
all the channels will reduce the optimization problem to the
original BPDN program (18). This can be used for example
in the absence of accurate estimate of the PU occupancy
parameters. In the next section, we evaluate the performance
of the two proposed approaches through simulation.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
predictive and weighted approaches in comparison with the
original BPDN CS [33], (OMP) [36], and CoSaMP [37]
approaches through numerical simulations. In all of our
experiments, we consider a spectrum of interest with
M = 128 sub-channels. The DC values 9 are sampled as
shown in section III form a Beta distribution model config-
ured by the parameters α = 0.09 and β = 0.85 of the
E-GSM 900 UL band obtained from [30] and as shown
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in Figure 2-a, resulting in an average DC value of 0.095. This
value is very close to the 10% average occupancy level usu-
ally used in compressive spectrum sensing literature. Later in
this section, we experimentally investigate the effect of vary-
ing the average occupancy level on our proposed algorithm
performance. The PU traffic pattern is generated according
to GP model configured by the parameters µON = 100ms,
λON = 300ms and αON = αOFF = 0.25. A realization of the
traffic pattern for 128 sub-channels and 100 time instants was
shown in Figure 2-c.

We assume a knowledge of the DC value for each chan-
nel, many measurements campaigns where able to extract
such statistical information about the spectrum [27]. We will
experimentally investigate the effect of inaccurate estimates
of the DC values on perfect reconstruction the signal with the
predictive and weighted approaches at the end of this section.

The wireless channels between the PUs and the CR are
modeled as multipath fading channels with a number of
taps Np = 3. The gain of each tap is drawn from a Rayleigh
distribution. The received signal is corrupted by an additive
white Gaussian noise and the signal to noise ratio is consid-
ered as the signal power over the entire bandwidth normalized
by the noise power. Finally, the compression ratio is defined
as the ratio between the number of measurements K and the
dimension of the signal M .
Since we are interested in PU detection and spectrum

sensing rather than spectrum reconstruction, We evaluate the
performance of the different approaches using the ROC curve
averaged over 1000 time instants.We note that the probability
of detection Pd in our problem refers to the probability of
detecting the active PUs, while probability of false alarm
Pfa refers to marking a channel as occupied while being idle.
Figure 5 shows the detection accuracy of the various

approaches at different values of the compression ratios
at the same probability of false alarm of 0.1. The results
clearly show that the weighted CS approach achieves supe-
rior performance and the lowest drop rate in detection
probability as we decrease the number of measurements.
A noticeable performance gap is evident while using very
low rate compressive sampler. This alleviates the need of
high cost, high speed ADC, which can be of particular inter-
est to limited capabilities CR devices such as wearable and
IoT devices.

The complete ROC curves for the various recovery
approaches are shown in figure 6 at SNR value of 5 dB and
relatively low compression ratio of 0.3. The results confirm
the performance superiority of the weighted approach fol-
lowed by the predictive approach as compared to the classical
CS recovery approaches as it fully exploits our knowledge
about the statistical channel occupancy models.

The change in detection accuracy with different SNR val-
ues is shown in figure 7 at a compression ratio of 0.3. Again,
the weighted approach achieves the highest level of noise
immunity as compared other recovery approaches. The pre-
dictive scheme still achieves better performance than BPDN,
OMP, and CoSaMP. However, it is less prone to errors at low

FIGURE 5. Probability of detection at different values of the compression
ratio at SNR values of 5 dB and probability of false alarm = 0.1.

FIGURE 6. The ROC at compression ratio of 0.3 and SNR values of 5 dB
averaged over 1000 time instants.

compression ratios due to the accumulation of errors in the
estimated support.

All the presented results so far were for the same set of
DC configuration parameters, with an average occupancy
level of 0.095. In the next experiment we evaluated the
effect of different DC configuration parameters on the perfor-
mance of our proposed approaches. We alternatively sampled
the DC values from the different Beta distribution configu-
ration parameters obtained through spectrum measurement
campaigns [27], [30].

Figure 8 shows the probability of detection for the various
evaluated approaches plotted against the average occupancy
level E{9} at compression ratio of 0.5, SNR equals 5 dB,
and false alarm probability of 0.1. The values of the PU
distribution parameters that resulted in these occupancy levels
are obtained from measurement campaign results reported
in [27] and [30]. As expected, the performance of all com-
pressive spectrum sensing approaches drops significantly as
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FIGURE 7. Probability of detection at different values of the SNR in dB at
compression ratio of 0.3 and probability of false alarm equals 0.1.

FIGURE 8. Probability of detection at compression ratio of 0.5, SNR
equals 5 dB, and false alarm probability of 0.1 for various average
occupancy levels obtained from [27] and [30].

we increase the average occupancy levels. This is due to
the relative decrease in the sparsity order for the same com-
pression ratio. However, we note that weighted approach
achieves the best resilience to increasing the occupancy level,
demonstrated by a lower drop rate. This can be attributed to
the effect of the weighting on directing the recovery problem
into the more likely occupied bands.

In the final experiment, we evaluate the robustness of the
proposed approaches to imperfect estimation of the channel
occupancy model. An important consideration especially
that extracting the statistical information of the spectrum
is usually affected by spectrum sensing accuracy.
Al-Tahmeesschi et al. [32] studied the effect of imper-
fect spectrum sensing on the statistical time domain occu-
pancy models with different distribution for the idle and
busy periods. Comparing the CDF of the estimated

FIGURE 9. Probability of detection for various values of KS distance at
compression ratio of 0.3 and SNR value of 5 dB.

distributions with the original ones using the Kolmogorov-
Smirnov (KS) distance, defined as:

DKS = sup
Ti
|FTi (Ti) − FT̃i (Ti) |, (28)

where Ti is the original idle and busy periods of the primary
user and T̃i is the estimated idle and busy periods of the
primary user with imperfect spectrum sensing.

We studied the effect of imperfect estimation of the
parameters of the GP distribution characterized by different
KS distance values on the proposed predictive and weighted
spectrum sensing approaches. Figure 9 shows the probability
of detection for the two approaches versus the KS distance
at false alarm probability of 0.1, compression ratio of 0.3,
and SNR = 5 dB. We note that the weighted approach is less
sensitive to statistical estimation error than the predictive one
in detecting the presence of the primary user.

VI. CONCLUSION
In this paper, we proposed a predictive and weighted
approaches for exploiting the channel occupancy statisti-
cal models in compressive spectrum sensing. The predictive
algorithm predicts the traffic pattern of the PU and use it
as a prior information for compressive spectrum sensing.
The weighted approach uses the statistical information of
the channel to extract the DC value for each channel and
use it to solve a weighted compressive sensing problem. The
offered weighted approach procedure have evinced a signif-
icant performance improvement in term of enhanced ROC
with fewer noisy measurements. We studied also the effect of
the imperfect spectrum sensing on the proposed approaches.
The DC weighted approach proved its immunity to the errors
from imperfect channel occupancy modeling.
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